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Abstract: A great many real-life situations are 
often modeled as linear system of equations, 𝐴𝑥 =

𝑏. Direct methods of solution of such systems are 
not always realistic, especially where the 
coefficient matrix 𝐴 is very large and sparse, 
hence the recourse to iterative solution methods. 
The Gauss-Seidel, a basic iterative method for 
linear systems, is one such method. Although 
convergence is rarely guaranteed for all cases, it 
is established that the method converges for some 
situations depending on properties of the entries 
of the coefficient matrix and, by implication, on 
the algebraic structure of the method.  However, 
as with all basic iterative methods, when it does 
converge, convergence could be slow. In this 
research, a preconditioned version of the Gauss-
Seidel method is proposed in order to improve 
upon its convergence and robustness. For this 
purpose, convergence theorems are advanced and 
established. Numerical experiments are 
undertaken to validate results of the proved 
theorems.         
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1.0 Introduction  
In order to employ iterative solution method for 
the linear system of algebraic equations  𝐴𝑥 = 𝑏, 
where the coefficient matrix 𝐴 ∈ ℝ , is an 
irreducible 𝐿 − matrix, 𝑏 ∈ ℝ , and 𝑥 being the 
vector of unknowns, the generic linear iteration 
formula takes the form 
𝑥( ) = 𝐺𝑥( ) + 𝑐,              𝑛 = 0,1,2, ⋯       (1) 
where 𝐺(= 𝑀 𝑁), referred to as the iteration 
matrix, is a matrix depending upon 𝐴 and 𝑥, and 

𝑐(= 𝑀 𝑏) is a column vector. Both 𝐺  and 𝑐  
are obtained from a regular splitting of the matrix 
𝐴 thus: 𝐴 = 𝑀 − 𝑁. We assume for simplicity, 
without loss of generality, that the coefficient 
matrix 𝐴 has the usual triangular splitting of the 
form 𝐴 = 𝐼 − 𝐿 − 𝑈, where 𝐼 is the identity 
matrix, −𝐿 and −𝑈 are the strictly lower and 
strictly upper triangular parts of 𝐴, respectively. 
By the foregoing, the Gauss-Seidel method is 
easily described by the relation 

𝑥( ) = 𝐺𝑥( ) + 𝑐              𝑛 = 0,1,2, ⋯       (2) 
where 𝐺 = (𝐼 − 𝐿) 𝑈 is the Gauss-Seidel 
iteration matrix, and 𝑐 = (𝐼 − 𝐿) 𝑏. The Gauss-
Seidel method is known to converge for linear 
systems with strictly or irreducibly diagonally 
dominant matrices, invertible 𝐻 − matrices 
(generalized strictly diagonally dominant 
matrices) and Hermitian positive definite 
matrices. However, as with all basic iterative 
methods, convergence could be slow; hence the 
idea of preconditioning.  
Preconditioning is the application of a 
transformation (preconditioner) to a linear system 
that transforms the system into a form that is more 
suitable for numerical computation. When 
preconditioners are applied to linear systems, the 
associated iterative methods tend to converge 
asymptotically faster than the unpreconditioned 
ones. Preconditioning, in relation to classical 
iterative methods, aims to reduce the spectral 
radius of the iteration matrix so as to improve 
convergence. However, when applied to 
Conjugate Gradient or other Krylov subspace 
methods, the goal of preconditioning is to increase 
the condition number of the coefficient matrix 𝐴 
in order to improve convergence.   
A diversity of preconditioned Gauss-Seidel 
iterative techniques has been advanced by various 
researchers and authors. Among these include the 
preconditioners of Allahviranloo et al. (2012), 
Gunawardena et al. (1991), Hadjidimos et al. 
(2003), Kohno et al. (1997), Li (2005), Li and Sun 
(2000), Milaszewicz (1987), Nazari and Borujeni 
(2012), Ndanusa and Adeboye (2012), Noutsos 
and Tzoumas (2006), Zhang et al. (2015) and 
Zheng and Miao (2009). This present research 
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aims to investigate the applicability of the 
preconditioner of [9] to the classical Gauss-Seidel 
method in order to improve on its convergence. 
2.0 Materials and Methods 
2.1 Preliminaries 
In order to use the successive overrelaxation 
(SOR) method to solve the preconditioned linear 
system, equation 3 is significant 

𝑃𝐴𝑥 = 𝑃𝑏                                                         (3)  
where 𝑃 ∈ ℝ × , called the preconditioner, is 
nonsingular.  Ndanusa and Adeboye (2012) 
proposed the preconditioner 𝑃 = 𝐼 + 𝑆, where 𝐼 is 
the 𝑛 × 𝑛 identity matrix and 𝑆 is a sparse matrix 
defined by  

𝑆 =

−𝑎 ,                          𝑖 = 2, ⋯ , 𝑛
−𝑎 , ,              𝑖 = 1, ⋯ , 𝑛 − 1

0,                        otherwise 00
 

The nonzero entries of 𝑆 are the negatives of the 
corresponding entries of the coefficient matrix 𝐴. 
If  𝑃𝐴 = �̅� and 𝑃𝑏 = 𝑏, system (3) is simplified 
to 

�̅�𝑥 = 𝑏                                                                (4) 
From (4) we obtain 

�̅� = 𝑃𝐴 = (𝐼 + 𝑆)(𝐼 − 𝐿 − 𝑈) 
= 𝐼 − 𝐿 − 𝑈 + 𝑆 − 𝑆𝐿 − 𝑆𝑈 

where,  
𝑆 = −𝐿 − 𝑈  −𝑆𝐿 − 𝑆𝑈 = 𝐷 − 𝐿 − 𝑈  
Therefore,  

�̅� = 𝐼 − 𝐿 − 𝑈 − 𝐿 − 𝑈 + 𝐷 − 𝐿 − 𝑈  
= (𝐼 + 𝐷 ) − (𝐿 + 𝐿 + 𝐿 ) − (𝑈 + 𝑈 + 𝑈 ) 

It implies, 
�̅� = 𝐷 − 𝐿 − 𝑈                                               (5) 

where  𝐷 = 𝐼 + 𝐷 ,  𝐿 = 𝐿 + 𝐿 + 𝐿  and  𝑈 =
𝑈 + 𝑈 + 𝑈  constitute the diagonal, strictly 
lower and strictly upper components of �̅� 
respectively.  
The classical (unpreconditioned) Gauss-Seidel 
iteration scheme (2) is rewritten as  

𝑥( ) = (𝐼 − 𝐿) 𝑈𝑥( ) + (𝐼 − 𝐿) 𝑏           𝑛
= 0,1,2, ⋯                             (6) 

To construct a preconditioned version of the 
iteration (6), consider a regular splitting of the 
preconditioned coefficient matrix �̅�  is 
considered and the resulting models are as 
follow, 
 �̅� = (𝐷 − 𝐿 − 𝑈) = (𝐼 + 𝐷 − 𝐿 − 𝑈) =
(𝐼 − 𝐿) − (𝑈 − 𝐷 ) 
Therefore,  

�̅� = 𝑀 − 𝑁 = (𝐼 − 𝐿) − (𝑈 − 𝐷 ) 
is a regular splitting of �̅�, where 𝑀 = (𝐼 −
𝐿) and 𝑁 = (𝑈 − 𝐷 ). Therefore, the first 

preconditioned Gauss-Seidel iterative scheme is 
defined as  
𝑥( ) = (𝐼 − 𝐿) (𝑈 − 𝐷 )𝑥( )

+ (𝐼 − 𝐿) 𝑏                          (7) 
or equivalently, 
𝑥( ) = 𝐺 𝑥( ) + 𝑐              𝑛 = 0,1,2, ⋯     (8) 

where the iterative matrix of the preconditioned 
Gauss-Seidel scheme, 𝐺 , is represented as  

𝐺 = (𝐼 − 𝐿) (𝑈 − 𝐷 )                              (9) 
Also, from (5), a second preconditioned Gauss-
Seidel iteration scheme can be defined as   
𝑥( ) = (𝐷 − 𝐿) 𝑈𝑥( ) + (𝐷 − 𝐿) 𝑏     (10) 
Or more compactly, 
𝑥( ) = 𝐺 𝑥( ) + 𝑐              𝑛 = 0,1,2, ⋯   (11) 

where 
 𝐺 = (𝐷 − 𝐿) 𝑈                                        (12)  

is the Gauss-Seidel iteration matrix.  
Convergence Analysis 
The following lemmas and theorems are advanced 
in order to establish convergence of the derived 
preconditioned iterative processes. 
Lemma 1 (Varga (1981))  Let 𝐴 ≥ 0 be an 
irreducible matrix. Then, 

i. 𝐴 has a positive real eigenvalue equal to 
its spectral radius. 

ii. For 𝜌(𝐴) there corresponds an 
eigenvector 𝑥 > 0. 

iii. 𝜌(𝐴) increases when any entry of 𝐴 
increases. 

iv. 𝜌(𝐴) is a simple eigenvalue of 𝐴. 
Lemma 2 (Varga (1981))  Let 𝐴 be a nonnegative 
matrix. Then 

i. If 𝛼𝑥 ≤ 𝐴𝑥 for some nonnegative vector 
𝑥, 𝑥 ≠ 0, then 𝛼 ≤ 𝜌(𝐴). 

ii. If 𝐴𝑥 ≤ 𝛽𝑥 for some positive vector 𝑥, 
then 𝜌(𝐴) ≤ 𝛽. Moreover, if 𝐴 is 
irreducible and if 0 ≠ 𝛼𝑥 ≤ 𝐴𝑥 ≤ 𝛽𝑥 for 
some nonnegative vector 𝑥, then 𝛼 ≤
𝜌(𝐴) ≤ 𝛽 and 𝑥 is a positive vector. 

Lemma 3 (Li and Sun (2000))   Let 𝐴 = 𝑀 − 𝑁 
be an 𝑀 −splitting of 𝐴. Then the splitting is 
convergent, i.e., 𝜌(𝑀 𝑁 < 1), if and only if 𝐴 is 
a nonsingular 𝑀 −matrix. 
Theorem 1 Let 𝐺 = (𝐼 − 𝐿) 𝑈, 𝐺 = (𝐼 −
𝐿) (𝑈 − 𝐷 ) and 𝐺 = (𝐷 − 𝐿) 𝑈 be the 
Gauss-Seidel, the first preconditioned Gauss-
Seidel and the second preconditioned Gauss-
Seidel iteration matrices respectively. If 𝐴 is an 
irreducible 𝐿 − matrix with 0 ≤ 𝑎 𝑎 +
𝑎 , 𝑎 ,   < 1, 𝑖 = 2(1)𝑛, then 𝐺, 𝐺  and 𝐺  
are nonnegative and irreducible matrices. 
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Proof For 𝐴 being an 𝐿 −matrix, it implies that 
𝐿 ≥ 0 and 𝑈 ≥ 0. Then (𝐼 − 𝐿) = 𝐼 + 𝐿 +
𝐿 + ∙∙∙  +𝐿 ≥ 0. Thus 𝐺 = (𝐼 − 𝐿) 𝑈 ≥ 0. 
Hence, 𝐺 is  a nonnegative matrix.  
 It can also be shown that  
𝐺 = [𝐼 + 𝐿 + 𝐿 + ∙∙∙  +𝐿 ]𝑈

= 𝑈 + 𝐿𝑈 + 𝐿 𝑈 + ∙∙∙ 
= 𝑈 + 𝐿𝑈 + 𝐿 𝑈
+ nonnegative terms 

It can also be shown that 𝑈 + 𝐿𝑈 + 𝐿 𝑈 is 
irreducible for irreducible 𝐴. Hence, 𝐺 is an 
irreducible matrix. 
The first preconditioned iteration matrix 𝐺  is 
examined as follows.  

𝐺 = (𝐼 − 𝐿) (𝑈 − 𝐷 ) 
Since 𝐿 ≥ 0, 𝑈 ≥ 0, −𝐷 ≥ 0, then (𝑈 − 𝐷 ) ≥
0 and (𝐼 − 𝐿) = 𝐼 + 𝐿 + 𝐿 + ∙∙∙  +𝐿 ≥ 0. 
Consequently, we must have that 

𝐺 = (𝐼 + 𝐿 + 𝐿 + ∙∙∙  +𝐿 )(𝑈 − 𝐷 ) 
= (𝑈 − 𝐷 ) + 𝐿(𝑈 − 𝐷 ) + 𝐿 (𝑈 − 𝐷 ) + ∙∙

∙  +𝐿 (𝑈 − 𝐷 ) ≥ 0 
So  𝐺  is a nonnegative. We can also get that 
(𝑈 − 𝐷 ) + 𝐿(𝑈 − 𝐷 ) + 𝐿 (𝑈 − 𝐷 ) + ∙∙∙
 +𝐿 (𝑈 − 𝐷 ) is irreducible since 𝐴 is 
irreducible, hence 𝐺  is irreducible. 
Similarly, we consider 
𝐺 = (𝐷 − 𝐿) 𝑈 
= [𝐷(𝐼 − 𝐷 𝐿)] 𝑈 
= (𝐼 − 𝐷 𝐿) 𝐷 𝑈 
= [𝐼 + 𝐷 𝐿 + (𝐷 𝐿) + ⋯

+ (𝐷 𝐿) ]𝐷 𝑈 
= 𝐷 𝑈 + (𝐷 ) 𝐿𝑈 + (𝐷 ) 𝐿 𝑈

+ nonnegative terms 
Using similar arguments it is conclusive that 𝐺 =
(𝐷 − 𝐿) 𝑈 is a nonnegative and irreducible 
matrix. 
Theorem 2 Let 𝐺 = (𝐼 − 𝐿) 𝑈 and 𝐺 =
(𝐼 − 𝐿) (𝑈 − 𝐷 ) be the Gauss-Seidel and 
preconditioned Gauss-Seidel iteration matrices 
respectively. If 𝐴 is an irreducible 𝐿 −matrix with 
0 ≤ 𝑎 𝑎 + 𝑎 , 𝑎 ,   < 1, 𝑖 = 2(1)𝑛. 
Then, 

(i) 𝜌(𝐺 ) < 𝜌(𝐺), if  𝜌(𝐺) < 1; 
(ii) 𝜌(𝐺 ) = 𝜌(𝐺), if  𝜌(𝐺) = 1; 
(iii) 𝜌(𝐺 ) > 𝜌(𝐺), if  𝜌(𝐺) > 1. 

Proof  Theorem 1 established  𝐺 and 𝐺  as 
nonnegative and irreducible matrices. Suppose 
𝜌(𝐺) = 𝜆, then there exists a positive vector 𝑥 =
(𝑥 , 𝑥 , ⋯ , 𝑥 ) , such that  

𝐺𝑥 = 𝜆𝑥 
That is, 
(𝐼 − 𝐿) 𝑈𝑥 = 𝜆𝑥 

𝑈 = 𝜆(𝐼 − 𝐿)                                                    (13) 
And for this 𝑥 > 0, 
𝐺 𝑥 − 𝜆𝑥 = (𝐼 − 𝐿) (𝑈 − 𝐷 )𝑥

− 𝜆(𝐼 − 𝐿) (𝐼 − 𝐿)𝑥 
= (𝐼 − 𝐿) {𝑈 − 𝐷 − 𝜆𝐼 + 𝜆𝐿}𝑥 
= (𝐼 − 𝜔𝐿) {(1 − 𝜔)𝐼 + 𝜔𝑈 − 𝜔𝐷

− 𝜆(𝐼 − 𝜔𝐿)}𝑥 
= (𝐼 − 𝐿) {−𝜆𝐼 − 𝐷 + 𝜆(𝐿 + 𝐿 + 𝐿 ) + (𝑈

+ 𝑈 + 𝑈 )}𝑥 
= (𝐼 − 𝐿) {−𝜆𝐼 + 𝑈 + 𝜆𝐿 + 𝜆𝐿 + 𝜆𝐿 + 𝑈

− 𝐷 + 𝑈 }𝑥 
From (13),  𝜆𝐼 = 𝑈 + 𝜆𝐿 

𝐺 𝑥 − 𝜆𝑥 = (𝐼 − 𝐿) {𝜆𝐿 + 𝜆𝐿 + 𝑈 − 𝐷
+ 𝑈 }𝑥 

= (𝐼 − 𝐿) {(𝜆 − 1)𝐿 + 𝜆𝐿 + 𝑈 − (𝐷 − 𝐿
− 𝑈 )}𝑥 

= (𝐼 − 𝐿) {(𝜆 − 1)𝐿 + 𝜆𝐿 + 𝑈
− [−(𝑆𝐿 + 𝑆𝑈)]}𝑥 

= (𝐼 − 𝐿) {(𝜆 − 1)𝐿 + 𝜆𝐿 + 𝑈 + 𝑆𝐿
+ 𝑆𝑈}𝑥 

= (𝐼 − 𝐿) {(𝜆 − 1)𝐿 + (𝜆 − 1)𝐿 + (𝐿
+ 𝑈 ) + 𝑆𝐿 + 𝑆𝑈}𝑥 

= (𝐼 − 𝐿) {(𝜆 − 1)(𝐿 + 𝐿 ) − 𝑆 + 𝑆𝐿
+ 𝑆𝑈)}𝑥 

= (𝐼 − 𝐿) {(𝜆 − 1)(𝐿 + 𝐿 ) − 𝑆 + 𝑆𝐿
+ 𝑆𝑈)}𝑥 

= (𝐼 − 𝐿) {(𝜆 − 1)(𝐿 + 𝐿 ) − 𝑆(𝐼 − 𝐿)
+ 𝑆𝑈)}𝑥 

= (𝐼 − 𝐿) {(𝜆 − 1)(𝐿 + 𝐿 ) + 𝑆[𝑈 − (𝐼
− 𝐿)]}𝑥 

From (13), 𝑈 = 𝜆(𝐼 − 𝐿) 
𝐺 𝑥 − 𝜆𝑥 = (𝐼 − 𝐿) {(𝜆 − 1)(𝐿 + 𝐿 )

+ 𝑆[𝜆(𝐼 − 𝐿) − (𝐼 − 𝐿)]}𝑥 
= (𝐼 − 𝐿) {(𝜆 − 1)(𝐿 + 𝐿 ) + (𝜆

− 1)𝑆(𝐼 − 𝐿)}𝑥 
= (𝜆 − 1)(𝐼 − 𝐿) {(𝐿 + 𝐿 ) + 𝑆(𝐼 − 𝐿)}𝑥 

From (13), (𝐼 − 𝐿) = 𝑈 𝜆⁄  
𝐺 𝑥 − 𝜆𝑥 = (𝜆 − 1)(𝐼 − 𝐿) {(𝐿 + 𝐿 )

+ 𝑆𝑈 𝜆⁄ }𝑥 
= [(𝜆 − 1) 𝜆⁄ ](𝐼 − 𝐿) {𝜆 (𝐿 + 𝐿 ) + 𝑆𝑈}𝑥 

Assume 𝐻 = 𝐽𝑥, where 𝐽 = (𝐼 − 𝐿) {𝜆(𝐿 +
𝐿 ) + 𝑆𝑈}. Then 𝐽 = (𝐼 − 𝐿) {𝜆 (𝐿 + 𝐿 ) +
𝑆𝑈} ≥ 0, since 𝜆(𝐿 + 𝐿 ) ≥ 0, and 𝑆𝑈 ≥ 0. 
Also, (𝐼 − 𝐿) = 𝐼 + 𝐿 + 𝐿 + ∙∙∙  +𝐿 ≥ 0, 
since 𝐿 ≥ 0. Therefore, 𝐽 = (𝐼 − 𝐿) {𝜆 (𝐿 +
𝐿 ) + 𝑆𝑈} ≥ 0. Consequently, 𝐻 = (𝐼 −
𝐿) {𝜆 (𝐿 + 𝐿 ) + 𝑆𝑈}𝑥 ≥ 0, since 𝑥 > 0. 

(i) If 𝜆 < 1, then 𝐺 𝑥 − 𝜆𝑥 ≤ 0 but not 
equal to 0. Therefore, 𝐺 𝑥 ≤ 𝜆𝑥. 
From Lemma 2, we have 𝜌(𝐺 ) <
𝜆 = 𝜌(𝐺). 
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(ii) If 𝜆 = 1, then 𝐺 𝑥 − 𝜆𝑥 = 0. 
Therefore, 𝐺 𝑥 = 𝜆𝑥. From Lemma 
2, we have 𝜌(𝐺 ) = 𝜆 = 𝜌(𝐺). 

(iii) If 𝜆 > 1, then 𝐺 𝑥 − 𝜆𝑥 ≥ 0 but not 
equal to 0. Therefore, 𝐺 𝑥 ≥ 𝜆𝑥. 
From Lemma 2, we have 𝜌(𝐺 ) >
𝜆 = 𝜌(𝐺).     

Theorem 3   Let 𝐺 = (𝐼 − 𝐿) 𝑈 and 𝐺 =
(𝐷 − 𝐿) 𝑈 be the Gauss-Seidel and the 
preconditioned Gauss-Seidel iteration matrices 
respectively. If 𝐴 is an irreducible 𝐿 −matrix with 
0 ≤ 𝑎 𝑎 + 𝑎 , 𝑎 ,   < 1, 𝑖 = 2(1)𝑛. 
Then, 

(i) 𝜌(𝐺 ) < 𝜌(𝐺), if  𝜌(𝐺) < 1; 
(ii) 𝜌(𝐺 ) = 𝜌(𝐺), if  𝜌(𝐺) = 1; 
(iii) 𝜌(𝐺 ) > 𝜌(𝐺), if  𝜌(𝐺) > 1. 

Proof    From Theorem 1, 𝐺 and 𝐺  are 
nonnegative and irreducible matrices. Suppose 
𝜌(𝐺) = 𝜆, then there exists a positive vector 𝑥 =
(𝑥 , 𝑥 , ⋯ , 𝑥 ) , such that (13) holds. 
Therefore, for this 𝑥 > 0, 
𝐺 𝑥 − 𝜆𝑥 = (𝐷 − 𝐿) 𝑈𝑥 − 𝜆𝑥 

= (𝐷 − 𝐿) 𝑈𝑥 − (𝐷 − 𝐿) (𝐷 − 𝐿)𝜆𝑥 
= (𝐷 − 𝐿) {𝑈 − 𝜆(𝐷 − 𝐿)}𝑥 
= (𝐷 − 𝐿) {𝑈 − 𝜆𝐷 + 𝐿}𝑥 

= (𝐷 − 𝐿) {(𝑈 + 𝑈 + 𝑈 ) − 𝜆(𝐼 + 𝐷 )
+ 𝜆(𝐿 + 𝐿 + 𝐿 )}𝑥 

= (𝐷 − 𝐿) {−𝜆𝐷 + 𝜆𝐿 + 𝜆𝐿 + 𝜆𝐿 + 𝑈
+𝑈 + −𝜆𝐼 + 𝑈)}𝑥 

But, from (13), −𝜆𝐼 + 𝑈 = −𝜆𝐿 
𝐺 𝑥 − 𝜆𝑥 = (𝐷 − 𝐿) {−𝜆𝐷 + 𝜆𝐿 + 𝜆𝐿 + 𝑈

+ 𝑈 − 𝜆𝐿)}𝑥 
= (𝐷 − 𝐿) {(𝜆 − 1)(−𝐷 ) + (𝜆 − 1)𝐿

− (𝐷 − 𝐿 − 𝑈 ) + 𝜆𝐿 − 𝐿
+ 𝐿 +𝑈 )}𝑥 

= (𝐷 − 𝐿) {(𝜆 − 1)(−𝐷 + 𝐿 )
− (−(𝑆𝐿 + 𝑆𝑈)) + (𝜆 − 1)𝐿
+ (𝐿 +𝑈 )}𝑥 

= (𝐷 − 𝐿) {(𝜆 − 1)(−𝐷 + 𝐿 + 𝐿 ) + 𝑆𝐿
+ 𝑆𝑈 + (𝐿 +𝑈 )}𝑥 

= (𝐷 − 𝐿) {(𝜆 − 1)(−𝐷 + 𝐿 + 𝐿 ) + 𝑆𝑈
− 𝑆 + 𝑆𝐿}𝑥 

= (𝐷 − 𝐿) {(𝜆 − 1)(−𝐷 + 𝐿 + 𝐿 ) + 𝑆𝑈
− 𝑆(𝐼 − 𝐿)}𝑥 

= (𝐷 − 𝐿) {(𝜆 − 1)(−𝐷 + 𝐿 + 𝐿 ) + 𝑆[𝑈
− (𝐼 − 𝐿)]}𝑥 

From equation (13), 𝑈 = 𝜆(𝐼 − 𝐿) 
 

𝐺 𝑥 − 𝜆𝑥 = (𝐷 − 𝐿) {(𝜆 − 1)(−𝐷 + 𝐿
+ 𝐿 ) + 𝑆[𝜆(𝐼 − 𝐿)    
− (𝐼 − 𝐿)]}𝑥 

= (𝐷 − 𝐿) {(𝜆 − 1)(−𝐷 + 𝐿 + 𝐿 ) + (𝜆
− 1)𝑆(𝐼 − 𝐿)}𝑥 

From equation (13), (𝐼 − 𝐿) = 𝑈 𝜆⁄   
= (𝜆 − 1)(𝐷 − 𝐿) {(−𝐷 + 𝐿 + 𝐿 )

+ 𝑆𝑈 𝜆⁄ }𝑥 
= [(𝜆 − 1) 𝜆⁄ ](𝐷 − 𝐿) {−𝜆𝐷 + 𝜆𝐿 + 𝜆𝐿

+ 𝑆𝑈}𝑥 
Suppose 𝑅 = 𝑄𝑥, with 𝑄 = (𝐷 − 𝐿) {−𝜆𝐷 +
𝜆𝐿 + 𝜆𝐿 + 𝑆𝑈}. Obviously, −𝜆𝐷 + 𝜆𝐿 +
𝜆𝐿 + 𝑆𝑈 ≥ 0, since 𝑆𝑈 ≥ 0, −𝜆𝐷 ≥ 0,  𝜆𝐿 ≥
0 and 𝜆𝐿 ≥ 0. Since 𝐷 is a nonsingular matrix, 
we let  𝐷 − 𝐿 be a splitting of some matrix 𝐾, i.e., 
𝐾 = 𝐷 − 𝐿. Also, 𝐷 is an 𝑀 −matrix and 𝐿 ≥ 0. 
Thus, 𝐾 = 𝐷 − 𝐿 is an 𝑀 −splitting. Now, 𝐷 𝐿 
is a strictly lower triangular matrix, and by 
implication its eigenvalues lie on its main 
diagonal; in this case they are all zeros. Therefore, 
𝜌(𝐷 𝐿) = 0. Since 𝜌(𝐷 𝐿) < 1, 𝐾 = 𝐷 − 𝐿 is 
a convergent splitting. By the foregoing, 𝐾 = 𝐷 −
𝐿 is an 𝑀 −splitting and 𝜌(𝐷 𝐿) < 1, we 
employ Lemma 3 to establish that 𝐾 is an 
𝑀 −matrix. Since 𝐾 is an 𝑀 −matrix, by 
definition, 𝐾 = (𝐷 − 𝐿) ≥ 0. Thus, 𝑄 ≥ 0 
and 𝑅 ≥ 0. 

(i) If 𝜆 < 1, then 𝐺 𝑥 − 𝜆𝑥 ≤ 0 but not 
equal to 0. Therefore, 𝐺 𝑥 ≤ 𝜆𝑥. 
From Lemma 2, we have 𝜌(𝐺 ) <
𝜆 = 𝜌(𝐺 ). 

(ii) If 𝜆 = 1, then 𝐺 𝑥 − 𝜆𝑥 = 0. 
Therefore, 𝐺 𝑥 = 𝜆𝑥. From Lemma 
2, we have 𝜌(𝐺 ) = 𝜆 = 𝜌(𝐺 ) 

(iii) If 𝜆 > 1, then 𝐺 𝑥 − 𝜆𝑥 ≥ 0 but not 
equal to 0. Therefore, 𝐺 𝑥 ≥ 𝜆𝑥. 
From Lemma 2, we have 𝜌(𝐺 ) >
𝜆 = 𝜌(𝐺 ). 

Numerical Experiments 
In order to validate the results of the preceding 
section, the preconditioned Gauss-Seidel methods 
introduced in this work are applied to Problems 1 
and 2. The spectral radii of iteration matrices of 
the two methods are obtained and compared to 
those of some other methods.  
Problem 1   Consider a 4 × 4 matrix of the form  

𝐴 =

1
−0.365
−0.165

0

 

−0.172
1
0

−0.236

 

−0.234
0
1

−0.372

 

0
−0.204
−0.215

1
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Problem 2   Consider a 6× 6 matrix of the form 

𝐴 =

⎝

⎜⎜
⎛

1.0 −0.1 −0.1
−0.5 1 0
−0.3 −0.1 1

   

−0.2 0 −0.1
−0.2 0 −0.1
−0.1 0 0

   

 
−0.4 −0.2 −0.1

0 0 0
−0.2 −0.1 0

 
1 −0.1 −0.3

−0.1 1 −0.2
−0.1 −0.1 1 ⎠

⎟⎟
⎞

 

By letting 𝐺, 𝐺  and 𝐺  be the itreration matrices 
of the classical Gauss-Seidel method, 
preconditioned Gauss-Seidel methods of (9) and 
(12) respectively, the spectral radii of these 
matrices are computed for Examples 1 and 2 and 
the results presented in Tables I and II. 
3.0 Results and Discussion  
Tables I and II depict the results of Problems 1 and 
2 respectively. In the Tables, 𝐺, 𝐺 , 𝐺 , 𝐺 , 
𝐺 , 𝐺 , and 𝐺  &  represent the iteration 
matrices of the Gauss-Seidel, our first 
preconditioned Gauss-Seidel, our second 
preconditioned Gauss-Seidel, SOR, Gunawardena 
et al. (1991), Milaszewicz (1987) and Mayaki and 
Ndanusa (2019) respectively. 
Table I: Comparison of spectral radii of  𝑮𝟏 
and 𝑮𝟐 with various iteration matrices for 
Problem 1 

Iteration matrix Spectral radius 
𝑮𝟏 0.1601241711 
𝑮𝟐 0.06681777737 
𝑮 0.2277905779 
𝑮𝑺𝑶𝑹 0.1000000002 
𝑮𝑮𝑵 0.08177303033 
𝑮𝑴 0.1682312333 
𝑮𝑴 & 𝑵 0.08177303033 

Table 2: Comparison of spectral radii of  𝑮𝟏 
and 𝑮𝟐 with various iteration matrices for 
Problem 2 

Iteration matrix Spectral radius 
𝑮𝟏 0.2807908647 
𝑮𝟐 0.1943430798 
𝑮 0.4206679675 
𝑮𝑺𝑶𝑹 0.2435217064 
𝑮𝑮𝑵 0.3390264208 
𝑮𝑴 0.2663324128 
𝑮𝑴 & 𝑵 0.3384319902 

It is well known that the spectral radius of the 
iteration matrix of an iterative method for linear 
systems is sufficient for convergence of the 
method. The method is known to converge when 
the spectral radius is less than 1 in absolute value; 
the closer it is towards 0 the faster the 
convergence. In Table I, the spectral radius of 𝐺  
is seen to be smaller than that of the 
unpreconditioned Gauss-Seidel 𝐺. It is shown to 

be smaller that those of 𝐺 , 𝐺 , 𝐺 , 𝐺  &  and 
even that of 𝐺 . Although the spectral radius of 
𝐺  outperforms those of  𝐺 and 𝐺 , it lags behind 
those of 𝐺 , 𝐺 , 𝐺  and 𝐺  & . Similar trend 
is witnessed in Table II, with 𝐺  in the lead, 
followed by 𝐺 , 𝐺 , 𝐺 , 𝐺  & , 𝐺  and 𝐺, in 
that order. 
4.0 Conclusion  
Two preconditioned schemes of the Gauss-Seidel 
iterative method for solving linear systems are 
introduced, analysed and their convergence 
established. Numerical experiments reaffirmed 
their superiority over the unpreconditioned 
Gauss-Seidel method. More so, the performance 
of these methods, when compared to some other 
preconditioned methods in literature, showed 
significant improvement in the rate of 
convergence of the new methods over the existing 
ones.         
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