Protonation in Heteronuclear Diatomic Molecules: Same Molecule, Different Proton Affinities

Emmanuel E. Etim^{*} Oko Emmanuel, Godwin and Sulaiman Adeoye Olagboye Received 22 March 2020/Accepted 28 December 2020/Published online: 30 December 2020

Abstract. Every heteronuclear diatomic molecular species has two possible sites for protonation giving rise to two possible proton affinity values for a single molecule but experimentally only one proton affinity value is measured for each molecular species with no information regarding where the proton is attached in the molecule. This present work aimed at calculating the proton affinity (PA) of heteronuclear diatomic molecules, specifying which site favors protonation and observing common and rare trends in proton Affinity. In this work, quantum chemical calculations were employed to calculate PA of nitrogen (I)oxide, oxygen monofluoride, carbon(ii)oxie, phosphorus monoxide, silicon(II)oxide, silicon monosulfide, phosphorus mononitride. carbon monosulphide, and phosphorus monosulfide. The indicated that in the heteronuclear diatomic molecules, the best site of protonation corresponds to the most stable protonated analogue, the experimentally assigned value also corresponds to the most stable protonated analogue. These results also aid in indicating the possible factors which could influence the best site of protonation such as bonding nature, stability of protonated analogue, electron the density/electronegativity and Periodic trend.

Key Words: *Protonation; Heteronuclear; Diatomic; Proton affinity PA; Computational methods.*

*Emmanuel E. Etim

Department of Chemical Sciences, Federal University Wukari, PMB 1020, Wukari, Taraba State, Nigeria Email:<u>emmaetim@gmail.com</u> **Orcid id:** 0000-0001-8304-9771

Oko Emmanuel, Godwin

Department of Chemical Sciences, Federal University Wukari, PMB 1020, Wukari, Taraba State, Nigeria **Email: godwinoko467@gmail.com Orcid id: 0000-0002-0402-1509**

Sulaiman Adeoye Olagboye Department of Chemistry, Ekiti State University, Ado -Ekiti, Nigeria

Communication in Physical Sciences 2020, 6(2): 835-844 Available at <u>https://journalcps.com/index.php/volumes</u>

Email: <u>olagboyesa2009@yahoo.com</u> Orcid id: 0000-0003-4028-2631

I.0 Introduction

A diatomic molecule is a molecule composed of two atoms only, For example, H₂, PO, O₂, CO, NO, N₂, Cl₂, OF, SiO etc Diatomic molecules are either homonuclear i.e they are composed of similar element e.g. H₂, O₂, Cl₂, N₂ or heteronuclear i.e. they are composed of different elements e.g HCl, PO,NO,OF, SiO, H₂O, CO (Emsley, 1989). Homonuclear diatomic molecules typically share equal electrons between the two similar atoms as such have equal electronegativity and are mostly covalently boded where as heteronuclear diatomic molecules even though shares electrons between the two different atoms based on their different quest for stability differ in electronegativity and are mainly covalent with a polar nature which give rise to a dipole (Whitten et al., 2010), (Riccardo, 1971), (Taoyi and Thomas 2019), (Casstro et al., 1991),(Pauling 1939) and hence, exhibition of infrared absorption band.

Heteronuclear diatomic molecules especially the once containing transition metals have been found to be present in a low-lying electronic state in astronomical bodies. (Tennyson and Yurchenko, presence of these molecules in 2012), the astronomical bodies account for important application of the diatomic molecules in astronomical explorations (Etim et al., 2020a). Some applications of these species have been reported in the measurement of magnetic fields in cool stars and brown dwarfs (Johns-Krull et al., 1999), in fusion plasmas by (Brezinssek et al., 2014; Duxburry, 1998), in laser induced plasmas and discharges, (Chan et al., 2013; Vallon et al., 2009), in monitoring products of chemical deposition in vapour (Nozaki et al., 2000) and atmospheric studies reported by Johnson (1965), (Gole and Kolb, 1981), (Knecht et al., 1996). The energy structure of diatomic molecule is also a phenomenon of interest, Coker (2015) and also applied in the study of molecular vibrations, (Vvedensky, 2017) can best be understood via diatomic molecules as starting points.

In protonating a molecule, a proton is added to such a molecule which brings about a change in mass and charge accompanied by a corresponding released of energy called proton affinity (Zumdahl, 1986), (Adam et al., 2010), (Longuet-Higgins, 1956). Certain problems or challenges have been observed in diatomic molecules and from these observations, some diatomic molecules especially heteronuclear diatomic molecules exhibit different proton affinities for the same molecule, the protonation in these group of molecules are also observed to follow a unique trend worthy of redefining proton affinity and also, the molecules show some particular sites in which when protonation occurs appears best with more accurate proton affinity value. These aforementioned problems incited the present research and thus this contribution aims in resolving these problems via the scope of quantum chemical calculations of proton affinity.

2.0 Materials and Methods

Gaussian 09 computational chemistry programs suit was used in calculating the proton affinity (PA), The PA was calculated as the difference in energy (Electronic Energy) between a neutral specie and its protonated analogue (Frisch et al., 2009). Six (6) Abinitio computational methods were employed for the calculation including Gaussian 04 (G4) compound method, Hartree-Fock (HF) method, Becke, threeparameter, Lee-Yang-Parr (B3LYP) method, Coupled Cluster Single Double CCSD/6-311++G**, Moller-Plesset perturbation theory (MP2) at 6-311++G** and cc-pVDZ basis set. and Moller-Plesset perturbation theory (MP2) at cc-pVDZ basis set were used in carrying out the calculations

These methods were chosen based on the higher degree of accuracy observed in related studies by

Mathad	Proton attached to	N atom	Proton attached to O atom		
Methou	PA (kcal/mol)	Error	PA (kcal/mol)	Error	
HF/6-311++G**	101.18	25.92	92.27	34.83	
B3LYP/6-311++G**	104.77	22.33	88.59	38.50	
MP2/6-311++G**	111.02	16.08	87.52	39.57	
MP2/cc-pVDZ	113.59	13.51	89.86	37.24	
CCSD/6-311++G**	109.20	17.90	91.19	35.90	
G4	109.26	17.84	92.66	34.44	
Expt	127.10	NA	127.10	NA	

Table 1(a): Proton Affinity values for NO

(Etim *et al.*, 2020a), (Etim *et al.*, 2018), (Etim *et al.*, 2020b), (Etim *et al.*, 2016), (Etim *et al.*, 2017), (Etim *et al.*, 2020c) in which these methods were applied and accurate results were obtained. Also, the use of these methods is essential in monitoring how consistent or coherent the results are.

3.0 Results and Discussion

The results obtained for the protonation study are presented and discussed below in separate headings.

3.1 Nitrogen (I) oxide

Values of PA calculated from calculations different levels of theory are presented in Tables 1a and 1b respectively. The results indicate that the proton energy associated to N atom is closer to the experimentally obtained value of 127.10 kcal/mol as recorded by the NIST chemical web book than on 'O' atom. Also, just as Stability can be deduced from energy values because every system prefer the minimum energy to be stable, this site is the most stable site as seen in table 1(b) containing the Sum of electronic and zero-point Energies, the Optimized geometries of NO and its protonated species are shown in Figs. 1a to 1c in NO, the most stable protonated analogue is protonation along the N site which shows more stability, the stability via this site can be attributed to the bonding nature in the neutral species; oxygen is divalent and it is doubly bonded to nitrogen, thus the oxygen atom has attained stability but the nitrogen atom is trivalent and it is doubly bonded to the divalent oxygen atom. Thus, the nitrogen atom is less stable than the oxygen atom which makes the nitrogen atom more susceptible to protonation. Nature of bonding and Stability of the protonated analogue therefore affects the best site of protonation

Fig. 1(*a*):Optimized geometry of NO

Fig. 1(*b*):Geometry for protonation at N

Fig. 1(c): Geometry for protonation at O Table 1(b): Sum of electronic and zero-point Energies for ONH⁺ and NOH⁺ molecular species

Mathad	Energy (Hartree/Particle)*				
Methou	ONH ⁺	NOH ⁺			
HF/6-311++G**	-129.442285	-129.428086			
B3LYP/6-	-130.094100	-130 068323			
311++G**	-130.074100	-130.000323			
MP2/6-	-129 773096	-129 756520			
311++G**	129.115090	129.750520			
MP2/cc-pVDZ	-129.728508	-129.712293			
CCSD/6-	-129 797968	-129 769855			
311++G**	129.191900	129.709055			
G4	-130.066689	-130.040228			
Table 2(a). Proton	Affinity value	s for OF			

Table 2(a): Proton Affinity values for OF

3.2 **O**F

The results obtained for PA of OF from different functionals are presented in Tables 2a and 2b. From the results, it is evident that the proton affinity of OF to oxygen atom ranged from 58.35 to 62.21 kCal/mol while its affinity to the fluorine atom ranged from 65.66 to 79.18 kcal/mol indicating that for all the functionals, PA for fluorine atom are higher because fluorine is more electronegative than oxygen. These values are however, lower than the experimental values of 121.6 with reference to both oxygen and fluorine.

The large difference between our calculated PA value and the experimental value is a subject of further research to validate the accuracy of the experimental result.

Mathad	Proton attached to	O atom	Proton attached to F atom		
Methou	PA (kcal/mol) Error		PA (kcal/mol)	Error	
HF/6-311++G**	58.35	63.26	79.18	42.42	
B3LYP/6-311++G**	60.41	61.19	65.66	55.94	
MP2/6-311++G**	55.95	65.65	66.18	55.42	
MP2/cc-pVDZ CCSD//6-311++G**	58.14	63.46	69.07	52.53	
	62.21	52.21 59.39		50.95	
G4	68.30	53.30	70.92	50.68	
Expt	121.6	NA	121.6	NA	

The least error observed for the PA value of OF in all the methods here is 42.42 kcal/mol. This value is higher than the least error observed in all of the diatomic species considered in this study. The optimized geometries of OF are presented in Figs. 2a to 2c.

Fig. 2(a) : Optimized geometry for OF

Fig. 2(*b*): Geometry for protonation at O

Fig. 2(*c*) :Geometry for protonation at F

Table 2b: Sum of electronic and zero-point Energies for FOH⁺ and OFH⁺ molecular species

Mathad	Energy (Hartree/Particle)*					
Method	FOH ⁺	OFH ⁺				
HF/6-311++G**	-174.266729	-174.299954				
B3LYP/6-	175 025527	175 033803				
311++G**	-175.025527	-175.055875				
MP2/6-	-174 631056	-174 647355				
311++G**	-174.031030	-174.047333				
MP2/cc-pVDZ	-174.561468	-174.578912				
CCSD/6-	-174 586006	-174 600360				
311++G**	-174.300700	-174.000500				
G4	-174.986688	-174.990859				

* Sum of electronic and zero-point Energies

Table 3(a): Proton Affinity values for CO

3.3 Carbon (II) oxide CO

The protonation in CO follows the most stable protonated analogue i.e the best site of protonation at 'C' which is the site whose PA value is closer to the experimental value, it is also the most stable site. It also follows the bonding nature i.e the factor which influences the stability at that site. The divalency of oxygen is obeyed in the molecule as it is doubly bonded to the carbon atom but the tetravalency of carbon is not obeyed as it is only doubly bonded. Therefore, it is more prone to proton attachment than the oxygen atom which is stabilized by the double bond. Consequently, the proton affinity of the proton attached to carbon is closer to experimental value that that the one attached to oxygen (Table 3a). Deviation between experimental and theoretical values gave error values ranging from -0.93034 to 5.79656 for proton attached to carbon but 34.03449 to 44.36517 for the one attached to oxygen atom (Table 3a). Site is the most stable as seen from the energy values in table 3(b). The geometries are depicted in Figs. 3a to 3c.

Mathad	Proton attached to O atom		Proton attached	to C atom
Methou	PA (kcal/mol)	Error	PA (kcal/mol)	Error
HF/6-311++G**	106.1652	35.83481	136.2034	5.79656
B3LYP/6-311++G**	101.9784	40.02155	140.1423	1.857683
MP2/6-311++G**	97.63483	44.36517	144.6089	-2.60893
MP2/cc-pVDZ	98.9984	43.0016	144.6842	-2.68423
CCSD//6-311++G**	104.9516	37.04841	142.6536	-0.65361
G4	107.9655	34.03449	142.9303	-0.93034
Expt	142.0	NA	142.0	NA

Fig. 3(a):Optimized geometry for CO

Fig. 3(b): Geometry for protonation at O

Fig.3(c): Geometry for protonation at C

Table 3(b): Sum of electronic and zero-point Energies for COH⁺ and OCH⁺ molecular species

	Energy (Hartree/Particle)*			
	COH ⁺	OCH ⁺		
HF/6-	-112 93/653	-112 982522		
311++G**	-112.754055	-112.962322		
B3LYP/6-	-113 506525	-113 5673/3		
311++G**	-115.500525	-115.507545		
MP2/6-	-113 228923	-113 303779		
311++G**	-115.220725	-115.505777		
MP2/cc-pVDZ	-113.189757	-113.262560		
CCSD/6-	112 242262	112 202174		
311++G**	-115.245202	-115.505174		
G4	-113.486397	-113.542117		

* Sum of electronic and zero-point Energies

3.4. Phosphorus monoxide PO

As seen in from the calculations presented in tables 4(a) and 4(b), PO follows the most stable protonated analogue which is the species where the proton is attached to the oxygen atom.

Cable 4(a): Proton Affinity values for PO						
Mathad	Proton attached	to O atom	Proton attached	Proton attached to P atom		
Method	PA (kcal/mol)	Error	PA (kcal/mol)	Error		
HF/6-311++G**	177.7025	14.70252	145.377	-17.623		
B3LYP/6-311++G**	167.3794	4.379366	140.8771	-22.1229		
MP2/6-311++G**	169.4282	6.428184	140.3983	-22.6017		
MP2/cc-pVDZ	168.3564	5.356398	138.5873	-24.4127		

CCSD//6-311++G**	175.441	12.44098	147.1867	-15.8133
G4	170.793	7.793017	145.7202	-17.2798
Expt	163.0	NA	163.0	NA

It does not follow the bonding pattern as observed in a similar diatomic species (both N and P are in the same group).it is obvious that electron density/electronegativity of oxygen plays a major role in determining the best site of protonation. Their geometries are as contained in Figs. 4a to 4c respectively.

Fig. 4(*a*) : Optimized geometry for OP

Fig. 4(*b*) : Geometry for protonation at O

Fig. 4(c): Geometry for protonation at P

Table 3(a): Proton Affinity values for SiO

Table 4(b): Sum of electronic and zero-pointEnergies for POH⁺ and OPH⁺ molecular species

Mathad	Energy (Hartree/Particle)*				
Method	\mathbf{POH}^+	OPH ⁺			
HF/6-311++G**	-415.873190	-415.821676			
B3LYP/6-	416 840071	416 806837			
311++G**	-410.049071	-410.800857			
MP2/6-	-416 155888	-416 109626			
311++G**	-410.155000	-410.107020			
MP2/cc-pVDZ	-416.117194	-416.069754			
CCSD/6-	116 135801	416 000868			
311++G**	-410.155674	-410.090000			
G4	-416.815808	-416.775852			

* Sum of electronic and zero-point Energies

3.5. Silicon (II) oxide

SiO follows the most stable protonated analogue where the proton is attached to the oxygen atom but does not follow the bonding nature as in the case of CO. Both silicon and carbon are in the same group in the periodic table, but exhibit slightly different protonation capacity. Contribution of electron density/electronegativity seems to outweigh bonding nature and play a part in this case too. Tables 5(a)and 5(b) contain the results obtained from the quantum chemical calculations and also from calculations of electronic and zero-point. The geometries are shown in Figs. 5a to 5c

Mathad	Proton attached to	Si atom	Proton attached to O atom		
Method	PA (kcal/mol)	Error	PA (kcal/mol)	Error	
HF/6-311++G**	124.3178	-61.5822	203.0809	17.1809	
B3LYP/6-311++G**	125.9593	-59.9407	192.2168	6.3168	
MP2/6-311++G**	130.2082	-55.6918	188.3501	2.4501	
MP2/cc-pVDZ	132.7534	-53.1466	187.8895	1.9895	
CCSD//6-311++G**	130.4304	-55.4696	195.7792	9.8792	
G4	129.9139	-55.9861	193.9287	8.0287	
Expt	185.9	NA	185.9	NA	

Fig. 5(*a*): Optimized geometry for SiO

Fig. 5(*b*): Geometry for protonation at O

Fig. 5(c): Geometry for protonation at Si

Mathad	Energy (Hartree/Particle)*					
Method	SiOH ⁺	OSiH ⁺				
HF/6-	-36/ 1/19/0	-364 016423				
311++G**	-304.141940	-304.010423				
B3LYP/6-	365 075002	364 969504				
311++G**	-303.073092	-304.909304				
MP2/6-	364 407465	36/ 313818				
311++G**	-304.407403	-304.313010				
MP2/cc-pVDZ	-364.362311	-364.274446				
CCSD/6-	-364.3789	261 272780				
311++G**	97	-304.273789				
G4	-365.038645	-364.936631				
* C	· · · · · · · · · · · · · · · · · · ·	E				

Table	5b:	Sum	of	elee	ctroni	c a	nd z	zero)-po	int
Energi	es foi	r SiO	H ⁺ a	nd (OSiH ⁺	mo	lecul	ar	spec	ies
			_		(-			

* Sum of electronic and zero-point Energies

Table 6(a): Proton Affinity values for SiS

3.6 Silicon monosulfide

In SiS, protonation follows the same patterns as CO in the sense that the experimentally measured PA (in Table 6(a)) value is closer to the protonated analogue in which the proton is attached to silicon atom as in the case of CO where the proton is attached to C atom. However, the protonated analogue in which proton is attached to silicon atom is not the most stable protonated species (as depicted in table 6b) unlike the previous cases above.

Remember that Stability can be deduced from energy values because every system prefers the minimum energy to be stable, sites with lesser energy are more stable. Thus, this species only follows the bonding nature as observed for other diatomic species in this study.

	Proton attached to Si atom		Proton attached to S atom	
Method	PA (kcal/mol)	Error	PA (kcal/mol)	Error
HF/6-311++G**	150.2597	0.359652	169.5298	19.62984
B3LYP/6-311++G**	151.3722	1.472227	166.3314	16.43142
MP2/6-311++G**	156.5969	6.696871	166.3835	16.48351
MP2/cc-pVDZ	153.1349	3.234901	164.5273	14.62734
CCSD//6-311++G**	153.7379	3.837937	170.2822	20.38222
G4	154.0605	4.160477	168.9036	19.00359
Expt	149.9	NA	149.9	NA

The optimized geometries of the molecules and its protonated analogues are shown in Figs. 6a to 6c respectively.

Fig. 6(a): Optimized geometry for SSi

Fig. 6(*b*): Geometry for protonation at S

Fig. 6(c):Geometry for protonation at Si

Table 6(b): Sum of electronic and zero-point Energies for SSiH⁺ and SiSH⁺ molecular species

Mathad	Energy (Hartree/Particle)*		
Method	SSiH ⁺	SiSH ⁺	
HF/6-	-686 721131	-686 751840	
311++G**	-000.721151	-000.7510+0	
B3LYP/6-	687 084730	688 008578	
311++G**	-00/.904/39	-000.000378	
MP2/6-	696 022511	696 049140	
311++G**	-080.952544	-060.946140	
MP2/cc-pVDZ	-686.927217	-686.945372	
CCSD/6-	696 040912	686 076177	
311++G**	-060.949612	-080.970177	
G4	-687.946705	-687.970359	
- C 1		- ·	

* Sum of electronic and zero-point Energies

3.7 Phosphorus mononitride

The experimentally measured PA value for *Phosphorus mononitride* PN are closer to the protonated analogue in which the proton is attached to the N atom. This is found to be the most stable protonated species. Electron density is higher in N atom than in P atom. This may be responsible for the observed trend. These observations are presented in table 7(a)-7(b) and their optimized geometries in Figs. 7a to 7c.

Mathad	Proton attached to N atom		Proton attached	Proton attached to P atom	
Method	PA (kcal/mol)	Error	PA (kcal/mol)	Error	
HF/6-311++G**	196.6288	17.42884	90.21766	-88.9823	
B3LYP/6-311++G**	190.2722	11.07217	100.4743	-78.7257	
MP2/6-311++G**	186.2825	7.082461	107.365	-71.835	
MP2/cc-Pvdz	184.2776	5.077568	109.5381	-69.6619	
CCSD//6-311++G**	191.4061	12.20608	106.9126	-72.2874	
G4	192.9943	13.7943	103.7562	-75.4438	
Expt	188.7	NA	188.7	NA	

Table 7(*a*): Proton Affinity values for PN

Fig. 7(*a*): Optimized geometry for NP

Fig. 7(*b*): Geometry for protonation at N

Fig. 7(c) :Geometry for protonation at P

Table 7(b): Sum of electronic and zero-pointEnergies for NPH⁺ and PNH⁺ molecular species

Mathad	Energy (Hartree/Particle)*			
Methou	\mathbf{NPH}^+	PNH ⁺		
HF/6-	305 301/60	305 471046		
311++G**	-393.301409	-393.471040		
B3LYP/6-	306 262888	306 101115		
311++G**	-390.202888	-390.404443		
MP2/6-	205 622181	305 756471		
311++G**	-393.032101	-393.730471		
MP2/cc-pVDZ	-395.609075	-395.728180		
CCSD/6-	305 603770	305 738/10		
311++G**	-393.003770	-393.730419		
G4	-396.231365	-396.373567		
* Sum of alactronic and zero point anargies				

* Sum of electronic and zero-point energies

3. 8. Carbon monosulphide CS

CS follows the same trend as CO, the similarity in the trend is due to the fact that both Oxygen and sulfur all belongs to the same group in the periodic table and display some periodic similarity, and as such, some similarities are expected to exist among them because of the effect of periodic trend. The experimentally measured PA value is shown in Table 8(a) to be closer to the protonated species in which the proton is attached to the carbon atom as observed in the case of CO. This protonated analogue is also shown in table 8(b) to be the most stable protonated species. Electron density? Bonding nature? Sulphur is divalent while Carbon is tetravalent, the double bond between C and S, stabilizes the S-atom while C-atom is still left with two unbounded sites thus making it more susceptible for the attachment of a proton (C atom is less stable as compared to the S atom with respect to this CS molecular species). Having shown that proton attached to C atom is more stable from table 8b, this means bonding nature is eminent in this case. Their optimized geometries are contained in Figs. 8a to 8c

Fig. 8(*a*): Optimized geometry for CS

Table 8(a): Proton Affinity values for CS					
Mathad	Proton attached to C atom		Proton attached	Proton attached to S atom	
Method	PA (kcal/mol)	Error	PA (kcal/mol)	Error	
HF/6-311++G**	184.6221	-2.2138	119.2839	-69.9161	
B3LYP/6-311++G**	186.8359	-2.3641	115.3532	-73.8468	
MP2/6-311++G**	193.5992	4.3992	113.7323	-75.4677	
MP2/cc-pVDZ	191.0948	1.8948	112.771	-76.429	
CCSD/6-311++G**	192.1767	2.9767	121.0729	-68.1271	
G4	190.409	1.209	119.191	-70.009	
Expt	189.2	NA	189.2	NA	

Fig. 8(c): Geometry for protonation at S

Table 9(a): Proton Affinity values for PS

_

Table 8(*b*): Sum of electronic and zero-point Energies for SCH⁺ and CSH⁺ molecular species

Mothod	Energy (Hartree/Particle)*			
Method	SCH^+	CSH ⁺		
HF/6-311++G**	-435.629292	-435.525169		
B3LYP/6- 311++G**	-436.544153	-436.430238		
MP2/6- 311++G**	-435.895265	-435.767989		
MP2/cc-pVDZ	-435.875196	-435.750379		
CCSD/6- 311++G**	-435.909119	-435.795808		
G4	-436.517343	-436.403850		

* Sum of electronic and zero-point Energies

3.9. Phosphorus monosulfide

It is evident from the results presented in Table 9a that the protonated analogue for the proton attached to sulphur displayed least error than that of the one attached to phosphorus for all the functionals employed for the calculations (Table 9a).

Mathad	Proton attached to P atom		Proton attached	Proton attached to S atom	
Methou	PA (kcal/mol)	Error	PA (kcal/mol)	Error	
HF/6-311++G**	165.1875	-1.6125	169.1941	2.3941	
B3LYP/6-311++G**	163.2911	-3.5089	165.9122	-0.8878	
MP2/6-311++G**	161.0309	-5.7691	166.9652	0.1652	
MP2/cc-pVDZ	157.1968	-9.6032	163.6319	-3.1681	
CCSD/6-311++G**	167.6191	-0.8191	171.6326	4.8326	
G4	165.4498	-1.3502	168.1782	1.3782	
Expt	166.8	NA	166.8	NA	

This protonated analogue is also found to be more stable. (Table 9b) as compared to the species were the proton is attached to the phosphorus atom. their optimized geometries are presented in figure 9(a) to 9(c)

Fig. 9(b): Geometry for protonation at P

Fig. 9(c): Geometry for protonation at S Table 9(b): Sum of electronic and zero-point Energies for SPH⁺ and CSH⁺ molecular species

Mathad	Energy (Hartree/Particle)*		
Method	\mathbf{SPH}^+	CSH ⁺	
HF/6-311++G**	-738.525136	-738.531521	
B3LYP/6- 311++G**	-739.827040	-739.831217	
MP2/6- 311++G**	-738.731176	-738.740633	
MP2/cc-pVDZ	-738.729274	-738.739529	
CCSD/6- 311++G**	-738.770984	-738.777380	
G4	-739.789565	-739.793913	

* Sum of electronic and zero-point Energies

4.0 Conclusion

Protonation in several heteronuclear diatomic molecular species have been investigated in this study using different basis sets and functionals. The molecules include Nitrogen (I) oxide NO, oxygen monofluoride *OF*, Carbon(ii)oxide *CO*, Phosphorus monoxide PO, Silicon(ii)oxide SiO, Silicon monosulfide SiS, Phosphorus mononitride PN. Carbon monosulphide CS. and Phosphorus monosulfide PS. The results obtained from the calculations were compared to experimental values and it was found out that the calculated proton Affinities of all the diatomic heteronuclear molecules were closer to the experimental values except for NO and OF whose calculated PA seems far apart from the experimental value. For some, protonation follows the most stable protonated analogue (CO, OF, PO, NO, PN, CS, PS, SiO) while in SiS, protonation does not follow the most stable protonated analogue. From the forgoing discussions, bonding nature, stability of the protonated analogue, electron density/electronegativity and periodic trend have been identified as factors that could influence the best site proton attachment in heteronuclear diatomic molecules.

5.0 References

- Emsley, J. (1989). The Elements. Oxford: Clarendon Press, UK. pp. 22–23.
- Whitten, K. W.; Davis, R. E.; Peck, M. L; Stanley, G. G. (2010). *Chemistry* (9th ed.). Brooks/Cole, Cengage Learning. pp. 337–338.
- Riccardo, F., (1971) Bonding properties of diatomic molecular orbitals. *Journal of Physical Chemistry*, 75, 19, pp. 3012-3014. DOI: 10.1021/J100688a024
- Taoyi, C., & Thomas, A. M. (2019). Bond orders of the diatomic molecules. *RSC Advances*, 9, pp. 17072-17092.
- Castro, M., Keller, J., & Mareca, P., (1991). Bonding in heteronuclear transition metal diatomics: Nblr. *International Journal of Quantum Chemistry*, 39, 5, pp 649-754.
- Pauling, L. (1939). *Nature of the chemical bond*. Cornell University press, Ithaca, 1939, p.70
- Tennnyson J. &Yurchenko S. N. (2012). ExoMol:molecular Line Lists for exoplanet and otheratmospheres. Mon. Not. R. Astron. Soc. 425, 1, pp. 21-33.
- Etim E. E., Chrisanthus A., Usman L., Ifeoma Sandra U. & Etiowo George Ukpong, (2020a) Protonation of carbonyl sulphide: Ab-initio. *Journal of Applied Sciences*, 20, pp. 26-34
- Johns-Krull C. M., Valenti J. A. & Koresko C., (1999), Measuring the Magnetic Fieldon the

Classical T Tauri Star BP *Tauri Astrophysics Journal*, 516, pp. 900-915.

- Brezinsek, S., Stamp, M. F., Nishijima, D., Borodin, D., Devaux, S., Krieger, K., Marsen, S., O'Mullane, M., Bjoerkas, C/. & Kirschner A. (2014). Study of physical and chemical assisted physical sputtering of beryllium in the JET ITER-like wall. Proceeding of IAEA Technical Meeting on energetic particles in magnetic confinement systems, Peking, China.
- Vallon R.; Ashworth S.H.; Crozet P.; Field R.W.; Forthomme D.; Harker H.; Richard C.; & Ross A.J.;(2009). Room-temperature metal-hydride discharge source, with observations on NiH and FeH. *Journal of Physical Chemistry*, A 113, pp.13159-13166.
- Chan M. C., Yeung S. H., Wang N. & Cheung A. S. C. (2013). Laser absorption spectroscopy of the $d^{3}\Pi_{g} \leftarrow c^{3}\Sigma_{u}^{+}$ transition of C₂. *Journal of Physical Chemistry*, A 117, pp. 9578-9583.
- Nozaki, Y., Kongo K., Miyazaki, T., Kitazoe M., Horii, K., Umemoto, H., Masuda, A. & Matsumura, H. (2000). Identification of Si and SiH in catalytic chemical vapor deposition of SiH4SiH4 by laser induced fluorescence spectroscopy. *Journal of Applied Physics*, 88, pp. 5437-5443.
- Johnson E.R.;(1965). Twilight resonance radiation of AlO in the upper atmosphere. *Journal of Geophysical Research*, 70, pp. 1275-1277.
- Gole J. L. & Kolb C. E. (1981). On the upper atmospheric chemiluminescent emission observed upon release of aluminum vapor and its compounds. *Journal of Geophysical Research: Space Physics*, 86, pp.9125-9136.
- Knecht D.J.; Pike C.P.; Murad E.; Rall D.L.A.; (1996). Interaction of solid-rocket exhaust with the atmosphere. *Journal of Spacecraft and Rockets*, 33, pp. 677-685.
- Coker, J. (2015) *Applications of diatomic molecules*; Ph.D Dissertation, University of Oklahoma Graduate College.
- Vvedensky D. D. (2017) Encyclopedia of spectroscopy and spectrometry (Third Edition), Elsevier, 978-0-12-803224-4. https://doi.org/10. 1016/B978-04442227-6/50005-3
- Zumdahl, S. S. (1986) *Chemistry*. Lexington, MA: Heath. ISBN 0-669-04529-2.
- Adam M., Kevin R., Darrin M. Y (2010). Accurate proton affinity and gas-phased basicity values for molecules important in biocatalysis. *Journal of Physical Chemistry* B.114, 43, pp. 13911-13921

- Longuet-Higgins H.C.,(1956) Proton affinities, recueil des Travaux Chimiques des Pays-B, Volume 75, issue 7.https://doi.org/10.1002/ recl.19560750718
- Frisch, M.J.; Toucks, G.W.; Schlegel, H.B.; Scuseria G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Baron, V.; Mennucci, B.; Peterson, G.A., (2009) *Gaussian 09 revision* D.01; Gaussian, Inc., Wallingford, CT.
- Etim, E. E., Oko, G. E., Onen, A. I., Ushie O. A., Andrew, C., Lawal, U. & Khanal, G. P. (2018).
 Computational Studies of Sulphur trioxide (SO₃) and its protonated analogues. *Journal of Chemical Society of Nigeria*, 43, 2, pp 10-17
- Etim, E. E., Chrysanthus, A., Lawal, U., Ifeoma, S.
 U. & Etiowo, G. U. (2020b). Protonation of Carbonyl Sulfide: Ab-initio study. *Journal of Applied Sciences*, 20, pp. 26-34

- Etim, E. E. & Arunan, E.,(2016). Interstellar isomeric species, energy, stability and abundance relationship. *European Physics Journal.Plus*, pp. 131, 12, <u>https://doi.org/10.1140/epje/i2016-1644</u> <u>-8-0</u>
- Etim, E. E., Abah, B. S., Mbakara, I. E., Inyang, E. J. & Ukafia, O. P. (2017) Quantum Chemical Calculations on Silicon Monoxide (SiO) and its Protonated Analogues. *Tropical Journal of Applied Natural Sciences*, 2, pp. 61-68.
- Etim, E. E., Sulaiman, A. O., Oko, E. G. & Irene M. A., (2020c) Quantum Chemical studies on Silicon tetrafluoride and its protonated analogues. *International Journal of Modern Chemistry*, 12, 1, pp 26-45.

Conflict of Interest

The authors declared no conflict of interest.

