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Abstract: This paper investigates the 

efficiency of a Quantum Brayton Engine 

(QBE) using the Wood-Saxon (WS) potential 

as the working substance. The WS potential 

offers a more realistic model compared to the 

traditional Free-Particle (FP) model for 

studying quantum systems. The work follows 

the formalism established by Bender et al. 

(2000) to describe the QBE cycle with two 

isentropic and two adiabatic processes. The 

efficiency expression for the QBE with WS 

potential is derived. The derived efficiency 

expression showcases the dependence on the 

parameters of the WS potential, including 

depth, confinement width, and diffuseness. By 

taking the FP limit of the WS model, the 

efficiency reduces to the well-known 

expression for a QBE with a free particle, 

validating the approach. This research 

demonstrates the potential of the WS 

potential for analyzing the performance of 

QBE and paves the way for further 

exploration of more realistic models in 

quantum thermodynamics. 
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1.0   Introduction 
 

The concept of heat engines dates to antiquity, it 

wasn't until the Industrial Revolution in the 18th 

century that they were effectively harnessed into 

useful devices, marking a pivotal moment in the 

application of thermodynamics. Throughout its 

discovery, it has played a crucial role in shaping 

modern technologies, especially from the late 19th 

century (Bera et al., 2021; Bhattacharjee & Dutta, 

2021). Although recently Engineers have 

examined different heat-engine cycles to enhance 

the extraction of usable work from power sources. 

Unfortunately, the Carnot cycle limit remains 
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unattainable with gas-based cycles, however, 

theoretical models have introduced limits that 

achieve higher efficiency without violating any 

thermodynamic rules. This was possible by 

increasing the temperature difference in the heat 

engine, secondly, exploiting the physical 

properties of the working fluid and finally, 

Exploiting the chemical properties of the working 

fluid. These methods however have not fixed the 

challenges of friction that CHE faces (Rezek & 

Kosloff, 2006). This limitation is evident in the 

engine’s efficiency and its overall performance, 

which are reduced by irreversible losses 

considering that not all of the energy obtained 

from the reservoir at a higher temperature is 

transformed into mechanical work (Oladimeji, 

Idundun, et al., 2024). 

Due to the impact of quantum fluctuation on 

systems at this scale, the emergence of Quantum 

heat engines (QHEs), in which heat systems are 

reduced from microscale to nanoscale, has 

rendered this CHE constraint insignificant (Abah 

et al., 2012; Campisi et al., 2011;Oladimeji, 

Idundun, et al., 2024; Peterson et al., 2019; Von 

Lindenfels et al., 2019). Because engines at this 

scale offer a tangible setting for investigating the 

principles of thermodynamics in the quantum 

realm (Brandão et al., 2015; Masanes & 

Oppenheim, 2017). Despite this discrepancy, to 

understand the quantization concept of heat 

engines, we cannot ignore their classical 

analogies, such as the Carnot cycles (Fei et al., 

2022; Martínez et al., 2016; Oladimeji et al., 

2021; Türkpençe et al., 2017; JWang & He, 2012) 

Ericsson cycles, Stirling cycles, Otto cycles and 

Brayton cycles (J. Wang et al., 2007), since the 

thermodynamic cyclic process remains the 

irrespective of the size of the engine. 

All engines are driven by a sort of fuel which we 

shall refer to as working substance. This working 

substance stands to be the major difference 

between CHEs and its QHEs counterpart. While 

the CHE is driven by the famously known fuels 

which are usually in the form of liquid i.e., diesel, 

gasoline, and petrol, QHEs are driven by 

quantum-mechanical systems, such as Free-

Particle (Bender et al., 2000; Guzmán-Vargas et 

al., 2002; Wang & He, 2012), Harmonic 

Oscillators (Insinga et al., 2016; Jussiau et al., 

2023; Lin & Chen, 2003; Rezek & Kosloff, 2006), 

Pöschl-Teller Oscillator (Oladimeji et al., 2021; 

Oladimeji, 2019), Wood-Saxon model 

(Oladimeji, Ibrahim, et al., 2024), the Morse 

Oscillator (E. O. Oladimeji, Idundun, et al., 2024) 

etc. The working substance has proved to have an 

immense effect on the performance of the 

quantum systems, recently we have seen several 

comparisons between the different types of 

working substances. Oladimeji et al (Oladimeji, 

Idundun, et al., 2024), in their work, observed that 

the Morse oscillator proved to be a more suitable 

working substance for the quantum Carnot 

system, they further observed the effect of the 

Wood-Saxon WS model in the same system, their 

result was finally reduced to the well know Free-

Particle model for Comparism (E. O. Oladimeji, 

Ibrahim, et al., 2024).  

In this work, we shall also observe the Wood-

Saxon WS model as a working substance to a 

quantum system analogous to a Brayton cycle 

because this cycle is widely used in real-world 

applications, particularly in gas turbine engines 

for power generation and jet propulsion. The 

efficiency and its performance shall be analysed. 

Our study shall follow the formalism of Bender et 

al (Bender et al., 2000), their approach has been a 

tremendously useful tool to many researchers 

(Abe, 2011; Enock et al., 2021; Wang et al., 

2012). The WS model was initially devised for 

studying nuclear structure and reaction properties 

in 1954 by R.D. Wood and D.S. Saxon (Woods & 

Saxon, 1954). However, in recent times, the 

model applied to quantum systems (Aytekin et al., 

2013; Costa et al., 1999; Horchani et al., 2022; 

Xie, 2009a, 2009b), and proved to be suitable for 

studying nonlinearities in quantum systems and is 

of significant interest in understanding the 

performance of QHE, whose working substance 

is constrained within this more realistic potential 

model (E. O. Oladimeji, Ibrahim, et al., 2024). 

The one-dimensional form of the potential is: 

𝑉(𝑥) =
−𝑉0

1 + 𝑒
(

𝑥−𝐿
𝑎

)
 

where 𝑉0 is the depth, 𝐿 is taken to stand for the 

confinement width and 𝑎 is the diffuseness of the 

interaction. The corresponding quantized 

eigenvalues 𝐸𝑛 takes the form (Berkdemir et al., 

2005):   

𝐸𝑛
𝑊𝑆(𝐿) = − [

𝑉0

2
+

(𝑛+1)2ℏ2

8𝑚𝐿2 +
𝑉0

2𝑚𝐿2

2ℏ2(𝑛+1)2] (1)  

where 𝑚 is the mass of the particle and (𝑛 =
1,2,3, … ). Hence its pressure 𝑃 is: 

𝑃𝑛
𝑊𝑆(𝐿) = 

Since the pressure exerted on the confinement is 

defined as: 

𝑃 =  − (
𝑑𝐸

𝑑𝐿
) (3) 

Based on this definition, it is possible to define 

several quantum processes analogous to those 



Communication in Physical Sciences, 2024, 11(3): 476-484 478 
 

 

used in reversible thermodynamics. The energy 

supplied by the Hamiltonian's expectation value 

takes the place of the temperature in this situation. 

A process that is considered isobaric occurs when 

the system expands or contracts while 

maintaining a constant pressure, or in which the 

average forces acting on the container walls 

remain constant (Abe, 2011; Guzmán-Vargas et 

al., 2002). 

This paper is structured as follows: Section 2 

introduces a model of a quantum Brayton engine 

comprising two Isentropic and two adiabatic 

processes, utilizing the Woods-Saxon (WS) 

potential as the working medium, and derives its 

efficiency, η. We discussed our derived 

efficiency, reduced it to a well-known FP model 

for verification in Section 3.0 and presented our 

conclusions and recommendation in Section 4.0 
 

2.0 The Brayton Cycle 
 

The Classical Brayton engine (CBE), also known 

as the Joule engine or Joule-Brayton engine 

(Oladimeji, 2019), is a thermodynamic engine 

whose cycle comprises a sequence of four 

processes (see Fig. 1): two isentropic (reversible 

adiabatic) processes interspersed with two 

isobaric (constant pressure) processes. The 

principle of the CBC also applies to its quantized 

counterpart i.e., Quantum Brayton Cycle (QBC). 

We will begin examining the first process i.e., the 

isentropic expansion phase where the pressure is 

constant even when the system is compressed or 

expanded (i.e., the rate of change of energy 

concerning the change in width 𝐿 of the well is 

constant). The energy value as a function of 𝐿 

may be written as:  

𝐸(𝐿) = ∑|𝑎𝑛|2𝐸𝑛

∞

𝑛=1

(4) 

where 𝐸𝑛 is the energy spectrum (3) and the 

coefficients |𝑎𝑛|2 are constrained by the 

normalization condition ∑ |𝑎𝑛|2 = 1.∞
𝑛=1  Given 

that the system at the initial state 𝜓𝑛(𝑥) of 

volume, 𝐿 is a linear combination of eigenstates 

𝜙𝑛(𝑥), the expectation value of the Hamiltonian 

changes concerning the change in width 𝐿 of the 

well, then the instantaneous pressure exerted on 

the walls can be obtained using the relation (3). 

 

 
Fig. 1: The schematic representation of a 

quantum heat engine cycle in the plane of the 

width (L) and Pressure P(L). The cycle consists 

of two (2) isentropic and two (2) adiabatic 

processes (E. O. Oladimeji, 2019) 
 

2.1.1 Process 1: Isentropic expansion 
 

During the isentropic process, the system moves 

from its initial ground state 𝑛 = 0 at point 1 (i.e., 

from 𝐿 = 𝐿1 to 𝐿 = 𝐿2) and is excited into the 

second state 𝑛 = 1, while the expectation value of 

the Hamiltonian constant and the state of the 

system is a linear combination of its two energy 

eigenstates: 

𝛹𝑛  =  𝑎1(𝐿)𝜙1(𝑥)  +  𝑎2(𝐿)𝜙2(𝑥) 

where 𝜙1 and 𝜙2 are the wave functions of the 

first and second states respectively. The 

coefficients are constrained by the normalization 

condition∑ |𝑎𝑛|2∞
𝑛= 1 , it satisfies the condition 

|𝑎1|2 + |𝑎2|2 = 1. The expectation value of the 

Hamiltonian in this state as a function of 𝐿 is 

calculated as 𝐸  =   ⟨𝜓|𝐻|𝜓⟩: 

𝐸(𝐿) = − (
𝑉0

2
+

ℏ2

8𝑚𝐿2
+

𝑉𝑜
2𝑚𝐿2

2ℏ
) |𝑎1|2 − (

𝑉0

2
+

4ℏ2

8𝑚𝐿2
+

𝑉𝑜
2𝑚𝐿2

8ℏ
) |𝑎2|2 

Recall that |𝑎2|2  =  1 – |𝑎1|2   

𝐸(𝐿) = −
𝑉0

2
+

ℏ2

8𝑚𝐿2
[3|𝑎1|2 − 4] −

𝑉𝑜
2𝑚𝐿2

8ℏ
[6|𝑎1|2 + 1] (5) 

and pressure’s value is given in terms of its definition (3): 

𝑃 =
ℏ2

4𝑚𝐿3
[3|𝑎1|2 − 4] +

𝑉𝑜
2𝑚𝐿

4ℏ
[6|𝑎1|2 + 1] (6) 

The pressure at point 1 as a function of 𝐿1 is: 
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    𝑃1(𝐿) = (−
ℏ2

4𝑚𝐿1
3 +

𝑉𝑜
2𝑚𝐿1

ℏ
) (7) 

The pressure during this process remains constant, therefore, 𝑃1 = 𝑃, thus: 

−
ℏ2

4𝑚𝐿1
3 +

𝑉𝑜
2𝑚𝐿1

ℏ
=

ℏ2

4𝑚𝐿3
[3|𝑎1|2 − 4] +

𝑉𝑜
2𝑚𝐿

4ℏ
[7|𝑎1|2 + 1] (8) 

Interestingly, the Brayton cycle presents a unique relation between the values of 𝐿1. To solve the 

problem, the value of the engine’s width on both sides of equ. (8) is compared, thereby leading to two 

possible maximum values of the engine’s width 𝐿 during the isentropic process. 

ℏ2

4𝑚𝐿1
3 =

ℏ2

4𝑚𝐿3
[3|𝑎1|2 − 4] (9𝑎) 

And  

𝑉𝑜
2𝑚𝐿1

ℏ
=

𝑉𝑜
2𝑚𝐿

4ℏ
[7|𝑎1|2 + 1] (9𝑏) 

Thus, the maximum possible value of L during this isothermal expansion is 𝐿 = 𝐿2, since 𝑎1 = 0 at 

(point 2): 

𝐿 = (
1

4
)

1
3

𝐿1 = 𝐿2 (10𝑎) 

And  

𝐿 = 4𝐿1 = 𝐿2 (10𝑏) 

Therefore.  

𝐿2 = (
1

4
)

1
3

𝐿1, 4𝐿1 
 

2.1.2 Process 2: Adiabatic Expansion 
 

Next, the system expands adiabatically from 𝐿 = 𝐿2 until 𝐿 = 𝐿3. During this expansion, the system 

remains in the second state 𝑛  =  2 as no external energy comes into the system and the change in the 

internal energy equals the work performed by the walls of the well. The expectation value of the 

Hamiltonian is: 

𝐸 = − (
𝑉0

2
+

4ℏ2

8𝑚𝐿2
+

𝑉𝑜
2𝑚𝐿2

8ℏ
) 

And the pressure is given by. 

𝑃2(𝐿) = (−
ℏ2

𝑚𝐿3
+

𝑉𝑜
2𝑚𝐿

4ℏ
) (11) 

The product 𝐿𝑃2(𝐿) in (11) is a constant that is considered the quantum analogue of the classical 

adiabatic process.  
 

2.1.3 Process 3: Isentropic Compression 
 

The system is in the second state 𝑛 = 1 at point 3 (i.e., from 𝐿  =   𝐿3 until 𝐿  =   𝐿4), and it compresses 

isobarically. The system is compressed back to the ground state 𝑛 = 0 as the expectation value of the 

Hamiltonian remains constant. Thus, the state of the system is a linear combination of its two energy 

eigenstates.  

𝛹𝑛 = 𝑏1(𝐿)𝜙1(𝑥) + 𝑏2(𝐿)𝜙2(𝑥) 

The expectation value of the Hamiltonian in this state as a function of L is calculated  using 𝐸  =
 ⟨𝜓|𝐻|𝜓⟩, which results in  

𝐸(𝐿) =  ∑ |𝑏𝑛|2𝐸𝑛

2

𝑛= 1

=  |𝑏1|2𝐸1 + |𝑏2|2𝐸2 

Recall that |𝑏1|2  =  1 – |𝑏2|2   

𝐸(𝐿) = −
𝑉0

2
−

ℏ2

8𝑚𝐿2
[3|𝑏2|2 + 1] +

𝑉𝑜
2𝑚𝐿2

8ℏ
[6|𝑏2|2 − 4] (12) 

and pressure’s value is given in terms of its definition (3): 
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𝑃 = −
ℏ2

4𝑚𝐿3
[3|𝑏2|2 + 1] −

𝑉𝑜
2𝑚𝐿

4ℏ
[6|𝑏2|2 − 4] (13) 

The pressure at point 3 as a function of 𝐿3 is:  

    𝑃3(𝐿) = −
ℏ2

𝑚𝐿3
3 +

𝑉𝑜
2𝑚𝐿3

4ℏ
(14) 

The pressure during this process remains constant, therefore, 𝑃3 = 𝑃, thus: 

−
ℏ2

𝑚𝐿3
3 +

𝑉𝑜
2𝑚𝐿3

4ℏ
= −

ℏ2

4𝑚𝐿3
[3|𝑏2|2 + 1] −

𝑉𝑜
2𝑚𝐿

4ℏ
[6|𝑏2|2 − 4] (15) 

Just as observed at the first process of the cycle, the value of the engine’s width on both sides of equ. 

(8) is compared, leading two possible maximum values of the engine’s width 𝐿 during the isentropic 

process.  

−
ℏ2

𝑚𝐿3
3 = −

ℏ2

4𝑚𝐿3
[3|𝑏2|2 + 1] (16𝑎)

And  

𝑉𝑜
2𝑚𝐿3

4ℏ
= −

𝑉𝑜
2𝑚𝐿

4ℏ
[6|𝑏2|2 − 4] (16𝑏) 

Thus, the maximum possible value of L during this isothermal expansion is 𝐿 = 𝐿4, since 𝑏2 = 0 at 

(point 4): 

𝐿 = (
1

4
)

1
3

𝐿3 = 𝐿4 (17𝑎) 

And  

𝐿 =
𝐿3

4
= 𝐿4 (17𝑏) 

Therefore.  

𝐿4 = (4)−
1
3𝐿3, (4)−1𝐿3 

 

2.1.4 Process 4: Adiabatic Compression 
 

The system returns in the ground state 𝑛 = 0 at 

point 4 (i.e., from 𝐿 = 𝐿4 until 𝐿 = 𝐿1), as it 

compresses adiabatically. The expectation of the 

Hamiltonian is given by  

𝐸 = − (
𝑉0

2
+

ℏ2

8𝑚𝐿2 +
𝑉𝑜

2𝑚𝐿2

2ℏ
) and the pressure 

applied to the potential well’s wall is: 

     𝑃4(𝐿) = (−
ℏ2

4𝑚𝐿3
+

𝑉𝑜
2𝑚𝐿

ℏ
) (19) 

2.2 Work Done in One Closed Cycle 
 

During one closed cycle, the new work done 𝑊 

by the quantum heat engine is described by the 

area of the closed loops gotten from the processes 

i.e., a summation of the individual work done by 

each process as shown in equations (7), (11), (14) 

and (19). 
𝑊 = 𝑊12 + 𝑊23 + 𝑊34 + 𝑊41 (20) 

𝑊 = ∫ 𝑃1(𝐿). 𝑑𝐿
𝐿2

𝐿1

+ ∫ 𝑃2(𝐿). 𝑑𝐿
𝐿3

𝐿2

+ ∫ 𝑃3(𝐿). 𝑑𝐿
𝐿4

𝐿3

+ ∫ 𝑃4(𝐿). 𝑑𝐿
𝐿1

𝐿4

(21) 

Recall the values of 𝐿2 and 𝐿4 in equations (10) and (16) respectively: 

𝑊12 =  ∫ 𝑷𝟏. 𝒅𝑳

𝑳𝟐

𝑳𝟏

=  ∫ (−
ℏ2

4𝑚𝐿1
3 +

𝑉𝑜
2𝑚𝐿1

ℏ
) . 𝑑𝐿

4
1
3.𝐿1,4𝐿1

𝑳𝟏

= 𝐹1𝐿1 (4
1
3 − 1, 4 − 1)  

𝑊12 = 𝐹1𝐿1 (4
1
3 − 1, 3) (22) 

𝑊23 =  ∫ 𝑷𝟐. 𝒅𝑳

𝑳𝟑

𝑳𝟐

= ∫ (−
ℏ2

𝑚𝐿3
+

𝑉𝑜
2𝑚𝐿

4ℏ
) . 𝑑𝐿

𝑳𝟑

4
1
3.𝐿1,4𝐿1

= ∫ −
ℏ2

𝑚𝐿3
. 𝑑𝐿

𝑳𝟑

𝟒
𝟏
𝟑𝑳𝟏

+ ∫
𝑉𝑜

2𝑚𝐿

4ℏ
. 𝑑𝐿

𝑳𝟑

𝟒𝑳𝟏

 

𝑊23 = 𝐹1𝐿1 (
4

1
3

2
,
−4

2
) + 𝐹3𝐿3 (

−1

2
,
1

2
) (23) 
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𝑊34 =  ∫ 𝑷𝟑. 𝒅𝑳

𝑳𝟒

𝑳𝟑

=  ∫ (−
ℏ2

𝑚𝐿3
3 +

𝑉𝑜
2𝑚𝐿3

4ℏ
) . 𝑑𝐿

4
−1
3 .𝐿3,4−1𝐿3

𝑳𝟏

=  𝐹3𝐿3 ((4
−1
3 , 4−1) − 1) 

𝑊34 = 𝐹3𝐿3 (4
−1
3 − 1, −

3

4
) (24) 

 

𝑊41 =  ∫ 𝑷𝟒. 𝒅𝑳

𝑳𝟏

𝑳𝟒

= ∫ (−
ℏ2

4𝑚𝐿3
+

𝑉𝑜
2𝑚𝐿

ℏ
) . 𝑑𝐿

𝑳𝟏

4
−1
3 .𝐿3,4−1𝐿3

= ∫ −
ℏ2

4𝑚𝐿3
. 𝑑𝐿

𝑳𝟏

𝟒
−𝟏
𝟑 𝑳𝟑

+ ∫
𝑉𝑜

2𝑚𝐿

ℏ
. 𝑑𝐿

𝑳𝟏

𝟒−𝟏𝑳𝟑

 

𝑊41 = 𝐹3𝐿3 (
4

−1
3

2
,
−4−1

2
) + 𝐹1𝐿1 (

−1

2
,
1

2
) (25) 

Combining equations 𝑊23and 𝑊41, we have that. 

𝑊23 + 𝑊41 = 𝐹1𝐿1 (
4

1
3

2
,
−4

2
) + 𝐹3𝐿3 (

−1

2
,
1

2
) + 𝐹3𝐿3 (

4
−1
3

2
,
−4−1

2
) + 𝐹1𝐿1 (

−1

2
,
1

2
) 

𝑊23 + 𝑊41 = 𝐹1𝐿1 (
4

1
3 − 1

2
,
−3

2
) + 𝐹3𝐿3 (

4
−1
3 − 1

2
,
3

8
) (26) 

Thus, the total work-done 𝑊 by the engine in one cycle is:  

𝑊 = 𝐹1𝐿1 (
3

2
(4

1
3 − 1) ,

3

2
) + 𝐹3𝐿3 (

3

2
(4

−1
3 − 1), −

2

8
) (27) 

The efficiency 𝜂 of a heat engine is defined as. 

𝜂 =  
𝑊

𝑄𝐻

given that 𝑄𝐻 is the quantity of heat in the hot reservoir and 𝑊 is the work performed by the classical 

heat engine which is analogous to the energy absorbed by the quantum engine during the isothermal 

expansion. The heat input 𝑄𝐻 = 𝑊12 + ∆𝐸12 ; where 𝑊12 and ∆𝐸12 are the work performed and the 

change in the internal energy along the Isentropic branch. Where: 

∆𝐸12 = 𝐹1𝐿1 (
4

1
3 − 1

2
,
−3

2
) (28) 

And the work 𝑊12 is given by the first term of the work-done 𝑊. Thus, the heat input 𝑄𝐻 can be 

expressed as  

𝑄𝐻 = 𝐹1𝐿1 (4
1
3 − 1, 3) + 𝐹1𝐿1 (

4
1
3 − 1

2
,
−3

2
) (29) 

𝑄𝐻 = 𝐹1𝐿1 (
3

2
(4

1
3 − 1) ,

3

2
) (30) 

Therefore, the efficiency 𝜂 of a quantum heat engine obtained by considering a two-state system in a 

WS potential model is given by.  

𝜂 =
𝐹1𝐿1 (

3
2 (4

1
3 − 1) ,

3
2) + 𝐹3𝐿3 (

3
2 (4

−1
3 − 1), −

2
8)

𝐹1𝐿1 (
3
2 (4

1
3 − 1) ,

3
2)

 

𝜂 = 1 −
𝐹3𝐿3 (

3
2 (1 − 4

−1
3 ) ,

2
8)

𝐹1𝐿1 (
3
2 (4

1
3 − 1) ,

3
2)

 (31) 
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3.0   Result And Discussion 
 

The WS-potential of recent has been a promising 

model in analysing low-dimensional systems and 

more importantly its application in Quantum 

engines. It has proven to be a more realistic fuel 

to drive Quantum systems due to its interaction 

with the potential width 𝐿 which mimics the way 

of classical heat engine. To verify our derived 

result in equ. (31), let’s consider the FP-limit of 

the WS model, where the depth of the potential 

energy well 𝑉0 → 0. The efficiency becomes: 

𝜂𝐹𝑃 = 1 −

𝐹3
∗𝐿3 (

3
2 (1 − 4

−1
3 ))

𝐹1
∗𝐿1 (

3
2 (4

1
3 − 1) )

= 1 −
𝐹3

∗𝐿3

𝐹1
∗𝐿1

(
4

1
3 − 1

4
1
3

) (
1

4
1
3 − 1

) 

Where 𝐹1
∗ = −

ℏ2

4𝑚𝐿1
3 , 𝐹3

∗ = −
ℏ2

𝑚𝐿3
3 

𝜂𝐹𝑃 = 1 −
𝐹3

∗𝐿3

𝐹1
∗𝐿1

(
1

4
1
3

) 

Our derived efficiency is indicated to be the 

same as that of other research (Guzmán-Vargas 

et al., 2002; E. O. Oladimeji, 2019), proofing 

that the energy efficiency of all engine are the 

same as our engine remains analogous with 

classical Brayton engine. 
 

4.0   Conclusion 
 

This research explores the efficiency of a 

Quantum Brayton Engine (QBE) that utilizes 

the Wood-Saxon (WS) potential as its 

working fluid. The WS potential provides a 

more realistic representation compared to the 

standard Free-Particle (FP) model for 

quantum systems. 

The study employs the established formalism 

by Bender et al. (2000) to define the QBE 

cycle with two isentropic and two adiabatic 

processes. The efficiency expression for the 

QBE  showed that the derived efficiency 

formula incorporates the influence of the WS 

potential's parameters, such as depth, 

confinement width, and diffuseness. Also, 

with the simplification of the WS model to the 

FP limit, the efficiency expression aligns with 

the known efficiency for a QBE with a free 

particle, validating the employed approach. 

This research demonstrates the potential of 

the WS potential for analyzing the 

performance of QBE. It opens doors for 

further exploration of more intricate and 

realistic models in the field of quantum 

thermodynamics. The following 

recommendations are hereby proposed for 

future study 

(i) Analyzing the impact of varying the 

WS potential parameters on the 

QBE's efficiency. 

(ii) Comparing the performance of the 

WS-based QBE with other models 

employing different working fluids. 

(iii) Investigating the potential for 

optimization of the QBE design based 

on the WS potential characteristics. 
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