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Abstract There is no gainsaying the fact that 
crude oil production remains a major factor to the 
Nigeria economic growth given its significant 
contribution to the nation’s gross domestic 
product. Preponderance of the researches in the oil 
sector dwell more on oil prices, with less focus on 
the volatility of crude oil production. What cannot 
be overemphasized in oil sector is the production 
volatility effect which is mostly caused by 
unstable production quantity due to certain 
nation’s economic, social, political factors. In this 
paper, volatility of crude oil production was 
considered, and different Generalised 
Autoregressive Conditional Heteroskedasticity 
(GARCH) models were fitted to Nigeria crude oil 
production volatility series. Data for the work 
were monthly crude oil quantity data from January 
2010 to August 2019 (NNPC ASB) from which 
the crude oil production volatility was measured. 
The suggested GARCH models included GARCH 
(0,1), GARCH (0,2), GARCH (1,1), GARCH 
(1,2), GARCH (2,1) and GARCH (2,2). Using 
Akaike Information Criterion (AIC), Bayesian 
Information Criterion (BIC) and Schwarz’s 
Information Criterion (SIC), GARCH (1,2) and 
GARCH(2,1) competed favourably. The MSE of 
forecast revealed GARCH (2,1) to perform better 
for the forecast of crude oil production volatility. 
Further findings will reveal other alternative 
models as the crude oil production pattern changes 
in the future.  
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 1.0 Introduction 
In univariate time series, a time dependent 
variable, say Xt may be characterised by linear, 
nonlinear or mixed process. Autoregresive (AR), 
Moving Average (MA) and Autoregressive 
Moving Average (ARMA) models are popular 
and commonly used in fitting stationary linear 
time series; (Box and Jenkins, 1976). The problem 
in the applications of AR, MA and ARMA is that 
they are not appropriate models for time series 
process described by large changes in variance at 
various time periods; (Franses, 1998). This is 
because the aforementioned models account for 
linear processes and cannot capture high variance 
properties of a series indexed at time t. The 
consistent change in variance over time may be 
increasing or decreasing, and this systematic 
change is called heteroskedasticity or volatility. 
Autoregressive Conditional Heteroskedasticity 
(ARCH) is a method that explicitly models the 
change in variance over time in a time series; 
(Engle, 1982). The ARCH model is considered 
suitable when the variance of the process or error 
variance in a time series follows an autoregressive 
(AR) process. If the variance is accounted for by 
autoregressive moving average (ARMA) process, 
the model is generalised autoregressive 
conditional heteroskedasticity (GARCH); 
(Bollerslev, 1986). The GARCH model is an 
extension of the ARCH model which considers 
autoregressive and moving average components 
of the process variance and error respectively. 
Originally, Autoregressive Conditional 
Heteroskedasticity is written in the form ARCH 
(q). The “q” is the order of the model, which 
indicates the number of lag errors as the predictor 
variables of the ARCH model. With the 
Generalised Autoregressive Conditional 
Heteroskedasticity, GARCH (p,q), “p” assumes 
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the order of the autoregressive component (the 
number of lags of the variance to be included as 
predictors), while “q” assumes the order of 
moving average component (the number of lags of 
the residual error that predict the volatility; 
(Gujarati and Porter, 1997).   
The ARCH and GARCH are volatility models are 
found suitable in modelling financial and 
economic time series characterised by time-
varying dispersions from their mean values. These 
are evident in modelling volatilities of some 
macro-economic variables such as inflation, crude 
oil price, exchange rate, stock exchange, 
consumer price index, etc; (Bollerslev, 1986). 
Different kinds of GARCH model have been used 
to fit volatility series of economic and financial 
data. One of the macroeconomic variables that 
have triggered many researchers to investigate 
due to its dynamic nature is inflation. Different 
GARCH models have been adopted to study 
inflation using consumer price index volatility; 
(Babatunde and Sani, 2012), (Ismail and 
Oluwasegun, 2017). Babatunde and Sani revealed 
that GARCH (1,1) was adequate for food CPI, 
while the asymmetric TGARCH (1,1) provided an 
appropriate paradigm for the dynamics of 
headline and core CPI. Other volatility models on 
exchange rate and Nigerian Stock Index include 

(Bala and Asemota, 2013) and (Yaya, 2013).  All 
share index of Nigeria, Kenya, United State, 
Germany, South Africa and China have been 
studied, data spanning from February 14, 200 to 
February 14, 2013 using TGARCH and 
EGARCH; (Stephen et al, 2015). Also, on 
exchange rate and Nigerian Stock market includes 
(Reuben et al, 2016), (Yaya and Shittu, 2014), 
(Isenah et al, 2013), (Yaya et al, 2016) and (David, 
2018). Foreign Direct Investment and Foreign 
Portfolio Investment have been examined with 
EGARCH model; (Philip and Adeleke, 2017). On 
the investigation of trading volume volatility in 
Nigeria’s banking sector with GARCH (1,1) and 
BL-GARCH (1,1); (Onyeka-Ubaka et al, 2018). 
Comparatively, BL-GARCH (1,1) was found 
more suitable in fitting trading volume volatility 
in the banking sector. 
In this paper, we consider different GARCH (p,q) 
models for the crude oil volatility series with the 
aim to identify a suitable model for estimation and 
forecast of the crude oil volatility series.  
2.0  Materials and Methods 
In this section, we consider different kinds of 
GARCH models with proposals of some for the 
crude oil volatility data.  
2.1  ARCH and GARCH models 
ARCH (q) model; (Engle, 1982) is given as 

𝜎௧
ଶ = 𝛼଴ + 𝛼ଵ𝜖௧ିଵ

ଶ + ⋯ + 𝛼௤𝜖௧ି௤
ଶ =    ෍ 𝛼௜𝜖௧ି௜

ଶ

௤

௜ୀଵ

                                                                                       (1) 

where,  𝛼଴ > 0 𝑎𝑛𝑑 𝛼௜ ≥ 0, 𝑖 > 0. GARCH model; (Bollerslev, 1986) is given as 
𝜎௧

ଶ = 𝜔 + 𝛼ଵ𝜎௧ିଵ
ଶ + ⋯ + 𝛼௣𝜎௧ି௣

ଶ +  𝛼ଵ𝜖௧ିଵ
ଶ + ⋯ + 𝛼௤𝜖௧ି௤

ଶ =  𝜔 + ∑ 𝛼௜𝜎௧ି௜
ଶ௣

௜ୀଵ + ∑ 𝛽௝𝜖௧ି௝
ଶ௤

௝ୀଵ   (2) 

where,  𝜎௧
ଶ is conditional variance of the GARCH 

model,  𝜖௧
ଶ is the squared error term. Similar to 

ARMA model, 𝛼௜ and 𝛽௝ are parameters of the 
lagged variance and squared error terms 
respectively.  
The ARCH (q) model; (Engle, 1982) could also 
be expressed as GARCH (0,q) as a  component of 
GARCH (p,q) model. Therefore, different orders 
of ARCH (0,q) and GARCH (p,q) models will be 
fitted for comparative performances using crude 
oil volatility data. 
Here, we make review of the existing classes of 
generalised autoregressive conditional 
heteroskedasticity models as follows; 

i. NGARCH: Nonlinear Asymetric GARCH (1,1) 
is a model of the form, 
 𝜎௧

ଶ = 𝜔 + 𝛼(𝜖௧ିଵ − 𝜃𝜎௧ିଵ)2 + 𝜎௧ିଵ
ଶ                  (3) 

where 𝛼 ≥ 0, 𝛽 ≥ 0, 𝜔 > 0 𝑎𝑛𝑑 𝛼(1 + 𝜃ଶ) +
𝛽 < 1, which ensures the non-negativity and 
stationarity of the variance process; (Engle and 
Ng, 1993). 
ii. IGARCH: Integrated Generalised 
Autoregressive Conditional Heteroskedasticity is 
a restricted GARCH model, where the parameters 
of the two components are summed up to one with 
a unit root, and is expressed as,  

∑ 𝛼௜
௣
௜ୀଵ +  ∑ 𝛽௝

௤
௝ୀଵ  = 1                                 (4) 

iii. EGARCH: Exponential Generalised Autoregressive Conditional Heteroskedasticity; (Nelson, 
1991). The EGARCH (p,q) is  

𝑙𝑜𝑔𝜎௧
ଶ = 𝜔 + ෍ 𝛽௞௚(𝑍௧ି௞)

௤

௞ୀଵ

+  ෍ 𝛼௞𝑙𝑜𝑔𝜎௧ି௞                                                                                                     
ଶ

௣

௞ୀଵ

(5) 
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where  𝑔(𝑍௧) = 𝜃𝑍௧ + 𝜇〈|𝑍௧| − 𝐸(|𝑍௧|)〉, 𝜎௧
ଶ is 

the conditional variance, 𝜔, 𝛽, 𝛼, 𝜃 𝑎𝑛𝑑 𝜇 are 
coefficients. 𝑍௧ may be standard normal variable 
or come from a generalised error distribution. The 
formulation for 𝑔(𝑍௧) allows the sign and the 
magnitude of 𝑍௧ to have separate effects on the 
volatility. 
iv. QGARCH: Quadratic Generalised 
Autoregressive Conditional Heteroskedasticity;  
(Sentana, 1995) is used to model asymmetric 
effects of positive and negative shocks. A simple 
form of it is QGARCH (1,1), expressed as, 
𝜎௧

ଶ = 𝑘 + 𝛼𝜖௧ିଵ
ଶ + 𝛽𝜎௧ିଵ

ଶ +  ∅𝜖௧ିଵ                 (6) 
where 𝜖௧ = 𝜎௧𝑧௧,  𝑎𝑛𝑑 𝑧௧ 𝑖𝑠 𝑖𝑖𝑑.    
v. GJR-GARCH: Glosten-Jagannathan-Runkle 
Generalised Autoregressive Conditional 
Heteroskedasticity; (Glosten et al, 1993) models 
asymmetry in the ARCH process. The model is of 
the form, 

𝜎௧
ଶ = 𝑘 + 𝛿𝜎௧ିଵ

ଶ + 𝛼𝜎௧ିଵ
ଶ +  ∅𝜖௧ିଵ

ଶ 𝐼௧ିଵ       (7) 
where 𝜖௧ = 𝜎௧𝑧௧,  𝑎𝑛𝑑 𝑧௧ 𝑖𝑠 𝑖𝑖𝑑, 𝐼௧ିଵ  =
0 𝑖𝑓 𝜖௧ିଵ ≥ 0, 𝑎𝑛𝑑 𝐼௧ିଵ = 1 𝑖𝑓 𝜖௧ିଵ < 0. 
vi. TGARCH: Threshold Generalised 
Autoregressive Conditional Heteroskedasticity; 
(Zakoian, 1994) 
𝜎௧ = 𝑘 + 𝛿𝜎௧ିଵ + 𝛼ଵ

ା𝜖௧ିଵ
ା + 𝛼ଵ

ି𝜖௧ିଵ
ି              (8)      

Where 𝜖௧ିଵ
ା = 𝜖௧ିଵ if 𝜖௧ିଵ > 0, and 𝜖௧ିଵ

ା = 0 if  
𝜖௧ିଵ ≤ 0. Likewise, 𝜖௧ିଵ

ି = 𝜖௧ିଵ if 𝜖௧ିଵ ≤ 0, and  
𝜖௧ିଵ

ି = 0 if  𝜖௧ିଵ > 0 
vii. FGARCH: Family Generalised 
Autoregressive Conditional Heteroskedasticity; 
(Hentschel, 1995) nests a variety of other 
symmetric and asymmetric GARCH models, 
including APARCH, GJR, AVGARCH, 
NGARCH, etc. 
viii. COGARCH: Continuous-time GARCH 
model; (Claudia et al, 2004) has simple first order 
equation of the form, 

𝜎௧
ଶ = 𝛼଴ + 𝛼ଵ𝜖௧ିଵ

ଶ + 𝛽ଵ𝜎௧ିଵ
ଶ = 𝛼଴ + 𝛼ଵ𝜎௧ିଵ

ଶ 𝑧௧ିଵ
ଶ + 𝛽ଵ𝜎௧ିଵ

ଶ ,                                                (9) 
where 𝜖௧ = 𝜎௧𝑧௧ 
ix. ZD-GARCH: Zero-Drift GARCH model; 
(Dong et al, 2018) lets the drift term 𝜔 = 0 in the 
first order GARCH model. The model is presented 
thus, 

𝜎௧
ଶ = 𝛼ଵ𝜖௧ିଵ

ଶ + 𝛽ଵ𝜎௧ିଵ
ଶ               (10) 

x. Spartial GARCH: The Spartial Generalised 
Autoregressive Conditional Heteroskedasticity; 
(Philipp et al, 2018). The spartial model is given 
by  𝜖(𝑠௜) = 𝜎(𝑠௜)𝑧(𝑠௜) and 

𝜎(𝑠௜)ଶ = 𝛼௜ + ෍ 𝜌𝜔௜௩

௡

௩ୀଵ

𝜖(𝑠௩)ଶ                                                                                                (11) 

where 𝑠௜ denotes the 𝑖-th spartial location and 𝜔௜௩ 
refers to the 𝑖𝑣-th entry of the spartial weight 
matrix and 𝜔௜௜ = 0 for 𝑖 = 1, … , 𝑛. 

xi. BL-GARCH: Bilinear Generalised 
Autoregressive Conditional Heteroskedasticity;  
(Storti and Vitale, 2003). The BL-GARCH is of 
the form, 

𝜎௧
ଶ = 𝜔 + ෍ 𝛼௜𝜎௧ି௜

ଶ

௣

௜ୀଵ

+  ෍ 𝛽௝𝜖௧ି௝
ଶ

௤

௝ୀଵ

+ ෍ 𝛾௞𝜎௧ି௞𝜖௧ି௞

௥

௞ୀଵ

                                                        (12) 

where 𝜎௧
ଶ, 𝜖௧

ଶ, 𝛼௜ and 𝛽௝ are as defined in equation “2”, 𝛾௞is the parameter of the nonlinear part of the 
model. 
Given a time series process, 𝑌௧, and 
 𝑌௧

∗ = log 𝑜𝑓 𝑌௧ , 𝑑𝑌௧
∗ = 𝑌௧

∗ − 𝑌௧ିଵ
∗  and 𝑋௧ =

 𝑑𝑌௧
∗ − 𝑑𝑌ത௧

∗. 𝑋௧ is the return series. The square of 
the return series 𝑋௧

ଶ as the variance (𝜎௧
ଶ) measures 

volatility of the series, (Gujarati and Porter, 2009). 
Engle (1982) expressed 𝜎௧

ଶas the variance of the 
stochastic error term 𝜖௧, and 𝜖௧ = 𝜎௧𝑧௧, where 
𝑧௧~𝑁(0,1). In this paper, we obtain variance of 
the original series as a measure of volatility. That 
is 𝜎௧

ଶ = 𝐸(𝑌௧ − 𝜇௧)ଶ. The order of the model is 
chosen from autocorrelation and partial 
autocorrelation functions.   
2.2 Model specification 
What is considered firstly in model specification 
is the lag length, and it is established in three 
different ways: (i) Estimate the best fitting AR (p) 

model, (ii) computation and plot of 
autocorrelation and partial autocorrelation 
functions and (iii) Ljung-Box Q-statistic which 
follows chi-square distribution with n degrees of 
freedom; (Engle, 1982). In this work, ACF and 
PACF are adopted for the choice of the lag length 
of the model. 
The autocorrelation function of 𝑋௧

ଶ is 
 

𝜌௬೟
=

∑ (𝑌௧
ଶ − 𝜇௧)(𝑌௧ିଵ

ଶ − 𝜇௧)௡
௧ୀଵ

∑ (𝑌௧
ଶ − 𝜇௧)ଶ௡

௧ୀଵ

   (13) 

  
where 𝜌௫೟

 is the acf, 𝑋௧
ଶ (𝜎௧

ଶ) is the measure of 
volatility and its mean 𝜇௧.   
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2.3 Model selection criteria 
(i) Akaike Information Criterion (AIC): 
 

𝐴𝐼𝐶 = 𝑙𝑛 ൬
𝑅𝑆𝑆

𝑛
൰ + ൬

2𝑘

𝑛
൰                     (14)  

where, RSS = residual sum of squares, n = number 
of observations, k = number of parameters in the 
model. 
(ii) Bayesian Information Criterion (BIC): 

𝐵𝐼𝐶 = 𝑛 × 𝑙𝑛 ൬
𝑅𝑆𝑆

𝑛
൰ + 𝐾{𝑙𝑛(𝑛)}     (15)  

where, RSS, n and K are as defined above. 
(iii) Schwarz’s Information Criterion (SIC): 

𝑆𝐼𝐶 = 𝑙𝑛 ൬
𝑅𝑆𝑆

𝑛
൰ + ൬

𝑘

𝑛
൰ ln (𝑛)         (16)  

where, RSS, n and K are as defined above. 
 2.4 Error of forecast 
  Error of forecast is 
𝜺𝒕ା𝒌 = 𝜎௧ା௞

ଶ − 𝜎ො௧ା௞
ଶ                          (17) 

𝑀𝑆𝐸(𝜺𝒕ା𝒌) = 𝐸(𝜎௧ା௞
ଶ − 𝜎ො௧ା௞

ଶ )𝟐              (18) 
3. 0 Results and Discussion  
This section considers graphical presentation and 
parameter estimates of the proposed classes 
GARCH model. Data for the work are monthly 
crude oil quantity data from January 2010 to 
August 2019 (NNPC ASB). 
3.1 Time Graph and Correlogram 
Figs. 1 to 3 show the graph of non-stationary and 
stationary crude oil volatility data, autocorrection 
and partial autocorrection functions of the 
stationary series. The trend analysis shows that the 
original crude oil data are not stationary. 

 

 
Fig. 1: Trend Analysis of the original series Yt 

 

 
Fig.  2: Trend analysis of 𝝈𝒕

𝟐(Volatility Measure) 
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The above graph is the trend analysis of the 
stationary volatility measure of the crude oil 
quantity data. There is exhibition of wide swings 

at some periods, especially in 2010, 2012, 2016 
and 2019, indicating significant variability in the 
series.  

 

   
Fig. 3: Autocorrelation Function of the variance, 𝝈𝒕

𝟐(Volatility Measure) 
 

 
Fig. 4: Partial Autocorrelation Function of the variance, 𝝈𝒕

𝟐(Volatility Measure) 
 
From Fig. 3 and 4, the lag length is 2, determining 
the order of the model. Conspicuously, there is 
exponential decay in the autocorrelation function 
and significant cut-off at the first 2 lags in the  
 
 

partial autocorrelation function. Hence, GARCH  
(0, 1), GARCH (0,2), GARCH (1,1), GARCH 
(1,2), GARCH (2,1) and GARCH (2,2) are 
suggested for the crude oil volatility series. 
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 3.2 Model specification 
(i) GARCH (p,q) Model 
 

Given the GARCH model  

𝜎௧
ଶ = 𝜔 + ෍ 𝛼௜𝜎௧ି௜

ଶ

ଶ

௜ୀଵ

+ ෍ 𝛽௝𝜖௧ି௝
ଶ

ଶ

௜ୀଵ

          19) 

where 𝜎௧
ଶis the variance measure, 𝛼௜ and 𝛽 are the 

parameters of the lagged variance and squared  
error respectively, 𝜖௧~𝑁(0, 𝜎ఢ೟

ଶ ), special orders of 
p and q are considered for estimation of 
parameters. 
 
Parameter Estimates different GARCH (p,q) 
Model  
Parameter estimates for the alternative GARCH 
model are presented below (i.e Table 1) 
 
Table 1: Estimates with regression model using 
MINITAB 

 
3.3 Model Selection 
This section presents the criteria for the selection 
of the more suitable model for forecast. The 
information is presented in Table 2.  

From Table 2, the two competitive models 
selected for further comparison using error of 
forecast are GARCH (1,2) and GARCH (2,1). 
 

 
Table2: Information criteria 
 

S/
N 

Model 
Specification 

AIC BIC SIC 

1 GARCH (0,1) 8.2490 951.3904 8.2730 
2 GARCH (0,2) 8.1595 935.6597 8.2075 
3 GARCH (1,1) 8.0226 928.0937 8.0704 
4 GARCH (1,2) 7.9792 917.841 8.0512 
5 GARCH (2,1) 7.9875 918.7872 8.0512 
6 GARCH (2,2) 7.9881 921.5854 8.0841 

 

3.4 Forecast function and error of forecast  
 
3.4.1: The estimated GARCH (1,2) model is 
 
𝜎ො௧

ଶ = 22.3 + 0.541𝜎௧ିଵ
ଶ − 0.00078𝜖௧ିଵ

ଶ +
0.00281𝜖௧ିଶ

ଶ                                             (20) 
 
3.4.2: The estimated GARCH (2,1) model is  
 
𝜎ො௧

ଶ = 19.5 + 0.475𝜎௧ିଵ
ଶ + 0.225𝜎௧ିଶ

ଶ −
0.00041𝜖௧ିଵ

ଶ                                           (21) 
 
3.4.3: Forecast function for GARCH (1,2) is 
 
𝜎ො௧ା௞

ଶ = 22.3 + 0.541𝜎௧ିଵା௞
ଶ −

0.00078𝜖௧ିଵା௞
ଶ + 0.00281𝜖௧ିଶା௞

ଶ             (22) 
 
3.4.4: Forecast function for GARCH (2,1) is 
 
𝜎ො௧ା௞

ଶ = 19.5 + 0.475𝜎௧ିଵା௞
ଶ + 0.225𝜎௧ିଶା௞

ଶ −
0.00041𝜖௧ିଵା௞

ଶ         (23) 
 
3.4.5: Error of Forecast 
Error of forecast is  
 
𝜺𝒕ା𝒌 = 𝜎௧ା௞

ଶ − 𝜎ො௧ା௞
ଶ                             (24) 

 
𝑀𝑆𝐸(𝜺𝒕ା𝒌) = 𝐸(𝜎௧ା௞

ଶ − 𝜎ො௧ା௞
ଶ )𝟐   (25) 

 

𝑀𝑆𝐸(𝜀௧ା௞) of GARCH (1,2) model is 5392 
𝑀𝑆𝐸(𝜀௧ା௞) of GARCH (2,1) model is 5369. 
The analysis and estimates of the parameters of 
the six suggested models are in Table 1. The “t” 
and “p” values of the coefficients have revealed 
the parameters that are significant and those that 
are not. From the results, all the parameters of  
GARCH (0, 1) and GARCH (2,2) are significant. 
The contributions of 𝜖௧ିଵ

ଶ  to GARCH (1,1), 
GARCH (1,2) and GARCH (2,1) and 𝜎௧ିଶ

ଶ , 𝜖௧ିଵ
ଶ  
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and  𝜖௧ିଶ
ଶ  to GARCH (2,2) are not significant as 

evident in the t and p values of the parameter 
estimates. With the outcome of the parameter 
estimates of the suggested models, different 
model selection criteria are used to detect the best 
of the GARCH models. The Akaike Information 
Criterion (AIC), Bayesian Information Criterion 
(BIC) and Schwarz’s Information Criterion (SIC) 
adopted have revealed two competitive models, 
and these are GARCH (1,2) and GARCH (2,1). 
GARCH (1,2) model has 0.0083 and 0.9462 AIC 
and BIC values less than GARCH(2,1). The AIC 
and BIC values of the two models places GARCH 
(1,2) model superior to GARCH (2,1) model in 
modelling the crude oil production volatility data. 
Looking at the mean square error of forecast from 
the two models, GARCH (2,1) has a value 23 
mean square error less than GARCH (1,2), placing 
the model on a higher comparative advantage in 
forecast than the other. The two models GARCH 
(1,2) and GARCH (2,1) are comparatively good, 
but the latter is recommended for better forecast 
of the Nigerian crude oil production volatility 
series. Further findings may reveal other 
alternative models as the crude oil production 
pattern changes in the future. 
 4.0  Conclusion 
Incontrovertibly, crude oil production quantity 
has triggered serious concern as much as price, 
given the fact that the two economic variables 
constitute a determinant factor to the amount of 
revenue derived from oil sector in any oil 
producing nation. In as much as crude oil 
production quantity has significant effect on the 
revenue, routine research investigations on the 
production quantity are advocated. Due to certain 
political, economic, social, insecurity factors, 
crude production sometimes dwindles in quantity, 
therefore, accounts for volatility in the production 
quantity. This explains the need to develop series 
of time series models to capture the asymmetry of 
the crude oil production pattern. The popular 
GARCH (p,q) model has been explored with 
different orders of “p” and “q”, producing 
alternative GARCH models for the crude o107-
196il production volatility series. Information 
criteria adopted have placed GARCH (1,2) and 
GARCH (2,1) models on comparative advantage. 
The superiority of GARCH (2,1) over GARCH 
(1,2) is on the mean square error of forecast. 
Notwithstanding the findings in this study, further 
researches about crude oil production quantity 
volatility and its effect on the nation’s economy 
are very pertinent.    
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Appendix 1: Nigeria monthly crude oil production in millions of barrels 

 
 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 

JAN 72.29 77 70.71 75.3 71.05 67.63 66.71 56.95 61.19 51.03 
FEB 66.78 70.23 68.38 62.36 64.5 61.68 59.58 50.9 56.03 47.32 

MARCH 75.57 70.93 72.4 68.56 66.48 64.04 60.87 49.57 59.75 53.69 
APRIL 72.42 70.49 71.28 66.82 66.48 60.39 59.8 53.79 58.56 51.39 
MAY 70.15 75.66 74.43 64.01 69.25 63.5 52.63 57.96 55.35 51.12 
JUNE 71.92 72.63 71.3 60.56 65.06 59.19 53.49 58.6 54.08 55.86 
JULY 77.07 72.94 75.66 68.07 63.82 67.04 52.26 62.46 58.42 56.64 
AUG 77.7 73.49 74.65 71.12 68.1 65.39 50.04 61.82 63.05 59.06 
SEP 77.81 71.56 73.56 66.52 62.69 65.93 50.86 57.92 59.86 

 

OCT 81.2 71.18 67.78 69.08 68.32 69.08 55.3 60.34 61.2 
 

NOV 73 69.73 61.17 62.65 63.6 65.14 58.28 58.75 54.76 
 

DEC 80.13 70.41 71.45 65.43 69.21 64.44 50.25 60.66 58.2  

 


