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Abstract: In this paper, we assess the first-rate 

specification accuracy of the Escribano-Jorda 

procedure (EJP) over Terasvirta procedure 

(TP) in the selection of true symmetric STAR 

model for the financial time series. Daily 

nonstationary BETAGLASS stock index (BSI) 

totaling 2472 observations were obtained from 

Nigerian Exchange Limited for empirical 

illustrations. Terasvirta sequential tests and 

Escribano-Jorda tests were carried out; first-

order logistic function classified as asymmetric 

transition function and exponential function 

classified as symmetric transition function 

were specified by TP and EJP, respectively.  

Both symmetric and asymmetric STAR models 

were justifiably fitted to percentage 

BETAGLASS stock returns (PBSR) and the best 

model determined at the evaluation stage. The 

empirical assessment of the fits of both 

symmetric STAR models and asymmetric STAR 

models revealed that symmetric STAR models 

outperformed asymmetric STAR models under 

consideration. Hence, EJP has greater 

specification power over TP particularly when 

the true model for the financial time series is 

any symmetric STAR model. Owing to the 

presence of autoregressive conditional 

heteroscedastic (ARCH) effects, STAR-

generalized ARCH (STAR-GARCH) models 

and autoregressive-GARCH (AR-GARCH) 

models were specified and fitted to PBSR. On 

balance, SPLSTAR-GARCH (1, 1) model with 

generalized hyperbolic skew-student’s t 

innovations outperformed the competing 

models. Also, the overall prediction 

performance of SPLSTAR-GARCH (1 1) model 

is better than its linear counterpart based on 

the Akaike information criterion and forecast 

root mean square error. 

 

Keywords: ARCH effects, Symmetric, 

Transition function, Asymmetric, Sequential 

tests, Nonstationary 

Benjamin A. Effiong*  

Department of Statistics, Akwa Ibom State 

Polytechnic, Ikot Osurua. Akwa Ibom State, 

Nigeria 

Email:  

benjamin.effiong@akwaibompoly.edu.ng 

Orcid id: 0009-0003-3668-4811 
 

Emmanuel A. Akpan 

Department of Basic Sciences, Federal 

College of Medical Laboratory Science and 

Technology, Jos, Plateau State, Nigeria 

E-mail:  eubong44@gmail.com 

Orcid id: 0000-0003-3809-0702 
 

I.0 Introduction 
 

The robustness and optimality of any specified 

smooth transition autoregressive (STAR) 

model depend on the selection approach used 

to specify the transition function of the STAR 

model.  Many analysts have applied either 

Terasvirta procedure (TP) of Terasvirta (1994) 

or Escribano-Jorda procedure (EJP) of 

Escribano and Jorda (2001)  or both selection 

procedures to select either ESTAR (symmetric) 

model or LSTAR (asymmetric) model 

(Terasvirta, 1994; Terasvirta and Anderson, 

1992; Sarantis, 1999; Anderson, 1997; Boero 

and Marrocu, 2002; Dijk et al., 2002; Liew et 

al., 2003; Siliverstovs, 2005; Terasvirta et al., 

2005; Baharumshah and Liew, 2006; 

Shangodoyin et al., 2009; Nor et al., 2015; 

.Effiong et al., 2023 and Effiong et al., 2024). 

Only Yaya and Shittu, 2016 used TP and EJP 

to unfold improved symmetric properties of the 

absolute error logistic STAR (AELSTAR) 
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mailto:benjamin.effiong@akwaibompoly.edu.ng
mailto:eubong44@gmail.com


Communication in Physical Sciences, 2024, 12(2): 162-174 163 
 

 

model and quadratic logistic STAR (QLSTAR) 

model over the existing symmetric STAR 

(ESTAR) model. What happens when EJP and 

TP specify different transition functions for a 

particular financial time series? Escribano and 

Jorda (2001) revealed that EJP has better 

properties than TP and very relevant when the 

true model is ESTAR model. The aim of this 

paper is to empirically determine the 

specification accuracy of EJP over TP in the 

selection of symmetric STAR model for the 

financial time series (FTS).  

Also, time series analysts in recent years have 

made considerable efforts to model stock 

returns with STAR and STAR-GARCH 

models. Hsu and Chiang (2011) who assessed 

the effect of monetary policy on stock returns 

using STAR model asserted positive and 

nonlinear relationship between the monetary 

policy and excess returns on stock prices. Yaya 

and Shitu (2014) who fitted STAR-GARCH 

model to financial data under non-normality 

assumption of innovations of the conditional 

mean model, revealed that the selection of 

LSTAR models was dependent of the structure 

of the innovations and improved as sample size 

increased.  Khemiri (2011) modelled the 

dynamics of four international stock indexes 

using smooth transition GARCH (STGARCH) 

model and the result showed that STGARCH 

model performs better than the symmetric 

GARCH model. Midilic (2020) applied 

STAR–GARCH model with Iteratively 

Weighted Least Squares (IWLS) algorithm to 

model US dollar/Australian dollar and the 

FTSE Small Cap index returns which the result 

of one-day ahead out-of-sample forecast 

reveals improvement in STAR–GARCH 

model with IWLS algorithm over the 

benchmark (linear) model. Oyewale (2021) 

modelled monthly Nigerian gross domestic 

product from 1997 to 2019 with ESTAR-

GARCH and LSTAR-GARCH 

models; LSTAR-GARCH and ESTAR-

GARCH models perform better than the 

standard GARCH model.  Hsiao et al. (2021) 

provide a mathematical and statistical approach 

for the estimation of heteroscedasticity in 

Taiwan’ stock price index. The fitted 

heteroscedastic models revealed the influence 

of COVID-19 on the fluctuations of the return 

rates of Taiwan stock price index. The paper 

seeks to determine the applicability of Power 

logistic STAR (PLSTAR-GARCH) model in 

modelling the volatility clustery of Nigerian 

stock index. 

This paper is organized as follows: Section 2 is 

material and methods. Section 3 discusses data 

analysis and results, Section 4 deals with 

discussion of findings and Section 5 concludes. 
 

2.0 Material and Methods 

2.1 Data 
 

Daily BETAGLASS stock index comprising 

2472 observations spanning from 2nd January, 

2014 to 29th December, 2023 obtained from 

Nigerian Exchange Limited are used for 

empirical analyses.  The percentage change of 

BETAGLASS stock index ( 𝑧𝑡) = 100∇ln𝑦𝑡, 
where 𝑦𝑡 is the BETAGLASS stock index at 

time t. 
 
 

2.2 Methods  
 
 

We adopt Escribano-Jorda procedure of 

Escribano and Jorda (2001) and the procedures 

put forward by Terasvirta (1994) for 

specification of STAR models. The methods of 

estimation of STAR and STAR-GARCH 

models are nonlinear least squares method and 

two-stage estimation procedure, respectively. 

The two-stage procedure is the estimation of 

conditional variance (GARCH) model using 

residuals obtained from nonlinear estimation of  

conditional mean (STAR) model  with 

appropriate distribution (Gaussian or non-

Gaussian) of the residuals. Model evaluation 

measures are used for the diagnostic checks of 

the fitted models. 
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2.3 Model 

2.3.1 Smooth transition autoregressive (STAR) models 

A two regime STAR model for a univariate time series zt, which is observed at t = 1 − p, 1 −
(1 − p), … , −1, 0,1, … , T − 1, T  is given by 

zt = (π1,0 + π1,1zt−1 + ⋯ + π1,pzt−p)(1 − L(zt−d; δ, )) 

+ (π2,0 + π2,1zt−1 + ⋯ + π2,pzt−p)L(zt−d; δ, )) +  νt.                          (1)      

(1) can be rewritten as                                                                        

yt = 𝚷1
′ 𝐰𝐭(1 − L(zt−d; δ, )) + 𝚷𝟐

′ 𝐰𝐭L(zt−d; δ, ) + 𝛎t,                                                         (2)  

where  𝚷i = (πi,0, πi,1, ⋯ , πi,p)′ for i = 1,2, 𝐰t = (1, zt−1, … , zt−p)′. The νt′s are assumed to be a 

martingale difference sequence with respect to the history of the time series up to time t − 1, which 

is donated as t−1 = {zt−1, zt−2, … , z1−(p−1), z1−p}, E[νt/t−1] = 0, and E[νt
2/t−1]  = 2 and 

L(zt−d; δ, ) is a transition function ( Dijk et at., 2002). 

 

2.3.2 Transition functions  

Transition function denoted by L(𝑧𝑡−𝑑; δ, ) is a 

distribution function which is at least twice 

differentiable. Here we assume that the 

transition variable 𝑧𝑡−𝑑 is a lagged endogenous 

variable for certain integer 𝑑 > 0. The most 

commonly used transition functions that give 

rise to different types of regime switching 

behaviour are the following: 

The first-order logistic function (LSTR1) 

proposed by Terasvirta (1994) given by 

L(𝑧𝑡−𝑑; δ, )  = (1 + exp[−(𝑧𝑡−𝑑 − )])−1,  > 0.                                 (3) 

and the STAR model (2) with (3) is called the logistic STAR (LSTAR) model.  

The second-order logistic (LSTR2) function is given by 

L(𝑧𝑡−𝑑; δ, ) = (1 + exp[−(𝑧𝑡−𝑑 − 1)(𝑧𝑡−𝑑 − 2)])−1,1 ≤ 2,  > 0,              (4) 

where  = (
1

, 2)′, as  proposed by Jansen and Terasvirta (1996). 

The exponential function proposed by Terasvirta (1994) given by 

 L(𝑧𝑡−𝑑; δ, )  = 1 − exp[−(𝑧𝑡−𝑑 − )2],    > 0.           (6) 

Model (2) with (6) is called exponential STAR (ESTAR) model. 

The Power Logistic (PL) Function proposed by Effiong et al. (2023) is given by 

L(zt−d; , ) = {1 + 0.5exp[−(zt−d
i − )]}

−2 
−

1

1.52 ,  > 0,   i = 1,2,            (7) 

Model (2) with (7) is called Power logistic 

STAR (PLSTAR) model. 

(7) is called asymmetric power logistic (APL) 

function when 𝑖 = 1 and the corresponding 

STAR model is APLSTAR, while (7) is 

symmetric power logistic (SPL) function when 

𝑖 = 2 and the corresponding STAR model is 

SPLSTAR model. 
 

2.4 Specification of STAR model 

2.4.1 Terasvirta Procedure (TP) 

 

The Lag length (p) of the linear model based on 

percentage BETAGLASS stock returns 

(PBSR) is determined by Schwarz Bayesian 

criterion (BIC), followed by tests of linearity 

against the alternative of STAR nonlinearity 

using PBSR. If linearity is rejected, delay 

parameter, d, is determined from the range of 

values 1 ≤ 𝑑 ≤ 𝑃 considered appropriate. 

Also, the rejection of null hypothesis of 

linearity, H01: Κ1 = Κ2 = Κ3 = O, is based on 

the following auxiliary regression equation 

proposed by Luukkonen et al. (1988) given by  

𝑧𝑡 = Κ0
′ 𝑤𝑡 + Κ1

′ 𝑤𝑡zt−d + Κ2
′ 𝑤𝑡zt−d

2 + Κ3
′ 𝑤𝑡zt−d

3 +𝑡                   (8)                 

Equation 8 is used to surmount the problem of 

unidentified parameters under the null 

hypothesis. Then, sequence of F tests proposed 

by Terasvirta (1994) based on the following 

hypotheses is used to identify suitable 

transition function for STAR model: 
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H02: Κ3 = 0  

H03: Κ2 = 0Κ3 = 0H04: Κ1 = 0Κ2 = Κ3 = 0 

LSTAR model is appropriate If H02 is rejected. 

It is ESTAR, If H03 is rejected, while  H04 is 

rejected, If the true model is a LSTAR model. 

According to Terasvirta (1994), it is better to 

compare the strengths of the rejections. If 

LSTAR is the model, H02 and H04 are rejected 

more strongly than H03. If the model is 

ESTAR, the opposite is the case. Thus, if p-

value of the test corresponding to H03 is the 

smallest, an ESTAR model should be selected, 

while in all other cases, LSTAR model should 

be chosen. 

2.4.2 Escribano-Jorda procedure  

Escribano and Jorda procedure (EJP) according 

to Escribano and Jorda (2001) is based on the 

following two hypotheses within the auxiliary 

regression equation∶ 

𝑧𝑡 = Κ0
′ 𝑤𝑡 + Κ1

′ 𝑤𝑡zt−d + Κ2
′ 𝑤𝑡zt−d

2 + Κ3
′ 𝑤𝑡zt−d

3 + Κ4
′ 𝑤𝑡zt−d

4 +𝑡          (9) 

H0L: Κ2 = Κ4 = 0 with an F-test (FL) 

 H0E: Κ1 = Κ3 = 0 with an F-test (FE)  

If the minimum p-value corresponds to FE, select LSTAR model. Otherwise select ESTAR model. 

EJP has better properties than TP and preferred to TP especially when the true model is ESTAR.  
 

 2.5 ARCH/GARCH Models 

Consider the autoregressive moving average (ARMA) model: 

𝑧𝑡 = π1,1𝑧𝑡−1 + ⋯ + π1,p𝑧𝑡−𝑝+ ϱ2,1ν𝑡−1 + ⋯ + ϱ2,qν𝑡−𝑞 + ν𝑡             (10) 

Letting 𝜎𝑡
2 = Var[νt|t−1] denote the conditional variance of νt given the past t−1, then the basic 

ARCH(𝑙) model can be formulated as   

νt  = 𝜎𝑡zt,                                                                         (11) 

σt
2 = 0 + 1νt−1

2 + 2νt−2
2 + ⋯ + 𝑙νt−𝑙

2 ,                            (12) 

where {𝑧𝑡} is a sequence of independent and 

identically distributed (iid) random variables 

with mean zero and variance 1, 0 > 0, and 

i ≥ 0 for i = 1,2, … , 𝑙 − 1, and 𝑙 > 0. The 

additional constraints are imposed to ensure the 

conditional variance 𝜎𝑡
2 is positive. The 

constraint ∑ i < 1𝑙
i=1  ensures that νt are 

covariance stationary with finite unconditional 

variance (ν
2). 

According to Bollerslev (1986), the 

GARCH(𝑙, 𝑚) model is given by 

σt
2 = 0 + ∑ iνt−i

2𝑙
i=1 + ∑ 

j
m
j=1 σt−j

2  ,                                            (13) 

where 0 > 0, and i ≥ 0 for i = 1,2, … , 𝑙 − 1, and  𝑙 > 0, 
j

≥ 0 for j = 1,2, … , m − 1, and 


m

> 0. 

PLSTAR-GARCH model is the combination of (2), (7), (11) and (13). 
 

 

2.5.1 Test for ARCH/GARCH Effects 
 

Lagrange multiplier test of ARCH effects proposed by Engle 1982 is given by 

ϑ = kR2,                                         (14) 

to test the null hypothesis 

𝐻0: ς𝑖 , 𝑖 = 1,2, … , 𝑙 (No ARCH effects),             (15) 

where 𝑘 is the sample size and R2 is the coefficient of determination computed from the 

following auxiliary regression equation:  

ν̂𝑡
2 = ς0 + ς1ν̂𝑡−1

2 + ⋯ + ς𝑢ν̂𝑡−𝑙
2 + 𝜂𝑡                      (16) 

If the ARCH effect is found to be significant, the ARCH order is determined using the PACF of 

ν̂𝑡
2. 

2.5.2   Evaluation measures Relative forecast performance is used as a 

model selection criterion or as an alternative or 
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complement to an in-sample comparison of 

different models (Dijk et al., 2002). The ratio 

of the forecast root mean square error 

(FRMSE) of the nonlinear model to that of the 

corresponding linear model chosen by AIC or 

BIC provide the relative performance of the 

two models. The standard error of the residuals 

will be used to determine the efficiency of the 

models.  

If zt, t = 1,2, … , h are the actual values of the 

observations used in the estimation of the 

model, gt, t = 1,2, … , h are the forecasted 

values, then, et = zt − gt, t = 1,2, … , h are 

the forecast errors. The FRMSE of the in-

sample forecast is the square root of the Mean 

square error (MSE) given by 

RMSE= √
1

h
∑ et

2h
i=1 ,                    (17) 

where h is the total number of forecast errors. 
 

3.0  Data Analysis and Results 

 3.1 Preliminary Analysis 

The time series plot of BETAGLASS stock 

index (BSI) appears to be increasing over time, 

but the rate of growth (rise and fall) of BSI is 

rather slow, except in 2020 when sharp fall was 

witnessed due to Covid-19 pandemics. Hence, 

BSI series is nonstationary (Fig. 1)).  

 

 
Fig. 1: Time series plot of BETAGLASS stock index 

 
Fig. 2: Autocorrelation function (ACF) of BETAGLASS stock index 
 

The pattern of ACF of BSI confirms the nonstationarity of BSI (Fig. 2). The time series plot of 

percentage BETAGLASS stock returns (PBSR) reveals the presence of volatility cluster; the mean 

and variance of PBSR appear to be stable (Fig. 3). 
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Fig. 3: Time series plot of percentage BETAGLASS stock returns 

 

Based on Table 1, the p-values of Dickey-Fuller statistics for both BSI and PBSR indicate that 

the BSI contains unit root, but that PBSR is stationary at 5% level of significance. 

 

Table 1: Results of augmented Dickey-Fuller tests 
 

Variable Original series Transformed series 

Logarithmic 

series 

Lag 

order 

  Difference 

logarithmic 

series 

BETAGLASS 

stock index 

Dickey 

Fuller 

Statistic 

- 

Value 

Lag 

Order 

Dickey 

Fuller 

Statistic 

- 

Value 

 

   15 

Dickey 

Fuller 

Statistic 

- 

Value 

-2.486 0.373 15 -2.595 0.326 -14.783 0.01 
 

 

3.2 Identification of linear model and test for ARCH effects 
 

In accordance with Table 2, AR (2) and AR 

(5) models are specified by BIC and AIC, 

respectively. We chose AR (2) model, even 

though AR (2) is too parsimonious.  Based on 

Table 3, AR (2) and AR (5) models are free 

from serial correlation since the p-value=
0.9926> 0.05 and p −value= 0.9692>
0.05, respectively and AR (2) has the smaller 

standard error of the residuals. Lagrange 

multiplier (LM) test reveals the presence of 

ARCH effects in the residuals obtained from 

the fitted AR (2) model. Hence, the need for 

AR-GARCH model.  

The null hypothesis of linearity is rejected (p-

value= 0.000 < 0.05) in favour of STAR 

type nonlinearity as shown in Table 4 and the 

delay length with the smaller value of residual 

sum of squares (RSS) is 2. Hence, the delay 

parameter is 2. 
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Table 2: Determination of Lag length of an autoregressive model 
 

Lags Loglik p(LR) AIC BIC HQC 

1 6329.51509  -5.132616 -5.130259 -5.131760 

2 6333.85489 0.00322 -5.135324 -5.130612* -5.133612* 

3 6334.81635 0.16554 -5.135293 -5.128225 -5.132725 

4 6335.92395 0.13666 -5.135380 -5.125956 -5.131956 

5 6337.60431 0.06677 -5.135932* -5.124151 -5.131652 

The asterisks above indicate the best values of the respective information criteria, AIC = Akaike 

criterion, BIC = Schwarz Bayesian criterion and HQC = Hannan-Quinn criterion 
 

Table 3: Parameter estimates of linear models fitted to PBSR 
 

Model Parameter Estimate Ljung-Box 

Statistic 

𝝈𝛎𝒕
 LM statistic 

 

 

 

 

 

AR(5) 

𝝓𝟏 0.0890   

(0.000) 

 

 

 

 

8.5863e-05 

(0.9926) 

 

 

 

 

 

3.98875 

 

 

 

 

 

 

6606952 

(< 2.2e-16) 

 

 

𝝓𝟐 

0.0541 

(0.007) 

 

𝝓𝟑 

0.0232 

(0.252) 

 

𝝓𝟒 

0.0267 

(0.187) 

 𝝓𝟓 0.0369 

(0.067) 

 

AR(2) 

𝝓𝟏 0.027236 

(0.000) 

 

0.0014947 

(0.9692) 

 

 

 

3.27 

 

 

6606821 

(< 2.2e-16) 

 
𝝓𝟐 0.025474 

(0.003) 

Where the values in the parentheses are p-values of estimated parameters and  
𝝈𝝂𝒕

 is the standard error of the residuals. 
 

Table 4:  Linearity Test 
 

 

Hypothesis 

 

F- Statistic 

Regime Residual sum of squares (RSS) 

of  the Delay Length (d) 

1 2 

𝐇𝟎𝟏 8.657488 

(0.000) 

2 2345.374745  2342.533730 

The value in the parenthesis is the p-value of F- Statistic. 
 

3.3 Specification of transition functions 

In accordance with Table 5, Terasvirta 

Sequential Tests specify first-order logistic 

function (asymmetric function) since  H03 is 

not rejected (p − value= 0.0618 > 0.05) and 

H04 is rejected (𝑝 −value= 0.000 < 0.05). 

Escribano-Jorda Tests specify exponential 

function (symmetric function) since the p-

value of H0L < the p-value of H0E. We decided 

to model PBSR with both symmetric and 

asymmetric STAR models and determine the 

best model, hence, the robustness of the 

selection procedure at the evaluation stage. 

From Table 6, the residuals of APLSTAR, 

LSTAR, ESTAR and SPLSTAR models fitted 

to PBSR are uncorrelated based on Ljung-Box 
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statistic of ν̂𝑡, which signifies no lack of fit of 

the models,. Still, theyare heteroscedastic 

because the p-values of LM statistics are less 

than 0.05. The most efficient STAR model 

based on the standard error of the residuals is 

ESTAR model, followed by SPLSTAR model 

and AR (2) model. Hence, symmetric models 

fitted well to PBSR. Thus, EJP is more robust 

than TP when the true model for the FTS is 

symmetric STAR model.  

Owing to the presence of ARCH effects, 

SPLSTAR-GARCH, ESTAR-GARCH and 

AR-GARCH models were estimated using the 

residuals obtained from modelling PBSR by 

SPSTAR, ESTAR and AR models, 

respectively. SPLSTAR-GARCH (1, 1) and 

ESTAR-GARCH (1, 1) models with 

generalized hyperbolic skew-student’s t (ghst) 

innovations and AR(2)-GARCH (1,1) models 

with snorm innovations were justifiably 

specified  for PBSR 
 

Table 5: Terasvirta Sequential and Escribano-Jorda Tests 
 

Terasvirta Sequential Tests Escribano-Jorda Tests 

Null 

hypothesis 

F- Statistic Transition 

function 

Null 

hypothesis 

F- Statistic Transition 

function 

H02 - 

 

 

First-order 

logistic 

function 

H0L 

4.890444 

(0.0022) 

 

 Exponential 

Function H03 2.787053 

(0.0618) 

 

 

H0E 

 

2.409339 

(0.0652) H04 11.57591 

(0.0000) 

The values in the parentheses are p-values of F- Statistics. 
 

Table 6:  STAR models fitted to PBSR 

 

Parameters ASPLSTAR LSTAR ESTAR SPLSTAR 

𝟏𝟎 -0.02936 

(0.84366) 

-0.0033843   

(0.981307) 

- - 

𝟏𝟏 0.35934 

(0.07691) 

0.0134278 

(0.677902) 

-0.14034      

(0.02611) 

0.35934    

(0.03691) 
 

𝟏𝟐 0.15106 

(0.05334) 

0.0042383  

(0.825747) 

0.99910    

(0.00302) 

-0.39608   

(0.00725) 
 

𝟐𝟎 -0.35301 

(0.03382) 

1.1807129    

(0.039432) 

0.02481     

(0.24630) 

0.15106    

(0.00334) 
 

𝟐𝟏 -0.35301 

(0.02382) 

0.2371352    

(0.005849) 

-2.37065     

(0.00800) 

0.04805    

(0.04322) 
 

𝟐𝟐 0.40787 

(0.09835) 

-0.1158016    

(0.255107) 

0.19479 

(0.00267) 

-0.35301 

(0.08382) 

 -1.98239 

(0.00353) 

0.6398412    

(0.406423) 

1.42861 

(4.53e-05) 

-1.98239 

0.19279 

 1.42861 

(0.00755) 

7.7413925  

(0.682817) 

1.5582 

(0.00244) 

5.40787 

( 0.09835) 
 

𝝈ν̂𝒕
 3.394609 3.89452 3.18023 3.22654 
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Ljung 

statistic of ν̂𝒕 

0.02573 

(0.9951) 

0.0068492 

(0.934) 

0.010244 

( 0.9194) 

3.8266e-05 

(0.9951) 

LM statistics 3033396 

(< 2.2e-16) 

3033333 

(< 2.2e-16) 

6600375 

(< 2.2e-16) 

3033430 

(< 2.2e-16) 

Where 𝝂̂𝒕 is the estimates of the residuals, 𝝈ν̂𝒕
is the standard error of the residuals and the 

values in the parentheses are p-values of estimated parameters. 
[ 

Table 7: Parameter estimates of ESTAR-GARCH (1, 1) model 
 

Type of 

Distribution 

 

Parameter 

 

Estimate 

LM Test 

(ARCH(5)) 

Ljung-Box Statistics for 

Standardized Residuals 

𝛎̃𝐭 (𝛎̃𝐭)
𝟐 

 

Ghst 

 

𝟎 

0.000164        

(0.00000) 

 

 

 

0.003769  

(0.9510) 

 

 

 

0.4336  

(0.9674) 

 

 

 

0.1002  

(0.7515) 

 

𝟏 

0.030577          

(0.0000) 

𝜷𝟏 0.838298 

(0.0000) 

AIC 2.3405 

The values in the parentheses are p-values of estimated parameters and ghst is 

generalized hyperbolic skew-student’s t-distributions. 
 

Table 8: Parameter estimates of SPLSTAR-GARCH (1, 1) model 
 

Type of 

Distribution 

  

 Parameter 

 

Estimate 

LM Test 

(ARCH(5)) 

Ljung-Box Statistics for 

Standardized Residuals 

𝛎̃𝐭 (𝛎̃𝐭)
𝟐 

Ghst 𝟎 0.000036        

(0.00000) 

 

 

 

0.020483  

(0.9986) 

0.09779  

(0.9982) 

 

0.008594  

(0.9261) 

 

𝟏 

 

0.008854           

(0.0000) 

 𝜷𝟏 0.900567 

(0.0000) 

 AIC 1.9739 

The values in the parentheses are p-values of estimated parameters and ghst is 

generalized hyperbolic skew-student’s t-distribution. 

 

Based on Table 7, The parameters of ESTAR-GARCH (1, 1) model with ghst innovations 

are significant at 5% level of significance. Portmantaeu tests of standardized ν̃t (𝑝 −value=
0.9674 > 0.05) and standardized (ν̃t)2 (𝑝 −value= 0.7515) > 0.05) reveal that the model 

is free from serial correlation. The LM test for remaining ARCH effects reveals absence of 

ARCH effects. 

Based on Table 8, the parameters of SPLSTAR-GARCH (1, 1) model with ghst innovations 

specified for modeling PBSR are significantly different from zero and no lack of fit of the 

model based on Ljung-Box statistics of standardized residuals and standardized squared 

residuals is revealed. No remaining ARCH effects presence based on LM test.   
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Table 9: Parameter estimates of AR(2)-GARCH (1, 1) model 
 

Type of 

Distribution 

 

Parameter 

 

Estimate 

LM Test 

(ARCH(5)) 

 

Ljung-Box Statistics for 

Standardized Residuals 

𝛎̃𝐭 (𝛎̃𝐭)
𝟐 

 𝝓𝟏 0.072446 

(0.000609)     

 

 

 

 

 

0.002636  

(0.9999) 

  

 

 

 

 

 

0.02832    

(0.8664) 

 

 

 

 

 

0.0008406    

(0.9769) 

 

 

 𝝓𝟐 0.061061 

(0.003261)     

Snorm  

𝟎 

 

0.473896            

(0.00000)  

𝟏 0.042815         

(0.00000)     

𝜷𝟏 0.814073        

(0.00000)     

AIC 4.0527 

Where the values in the parentheses are p-values of estimated parameters and snorm is 

skewed normal distribution of innovations. 
 

AR(2)-GARCH (1, 1) model is specified and fitted to PBSR. From Table 9, the parameters 

of AR(2)-GARCH (1, 1)  model are statistically significance and the model fitted well to 

PBSR based on the results of Portmanteau tests of standardized residuals and standardized 

squared residuals. Moreover, no remaining ARCH effects based on LM test. 
 

 

Table 10: Evaluation of Models 

 

Estimated Model FRMSE AIC 

SPLSTAR-GARCH (1, 1) 0.07630439 1.9739 

ESTAR-GARCH (1, 1) 0.2240533 2.3405 

AR(2)-GARCH (1, 1) 0.2150709 4.0527 

AR(2) 2.988752    18348.01 

Where FRMSE is the forecast root mean square error 

In terms of AIC value and FRMSE, SPLSTAR-GARCH (1, 1) model is the best model for 

describing PBSR. Also, based on FRMSE, the overall prediction performance of SPLSTAR-

GARCH (1 1) model is better than its linear counterpart.  

4.0 Discussion of Findings 
 

Daily BSI totaling 2472 observations were 

obtained from Nigerian Exchange Limited for 

empirical illustrations. The time series plot of 

BSI indicates overall positive trend pattern 

with slow growth rate, except in 2020 when 

BSI witnessed sharp fall due to Covid-19 

pandemics, while the time series plot of PBSR 

reveals the presence of volatility cluster and the 

mean and variance of PBSR which appear to be 

stable.  

The rejection of null hypothesis of linearity 

leads to the determination of delay length. 

Terasvirta Sequential Tests specify first-order 

logistic function (asymmetric function), while 

Escribano-Jorda Tests specify exponential 

function (symmetric function).  Both 

symmetric and asymmetric STAR models were 

fitted to PBSR to determine the relevant of EJP 
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in the detection of symmetric transition 

function whenever symmetric STAR model is 

the true model for the FTS, while delaying the 

determination of the best model to the 

evaluation stage. Based on standard error of the 

residuals, Symmetric STAR models 

outperformed its asymmetric counterparts. 

Hence, the superiority of EJP over TP in the 

detection of symmetric model, when indeed, it 

is the true model for the FTS. This is similar to 

Escribano and Jorda (2001) who applied both 

specification procedures (TP and EJP) and 

ESTAR model that EJP selected was chosen on 

the basis of best fit. However, some analysts 

applied both specification procedure and either 

LSTAR or ESTAR model was selected (Dijk et 

al, 2002; Effiong et al, 2023 and Effiong et al, 

2024)   

Owing to the presence of ARCH effects, 

SPLSTAR-GARCH (1, 1) and ESTAR-

GARCH (1,1) models with generalized 

hyperbolic skew-student’s t (ghst) innovations  

and AR(2)- GARCH (1,1) models with snorm 

innovations were specified and fitted to PBSR. 

SPLSTAR-GARCH (1, 1) model fitted well to 

PBSR in terms of AIC value and FRMSE. 

Also, the overall prediction performance of 

SPLSTAR-GARCH (1 1) model is better than 

its linear counterpart which according to Tong 

and Lim (1980), it is one of the requirements 

for applying nonlinear time series model. 
[[ 

 

5.0  Conclusion 
 
 

 

BETAGLASS stock index experience gradual 

growth rate over time, except in 2020 when BSI 

witnessed sharp fall due to Covid-19 

pandemics. Escribano-Jorda procedure is more 

accurate than Terasvirta procedure particularly 

when the true model for the FTS is any of the 

symmetric STAR models. SPLSTAR-GARCH 

(1, 1) and ESTAR-GARCH (1,1) models with 

ghst innovations fitted well to PBSR compare 

to  AR(2)- GARCH (1,1) models with snorm 

innovations and AR (2) model. SPLSTAR-

GARCH (1, 1) and ESTAR-GARCH (1, 1) 

model have better overall prediction 

performance than its linear counterpart, 

SPLSTAR-GARCH (1 1) model is the most 

efficient model for modeling PBSR based on 

AIC and FRMSE. 
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