
 

 

Communication in Physical Sciences, 2024, 11(2): 233-247 

Modelling Nonseasonal Daily Clearness Index for Solar Energy 

Estimation in Ilorin, Nigeria Using Support Vector Regression 
 
 

 

Nsikan Ime Obot*, Okwisilieze Uwadoka, and Oluwasegun Israel Ayayi  

Received: 23 August 2023/Accepted: 17 April 2024 /Published: 24 April 2024 
 

Abstract: Solar radiation is the primary energy 

source for the planet and is crucial for energy 

generation in technologies such as 

photovoltaic systems and solar thermal food 

dryers. However, accurately quantifying solar 

radiation poses challenges due to its variability 

and the lack of appropriate instrumentation, 

among other factors. To address this, support 

vector regression (SVR), a machine learning 

(ML) algorithm, was employed using various 

kernel functions such as linear, radial basis 

function (RBF), and sigmoid, with 

hyperparameter tuning. This approach aimed 

to estimate the daily clearness index (𝐾𝑇), 

which is a key metric for estimating global 

solar radiation at Ilorin (8° 32′ N, 4° 34′ E), 

Nigeria. The SVR models were developed and 

assessed by considering statistical measures 

such as the correlation coefficient and mean 

absolute error. The input parameters used in 

the model included sunshine hours, maximum 

temperature, minimum temperature, and the 

ratio of both temperatures. The correlations 

between 𝐾𝑇 and its estimators, and between its 

actual and calculated values were all below 

70%. SVR-RBF outperformed the others, 

including the traditional regression model, 

under the statistical assessment measures, both 

with the training dataset and the testing 

dataset. Although the regression model 

obtained under the same conditions surpassed 

the other kernel functions in some areas and is 

highly competitive, SVR-RBF is recommended 

for the estimation of the daily clearness index 

in this vicinity. 
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1.0 Introduction 
 

Solar radiation is indispensable for powering 

various solar electronic devices like 

photovoltaic (PV) cells and solar thermal 

technologies, besides facilitating plant 

photosynthesis and producing body heat in 

living organisms. Being the primary energy 

source for Earth, solar radiation energises 

systems such as air circulation and water 

movements, playing a crucial role in the Earth's 

climate dynamics. Accurate measurement of 

solar radiation is essential for effectively 

harnessing solar energy, as devices rely on the 

power they receive, with PV cells operating 

based on incident photon energy. Direct 

measurement methods using instruments like 

pyranometers and solarimeters have limitations 

such as space coverage, location specificity, 

accessibility, operational expertise required, 

and relative cost. Additionally, while 

measuring instruments are relatively scarce, 

another recognisable data acquisition 
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technique, the satellite-derived method 

combines nearby locations into square boxes, 

leading to data inaccuracies where affected 

locations may have identical values, though 

this may not reflect the actual conditions. 

Besides the pyranometers, ground-based 

weather stations may use specialised 

instruments to directly measure global solar 

radiation (Al‐Waeliet al., 2021; Paulescu et al., 

2013; Udo and Aro, 1999; Grojean et al., 

1980). 

The space between the sun and Earth comprises 

various layers, each containing different types 

of particles and fields. For example, the 

troposphere, closest to Earth, contains gases 

such as nitrogen, oxygen, and water vapour, 

while the ionosphere, primarily in the 

thermosphere but extending slightly into the 

mesosphere and exosphere, contains electron 

jets. Consequently, electromagnetic radiation 

from the sun interacts with numerous 

constituents like neutral and ionised gases, 

particles, and fields before reaching Earth. 

Solar radiation interacts with matter through 

transmission, absorption, emission, and 

scattering processes. Furthermore, solar 

activities, such as variations in sunspot 

numbers, and Earth's revolution around the sun, 

regulate the intensity of solar radiation 

reaching Earth (Singh, 2024; Eltbaakh et al., 

2012). 

In Nigeria, as in other developing countries, 

data on solar radiation are relatively scarce, 

crucial for accurately depicting the climate of a 

given site and for various applications such as 

sizing photovoltaic systems, food processing, 

and water purification (Obot et al., 2022; 

Okoye et al., 2016). Challenges in obtaining 

this data are often attributed to outdated 

instruments and insufficient funding. Ilorin, 

Nigeria, is one of the few sites in the country 

with long-term measurements of global solar 

radiation. For instance, a pyranometer was 

once connected to a data logger at a university 

campus in Ilorin to monitor solar radiation 

(Udo and Aro, 1999; Udo, 2000). 

Unfortunately, this setup is no longer 

operational due to funding constraints. 

As an alternative to direct measurement 

methods, models are used to estimate solar 

radiation data. However, these mathematical 

models must exhibit accuracy when applied to 

different locations, considering their reliance 

on data from specific sites. Using the clearness 

index to predict global solar radiation offers 

advantages because it can directly or indirectly 

incorporate other factors, such as 

extraterrestrial solar radiation and diffuse solar 

radiation. Additionally, it provides insights into 

atmospheric conditions, particularly cloud 

status (Udo, 2000; Babatunde and Aro, 1995; 

Hinrichsen, 1994). 

The concept of the clearness index is elegantly 

expressed through the pioneering work of 

Angstrom (1924) in the form of the equation: 
𝐻

𝐻𝑜
= 𝑎(𝑆𝑟) + 𝑏           (1)                                                                              

where 𝐻 represents total solar irradiation, 𝐻𝑜 is 

the extraterrestrial irradiation at the top of the 

atmosphere, 𝑎 and 𝑏 are empirical constants, 

and 𝑆𝑟 denotes sunshine hours, a ratio of bright 

sunshine hours (𝑠) to total potential below as: 

sunshine hours (𝑆𝑜).  

Thus Equation 1 when rewritten in the form 

known as the Angstrom – Prescott model is 

given as: 
𝐻

𝐻𝑜
= 𝑎 (

𝑠

𝑆𝑜
) + 𝑏        (2)                                                                           

The total potential sunshine hours 𝑆𝑜 is given 

as equation 3 

 𝑆𝑜 = 
2

15
𝑤𝑠                  (3)                                                     

where 𝑤𝑠 is the solar hour angle. 

Furthermore, the solar hour angle, which 

depends on the location’s latitude 𝜙 and the 

solar declination angle 𝛿, is given as: 

𝑤𝑠 = cos
−1(− 𝑡𝑎𝑛𝜙 𝑡𝑎𝑛𝛿)      (4)                                                                            

Depending on the day, the solar declination 

angle can be calculated as: 

𝛿 = 23.45 𝑠𝑖𝑛 [
(284+𝑛)360 

365
]            (5)                                                                         

Here, 𝑛 represents the Julian day number. 

The average daily extraterrestrial radiation at 

the horizontal surface can be evaluated as: 
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𝐻𝑜 = 
24

𝜋
𝐼𝑠𝑐 [1 +

0.033 cos
360𝑛

365
] [sin𝑤𝑠 cos𝜙 cos 𝛿 +

 
𝜋

180
𝑤𝑠 sin𝜙 sin 𝛿]           (6) 

The daily clearness index symbolised as 𝐾𝑇, 

represents the ratio of daily total solar 

irradiation to the daily extraterrestrial 

irradiation (at the horizontal surface). This 

allows for the computation of parameters such 

as cloudiness index and diffuse solar 

irradiation, which are associated with 𝐾𝑇. This 

method offers a practical approach to 

estimating diffuse solar radiation in situations 

where direct measurements are either 

unavailable or restricted (Udo, 2000; 

Babatunde and Aro, 1995; Hinrichsen, 1994). 

In the same vein as Angstrom (1924) and in 

attempts to achieve more accurate results 

considering the bias of solar radiation to 

specific regions, topography, and seasons 

globally, several other regression-based models 

have been proposed by researchers. These 

models seek appropriate empirical constants 

and incorporate other meteorological variables 

such as various forms of air temperatures, 

relative humidity, atmospheric pressure, cloud 

factor, precipitation, evaporation, and wind 

speed, among others. Due to technical know-

how, sensor calibration, and cost-related 

instrument issues, global solar radiation data 

are unavailable at various stations, often 

necessitating the extension of results obtained 

elsewhere to regions with similar climates 

without measurements (Besharat et al., 2013; 

Mohanty et al., 2016; Chukwujindu, 2017; 

Nwokolo and Ogbulezie, 2018). 

Machine learning (ML) schemes, a subset of 

artificial intelligence, often provide superior 

and faster solutions to problems compared to 

traditional statistical or regression methods, 

depending on the specific issue at hand. ML 

utilises methods inspired by nature or their 

replicas, such as neural networks that mimic 

the human nervous system. ML models come 

in diverse forms, including standalone 

algorithms, as well as hybrids that combine 

these approaches with metaheuristics and 

traditional mathematical models. Soft 

computing methods like artificial neural 

networks (ANN), k-nearest neighbour (KNN), 

adaptive neuro-fuzzy inference system 

(ANFIS), support vector regression (SVR), and 

hybrids of intelligent-intelligent and 

intelligent-traditional systems have been 

successfully deployed in estimating global 

solar radiation. Specifically, SVR is 

comparatively flexible, reliable, fast, accurate, 

and easy to use, making it widely applied in 

modelling global solar radiation and other 

related parameters like wind energy (Obot et 

al., 2023; Martins and Giesbrecht, 2021; 

Zendehboudi et al., 2018; Belaid and Mellit, 

2016; Ramli et al., 2015; Fonseca Jr. et al., 

2011). 

Studies using SVR to model global solar 

radiation in Nigeria are relatively rare. For 

instance, Ayodele et al. (2019) combined k-

means with SVR to estimate the radiation in 

Ibadan with data from 2010 – 2015 as the 

training set, while data from 2016 – 2017 

served as the testing set. They found the hybrid 

better than the Anstrom-Prescott, 

autoregressive moving average, and ANN 

models. Moreover, Olatomiwa et al. (2015) 

hybridised the firefly algorithm with the SVR 

system (ff-SVR) and compared it with ANN 

and genetic algorithm (GA) in predicting solar 

radiation for three Nigerian cities, namely 

Maiduguri, Iseyin, and Jos. Likewise, the study 

also established that ff-SVR is superior to ANN 

and GA. 

While both traditional methods and machine 

learning schemes, such as neural networks 

incorporating parameters like sunshine hours, 

temperature, and relative humidity, have been 

used to model global solar radiation in Nigeria, 

specific machine learning models like SVR 

have not yet been applied to this particular 

radiation in Ilorin, Nigeria, to our knowledge. 

This study aims to model the daily clearness 

index using SVR with various kernel functions 

at the selected location in Nigeria. There will 
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be a comparison of results with the traditional 

regression method to determine the extent of 

support vector regression superiority, if any. 
 

2. 0 Methodology 

2.1.  Site and Data 
 

Ilorin (8° 32′ N, 4° 34′ E), Nigeria was chosen 

as the case study due to the availability and 

quality of data. Situated in the North Central 

geopolitical zone of Nigeria, Ilorin experiences 

three seasons, namely the dry season, the 

Harmattan season, and the rainy season. Solar 

radiation data from the University of Ilorin, 

obtained through the Baseline Surface 

Radiation Network in collaboration with 

PANGAEA, were downloaded from 

https://dataportals.pangaea.de/bsrn/. 

Additionally, measurements such as sunshine 

hours, and maximum and minimum 

temperatures were sourced from the Nigerian 

Meteorological Agency (NIMET) in Oshodi, 

Lagos. The NIMET records were collected at 

the city airport, approximately 12 km from the 

university campus. Specific days with 

incomplete data, particularly regarding global 

solar radiation, were excluded from the 

analysis. Further data pruning was done based 

on quality checks spanning the period from 

1992 to 2006. 
 

2.2 Support Vector Regression 
 

Support vector regression (SVR) is one of the 

two types of support vector machines (SVM), 

the other being support vector classification 

(SVC), which is a binary classifier. Both SVR 

and SVC originate from the support vector 

theory of nonlinear statistical learning 

algorithms (Basak et al., 2007; Smola and 

Schölkopf, 2004; Vapnik and Chervonenkis, 

1964). The fundamental principle of SVM is to 

solve classification and regression problems 

through convex optimisation, aiming to 

minimise the separation of data points in a 

hyperplane. This is achieved by using a loss 

function to measure the distance of data cases 

from a reference plane. The core principles of 

SVM apply to both SVC and SVR. However, 

SVR employs a specific loss function with a 

distance measure that focuses on determining 

the sparseness of the support vectors. While 

SVR primarily addresses estimation and 

prediction tasks using a simpler and more 

efficient linear-functions algorithm for 

optimisation during the training stage, SVC 

utilises quadratic-expressions programming in 

the same phase to manage classification and 

identification problems. 

SVM is an intelligent system that employs a 

generalisation mapping approach akin to ANN. 

However, the distinction lies in their 

optimisation objectives during training. While 

ANN seeks to minimise the training error, 

SVM maximises the feature space boundary to 

minimise the outermost bound. Consequently, 

depending on the features, SVM may optimise 

more aggressively than ANN and other ML 

algorithms. Thus, SVM stands out as a potent 

tool in machine learning, adept at optimising 

the separation of data points in a hyperplane, 

rendering it suitable for classification and 

regression tasks with unique optimisation 

strategies. 

Suppose the data combination of targets and 

inputs is represented as (𝑦𝑖,  𝑥𝑖), where 𝑖 =
1,2,3, … ,𝑁,  𝑥𝑖 ∈ {−𝑁,𝑁}, 𝑦 ∈ ℜ

𝐷 .  Here, 𝑦𝑖 
denotes the output values and 𝑥𝑖 the input 

values in the training section. Linear regression 

aims to find the function 𝑓 for the best fit, 

𝑓:ℜ𝑁 → ℜ. The hyperplane for the data 

separation is represented as 𝑓(𝑥) =  𝑤𝑇𝑥 + 𝑏, 

where 𝑤 is the coefficient vector of the D-

dimensional space, 𝑥 is the input vector, and 𝑏 

is the bias at the origin. Generally, the loss 

function of the constructed hyperplane seeks to 

minimise error deviation between the two data 

sets of input and target. Regularising the 

solution involves imposing a penalty on large 

separations from the reference plane by 

minimising the Euclidean norm, ‖𝑤‖ using the 

convex optimisation technique as follows: 

minimise  
1

2
‖𝑤‖2  subject to 
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{
  𝑦𝑖 − ⟨𝑤, 𝑥𝑖⟩ − 𝑏 ≤ 𝜀

 
⟨𝑤, 𝑥𝑖⟩ + 𝑏 − 𝑦𝑖 ≤ 𝜀

                         

     (7) 

𝜀 is the precision level.  

Operationally, no penalty is imposed if the data 

cases are within the tolerance region regarded 

as 𝜀-tube. Errors arising from mismatched 

inputs and targets in the feature space and non-

optimal learning procedures in the optimisation 

are accommodated by the slack variables 𝜉𝑖
  and 

𝜉𝑖
∗ respectively. So, the new problem is 

formulated as:  

minimise 
1

2
‖𝑤‖2 + 𝐶∑(𝜉𝑖

 + 𝜉𝑖
∗) subject to 

{
 
 

 
 
𝑦𝑖 − ⟨𝑤, 𝑥𝑖⟩ − 𝑏  ≤   𝜉𝑖  + 𝜉𝑖

∗

  
⟨𝑤, 𝑥𝑖⟩ + 𝑏 − 𝑦𝑖  ≤  𝜉𝑖 + 𝜉𝑖

∗     
        

𝜉𝑖,  𝜉𝑖
∗                    ≥   0            

             

 (8) 

Here, C is the regularisation parameter. 

The training error in the modelling can be 

characterised using the 𝜀-insensitive loss 

function, which minimises the problem by 

maximising the two separation margins on 

either side of the reference line of the 

dimensional feature space. It takes the form of: 

|𝜉|𝜀 ≔ {
0                         if |𝜉| < 𝜀
|𝜉| − 𝜀             otherwise

         (9)                                                   

For robustness, tiny errors are assumed to have 

no impact, and changes in the input-output 

paired positions do not affect the overall 

outcome. However, the solution to the 

optimisation problem is relatively complicated. 

One technique is using linear regression, where 

convex optimisation is handled via the 

Lagrange function. This function uses dual 

variables, 𝑛𝑖 and 𝑛𝑖
∗ along with its peculiar 

multipliers, 𝛼𝑖
∗ and 𝛼𝑖 represented as: 

𝐿𝑓 ≔ 
1

2
‖𝑤‖2 + 𝐶 ∑(𝜉𝑖

 + 𝜉𝑖
∗) + 𝐿3𝑟𝑑 +

  𝐿4𝑡ℎ + 𝐿5𝑡ℎ                                   (10) 

where  

𝐿3𝑟𝑑 = ∑(𝑛𝑖𝜉𝑖 − 𝑛𝑖
∗𝜉𝑖
∗)                                                                              

𝐿4𝑡ℎ = ∑𝛼𝑖 (
1

2
‖𝑤‖2〈𝑤, 𝑥𝑖〉 + 𝑏 − 𝑦𝑖 − 𝜀 −

 𝜉𝑖
 )                                                      

𝐿5𝑡ℎ = ∑𝛼𝑖
∗ (𝑦𝑖 −

1

2
‖𝑤‖2〈𝑤, 𝑥𝑖〉 − 𝑏 − 𝜀 −

 𝜉𝑖
∗)                                                     

where 𝛼𝑖 , 𝛼𝑖
∗, 𝑛𝑖 , 𝑛𝑖

∗ ≥ 0 for every instance.  

For optimality, the partial derivative of the 

Lagrange function with respect to the primal 

variables 𝑤, 𝑏, 𝜉𝑖
 , and 𝜉𝑖

∗ vanishes as dictated 

by the saddle point condition: 

 
𝜕𝐿𝑓

𝜕𝑤
= 0, 𝑤 =  ∑𝑥𝑖(𝛼𝑖

∗ − 𝛼𝑖)      (11)                                                                         

𝜕𝐿𝑓

𝜕𝜉𝑖
 = 0, 𝑛𝑖  = 𝐶 − 𝛼𝑖            (12)                                                                                    

𝜕𝐿𝑓

𝜕𝜉𝑖
∗ = 0, 𝑛𝑖

∗ = 𝐶 − 𝛼𝑖
∗      (13)                                                                                           

𝜕𝐿𝑓

𝜕𝑛𝑖
= 0, ∑ 𝜉𝑖

 = 0                                                                                                  

    (14) 
𝜕𝐿𝑓

𝜕𝑛𝑖
∗ = 0, ∑ 𝜉𝑖

∗ = 0         (15)                                                                                       

and 
𝜕𝐿𝑓

𝜕𝑏
= 0, ∑(𝛼𝑖

∗ − 𝛼𝑖) = 0               (16)                                                                        

The Karush-Kuhn-Tucker (KKT) conditions 

require that for optimal prime variables 𝑤 

and 𝑏, the product of the Lagrange multipliers 

and the constants equals zero (i.e., 𝛼𝑖𝛼𝑖
∗ = 0). 

This satisfies the constraints, transforming the 

constrained problem to an unconstraint one 

when plucking the expressions for 𝑤, 𝑛𝑖, and 

𝑛𝑖
∗ into the Lagrange function. This leads to a 

different feature space given as 𝑓(𝑥) =
 ∑(𝛼𝑖 − 𝛼𝑖

∗) (𝑥𝑖 . 𝑥) + 𝑏.  

The expansion is resolved as follows: 

maximise −
1

2
 ∑(𝛼𝑖 − 𝛼𝑖

∗) (𝛼𝑗 − 𝛼𝑗
∗)(𝑥𝑖. 𝑥𝑗) −

 𝜀 ∑(𝛼𝑖 + 𝛼𝑖
∗) + ∑𝑦𝑖(𝛼𝑖 − 𝛼𝑖

∗)  
subject to ∑(𝛼𝑖 − 𝛼𝑖

∗) = 0 and 𝛼𝑖𝛼𝑖
∗  ∈ [0 𝐶]                                                           

     (17) 

The relationships between the regularisation 

parameter and the slack variables are 𝜉𝑖 =
 𝛼𝑖/𝐶 and 𝜉𝑖

∗ = 𝛼𝑖
∗/𝐶 

Again, applying the Lagrange and KKT 

processes to the new optimisation problem 

yields a solution in the form of: 

〈𝑤, 𝑥𝑖〉 + 𝑏 − 𝑦𝑖 + 𝜀 + 𝜉𝑖
 = 0  
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𝑦𝑖 − 〈𝑤, 𝑥𝑖〉 − 𝑏 + 𝜀 + 𝜉𝑖
∗ = 0  

𝜉𝑖𝜉𝑖
∗ = 0,, 𝛼𝑖𝛼𝑖

∗ =  0      (18)                                                                                    

At a certain stage, the solutions for 𝑏 yield non-

vanishing coefficients known as the support 

vectors, and the inverse of the square root of 

sum 𝛼𝑖 for the margin.  Furthermore, nonlinear 

mapping to a higher dimensional space in SVR 

can be achieved with a kernel function. Instead 

of explicitly solving the mapping, the trick is to 

introduce the kernel function and pre-process 

the training data in the feature space. A kernel 

function is represented as 𝐾(𝑥𝑖 , 𝑥𝑗), whereas 

the reconsidered hyperplane function becomes; 

𝑓(𝑥) = ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝐾(𝑥𝑖, 𝑥𝑗) + 𝑏

𝑁
𝑖=1 .  Now, the 

optimisation takes the form of: 

maximise 
1

2
∑(𝛼𝑖 − 𝛼𝑖

∗) (𝛼𝑗 − 𝛼𝑗
∗)𝐾(𝑥𝑖 , 𝑥𝑗) +

∑𝑦𝑖(𝛼𝑖 − 𝛼𝑖
∗) − 𝜀 ∑(𝛼𝑖 − 𝛼𝑖

∗)  subject to 

∑(𝛼𝑖 − 𝛼𝑖
∗) = 0, 𝛼𝑖𝛼𝑖

∗ =  0                                                          

     (19) 

The procedure for applying the Lagrange 

function and ensuring that the KKT conditions 

are met can be employed to solve the 

optimisation problem involving the kernel and 

obtain the solution for SVR. In addition to the 

linear regression loss function, other SVR 

solution processes include quadratic loss, 

Huber loss, and nonlinear regression loss 

functions. Furthermore, there are various 

kernel functions available, including the linear, 

sigmoid, and radial basic functions (RBF), 

among others. The SVR algorithm considers 

factors such as the risk factor and model 

density of the solution, maximum likelihood 

for the cost function, and conditions like 

convergence, expansibility, and integrability 

that the kernel function must satisfy. 

Nevertheless, the kernel function can be 

customised for absolute use in SVM. For this 

specific study, the kernel functions of interest 

are linear, RBF, and sigmoid. These functions 

are expressed as follows; 

The linear kernel function:  

𝐾(𝑥𝑖, 𝑥𝑗) =   𝑥𝑖
𝑇 ∙ 𝑥𝑗        (20)                                                                                

where 𝑥𝑖 , 𝑥𝑗 are the input pairs or feature 

vectors, and 𝑥𝑖
𝑇 denotes the transposition of 𝑥𝑖. 

The RBF kernel function: 

𝐾(𝑥𝑖, 𝑥𝑗) =  𝑒
(−𝛾‖𝑥𝑖 − 𝑥𝑗‖

2
)         (21)                                                                 

where 𝛾 is a constant or hyperparameter that 

controls the local decision boundary for each 

training sample, and the double bar bracket 

indicates the Euclidean distance between the 

input feature vectors. 

And, the sigmoid kernel function: 

𝐾(𝑥𝑖, 𝑥𝑗) = tanh(𝛼𝑥𝑖
𝑇 ∙ 𝑥𝑗 + 𝐶)  (22)                                        

where 𝛼 is a constant that controls the slope of 

the sigmoid kernel function. 

The estimation ofthe daily clearness index, 

using support vector regression, was carried 

out using Python, an open-source computing 

environment. Relevant libraries such as sci-kit-

learn and Pandas were utilised for this purpose. 

Initially, the skewness of estimators was 

identified, with a specific focus on the ratio of 

maximum temperature (𝑇𝑚𝑎𝑥) to minimum 

temperature (𝑇𝑚𝑖𝑛), denoted as 𝑇𝑟. To address 

this, power transformation was applied to 

reshape the values within the range of -1 to 1, 

followed by standard scaling to revert to the 

original data range. 

A portion of the data (28%) was set aside for 

testing, while the remaining data was used for 

training the SVR models. Cross-validation was 

performed between 2 and 10 folds based on 

obtained optimal values of the regularisation 

parameters (hyperparameters) C and 𝛾 

(gamma). The search for these optimal values 

was based on error terms such as correlation 

coefficient, mean bias error, and mean absolute 

error. The best-performing model was 

determined by presetting the mentioned 

hyperparameters to values ranging from 0.001 

to 100 and assessing their performance metrics. 

The correlation coefficient (𝑟) can be 

calculated using the formula shown as 

equation 23 below 

𝑟 =  
∑ (𝑉𝑚𝑒𝑎𝑠,𝑖− 𝑉̅𝑚𝑒𝑎𝑠,𝑖)(𝑉𝑝𝑟𝑒𝑑,𝑖− 𝑉̅𝑝𝑟𝑒𝑑,𝑖)
𝑁
𝑖=1

√∑ (𝑉𝑚𝑒𝑎𝑠,𝑖− 𝑉̅𝑚𝑒𝑎𝑠,𝑖)
𝑁
𝑖=1

2
∑ (𝑉𝑝𝑟𝑒𝑑,𝑖− 𝑉̅𝑝𝑟𝑒𝑑,𝑖)
𝑁
𝑖=𝑁

2
                                    

     (23) 

where 𝑉𝑚𝑒𝑎𝑠,𝑖 represents 𝐾𝑇 values obtained 

from the ground measurements of global solar 
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radiation, 𝑉𝑝𝑟𝑒𝑑,𝑖 represents 𝐾𝑇 values obtained 

from SVR models, the bar indicates the 

averages of the affected parameters, and 𝑁 is 

the total number of cases.   

The mean absolute error (𝑀𝐴𝐸) and the root 

mean square error (𝑅𝑀𝑆𝐸) are given 

respectively as: 

𝑀𝐴𝐸 = 
∑ ⌊𝑉𝑝𝑟𝑒𝑑,𝑖− 𝑉𝑚𝑒𝑎𝑠,𝑖⌋
𝑁
𝑖=1

𝑁
         (24)                                                         

𝑅𝑀𝑆𝐸 = √
∑ (𝑉𝑝𝑟𝑒𝑑,𝑖− 𝑉𝑚𝑒𝑎𝑠,𝑖)

2𝑁
𝑖=1

𝑁
     (25)                                                    

 

3. 0 Results and Discussion 

3.1  Data Distribution  
 

Due to the huge number of missing bright 

sunshine hours in the records obtained from 

NIMET, coupled with the quality check and the 

periods where there were no measurements at 

the university campus, only 979 days were 

retained between 1992 and 2006. Table 1 gives 

an overview of the distribution of several 

descriptive statistics such as maximum, 

minimum, mean, standard deviation, range, 

median, standard error, and mode. The values 

for clearness index, sunshine hours, maximum 

temperature, minimum temperature, and the 

ratio of maximum temperature to minimum 

temperature range between 0.73 and 0.20, 0.99 

and 0.01, 39 and 20, 27 and 12, and 2.75 and 

1.04. respectively. The average values together 

with the standard deviation are 0.47  0.1 for 

𝐾𝑇, 32.17  3.0 ℃ for 𝑇𝑚𝑎𝑥, 0.54  0.23 for 𝑆, 

21.51  2.19 ℃ for 𝑇𝑚𝑖𝑛, and 1.51  0.22 for 

𝑇𝑟. Furthermore, since standard deviation 

indicates the degree of dispersion around the 

mean, it implies that 𝑇𝑚𝑎𝑥, with the highest 

value of 3.0, has the widest spread compared to 

𝐾𝑇, which has the lowest spread of 0.1. While 

the middle values (median) stand at 0.48 for 

clearness index, 32 ℃ for maximum 

temperature, 0.58 for sunshine hours, 22 ℃ for 

minimum temperature, and 1.48 for the ratio of 

max temperature to min temperature, the most 

frequently occurring values, which is the mode, 

stand at 0.5, 31 ℃, 0.71, 22 ℃, and 1.52, for 

the respective variables.  

Among these variables, maximum temperature 

has the most influence on the clearness index in 

this region (Fig 1). Additionally, the range of 

the correlation coefficient between 𝐾𝑇 and the 

estimators is from 6.8% to 47%, which is 

relatively poor. Concerning themselves, only 

two instances indicate negative correlations 

among the lot, which occur in the relationship 

between 𝑆𝑟 and 𝑇𝑚𝑖𝑛 (-7.1%), and between 𝑇𝑟 

and 𝑇𝑚𝑖𝑛 (-73%). Although not explicitly 

shown, upon reviewing the values, it was 

observed that instances where the maximum 

temperature remained relatively high while the 

clearness index was comparatively low, were 

associated with reasonably low values of 

sunshine hours.  

Fig 2 confirms the necessity of transposing the 

original data in the adopted ML algorithm, 

particularly regarding 𝑇𝑟, where most values 

align to the left-hand side with a long tail of the 

trend line towards the right-hand side. Whereas 

𝑇𝑚𝑎𝑥 is centrally distributed, both 𝐾𝑇 and 𝑆𝑟 
are skewed to the left due to the prevalence of 

cloudy days over clear days at the site (Udo, 

2000). It appears that the mathematical division 

of centrally distributed data (i.e., 𝑇𝑚𝑎𝑥) by 

another dataset that is negatively skewed or 

primarily distributed to the right-hand side (i.e., 

𝑇𝑚𝑖𝑛) leads to a resulting dataset that is 

positively skewed or predominantly distributed 

to the left-hand side (i.e., 𝑇𝑟). 

3.2 SVR Models Estimations  
 

Although a total of 979 cases were initially 

randomly split into a ratio of 72:28 for the 

training and testing groups respectively, 

eventually only 972 cases were retained. The 

training set consisted of 777 cases, while the 

testing set comprised 195 cases, indicating that 

6 cases with identical variables were 

automatically eliminated during the split. In 

this study, the polynomial kernel function, 

though available alongside other kernel 

functions in Python, was not considered due to 

time constraints that prevented the tuning of 

hyperparameters on the computer. 

Consequently, the eventually retained values of 
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C and gamma were deemed optimal (Fig 3). 

Despite similar outputs observed within the 

considered cross-validation folds of 2 and 10, 

the 4th fold was retained, albeit yielding the 

same results as those from the 5th to 8th fold. In 

addition to hyperparameters, 

 

Table 1: comprehensive descriptive statistics for the variables used in this study. 

 

Statistic   𝑲𝑻 𝑻𝒎𝒂𝒙 

(℃) 

𝑺𝒓 𝑻𝒎𝒊𝒏 

(℃) 

𝑻𝒓 

Maximum 0.73 39 0.99 27 2.75 

Mean 0.4660 32.1665 0.5396 21.5077 1.5118 

Median 0.48 32 0.58 22 1.46 

Minimum  0.20 24 0.01 12 1.04 

Mode 0.5 31 0.71 22 1.52 

Range 0.53 15 0.98 15 1.71 

Standard 

deviation 

0.1006 3.0007 0.2254 2.1928 0.2201 

Standard 

error 

0.0032 0.0959 0.0072 0.0701 0.0070 

 

 
 

Fig Fig. 1: correlation coefficient between the variables considered in this study. 

 

Table 2 presents the statistical measures' results 

for each kernel function. During the training 

phase, the 𝑀𝐴𝐸 values were 0.0673 for the 

linear kernel function, 0.0631 for the RBF 

kernel function, and 0.0673 for the sigmoid 

kernel function, with testing phase errors 

standing at 0.0658, 0.0661, and 0.0658, 

respectively. The 𝑟 values were approximately 

54%, 62%, and 53%, respectively for the linear 

kernel function, RBF kernel function, and 

sigmoid kernel function during the training 

phase, though they reduced respectively to 

47%, 50%, and 47% during the testing phase. 

However, comparing the training data set to the 

testing data set, 𝑅𝑀𝑆𝐸 values increased 

marginally from 0.0854 to 0.0858 for the linear 

kernel function, from 0.0793 to 0.0838 for the 

RBF kernel function, and from 0.0854 to 

0.0857 for the sigmoid kernel function. From 

the above, the best-performing kernel function 

of SVR in the estimation of the nonseasonal 

daily clearness index in Ilorin, Nigeria, is the 

RBF. This kernel function has the most 
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desirable outcomes from all the statistical 

measures during both the training and testing 

phases, except under 𝑀𝐴𝐸 in the testing phase. 

While low 𝑀𝐴𝐸 and 𝑅𝑀𝑆𝐸 values are 

desirable, high 𝑟 values are preferable. 

 

 

 
Fig 2: The distribution of the variables in this study 
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3.3 Traditional Regression Models 
 

Based on daily clearness index values, and 

concerning two commonly used variables in 

this region, namely sunshine hours and  

 

maximum temperature, the regression models 

for Ilorin were obtained as: 

𝐾𝑇 = 0.167 (𝑆𝑟) + 0.376           (26)                                                            

𝐾𝑇 =  0.016(𝑇𝑚𝑎𝑥) –  0.044     (27)                                                             

 

 

 

 
Fig 3: The statistical outcomes for tuning the hyperparameters of SVR kernel function  
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The correlation coefficient, mean absolute 

error, and root mean square error values for 

Equations 26 and 27 were 37%, 0.0723, and 

0.0931, and 47%, 0.0700, and 0.0885, 

respectively. However, since the essence of the 

traditional regression models is to assess the 

relative performance of SVR, Equation 28 

below was developed based on the training set 

used for SVR, which had 777 cases and four 

variables: 

𝐾𝑇 = 𝑎(𝑇𝑚𝑎𝑥) + 𝑏(𝑆𝑟 ) +  𝑐(𝑇𝑚𝑖𝑛) +
 𝑑(𝑇𝑟) + 𝑒                 (28)       

The constants were obtained as follows: 𝑎 = 

0.025, 𝑏 = 0.121, 𝑐 = - 0.018, 𝑑 = - 0.237, and 

𝑒 = 0.365. The 𝑟, 𝑀𝐴𝐸, and 𝑅𝑀𝑆𝐸 values were 

54%, 0.0680, and 0.0877 for the training group 

and 48%, 0.0675, and 0.0900 for the testing 

group. A comparison of these values reveals 

that SVR with the RBF kernel function 

surpasses the regression models in all 

divisions, though the regression model 

(Equation 28) outperforms other kernel 

functions under some categories. For instance, 

during the training phase, the 𝑟 value of 

Equation 28 is the same as that of the linear 

kernel function (54%), which is higher than 

that of the sigmoid kernel function at 53%. 

However, during testing, the correlation 

coefficient of the multiple regression model 

(48%) is higher than that of both the linear 

kernel function and sigmoid kernel function, 

each at 47%. Remarkably, the 𝑟 values for RBF 

are 62% and 50%, respectively, during the 

training phase and the testing phase. 

 

Table 2: Values for the hyperparameters and statistical measures. 

 

Kernel 

function 

C Gamma Training set (𝑵 = 777)                             Testing set (𝑵 = 195) 

𝑟 𝑀𝐴𝐸 𝑅𝑀𝑆𝐸 𝑟 𝑀𝐴𝐸 𝑅𝑀𝑆𝐸 

Linear 0.01 0.001 0.5360 0.0673 0.0854 0.4693 0.0658 0.0858 

RBF 1 0.1 0.6196 0.0631 0.0793 0.5045 0.0661 0.0838 

Sigmoid  10 0.001 0.5347 0.0673 0.0854 0.4695 0.0657 0.0857 

 

Because the testing phase assesses 

generalisation capability by evaluating the 

performance on unseen data, it is used to 

determine the best-performing ML model 

instead of the training phase. If 𝑀𝐴𝐸 is 

rounded up to 3 decimal places (Table 2), then 

all three kernel functions would have the same 

values of 0.066. Consequently, 𝑟 and 𝑅𝑀𝑆𝐸 

become the criteria for selecting the best 

model, and those associated with the RBF 

kernel function outperform the others. Thus, 

SVR-RBF generalises better than the linear 

kernel function and sigmoid kernel function, in 

addition to its superior performance during the 

training phase. 

The overall relatively low correlations between 

the actual and calculated daily 𝐾𝑇 values, 

where excellent grades of 70% and above were 

not achieved in both the training and testing 

phases, are likely attributed to the low 

correlation coefficient values of its estimators. 

However, the low yet desired values of the 

error terms, which do not reflect on the 

correlation, could stem from the fractional 

magnitude of 𝐾𝑇. Unlike other statistical 

measures, the correlation coefficient is often 

disregarded in similar studies, possibly due to 

its unsatisfactory outcomes, except for the 

yearly average clearness index (Babatunde and 

Aro, 1995; Udo, 2000; Olayinka, 2000). 

Utilising an earlier subset of the same dataset 

used in this current study, spanning from 

September 1992 to August 1994, Udo (2000) 

reiterated the seasonal variation of 𝐾𝑇, 

showcasing higher values during the dry season 

and lower values during the rainy season 

(Babatunde and Aro, 1995). However, during 

the Harmattan season, which is a subset of the 

dry season and characterised by an extremely 

cool and dust-laden atmosphere, 𝐾𝑇 values are 
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intermediate between those of the dry season 

and rainy season. Remarkably, the clearness 

index and sunshine hours exhibit similar 

seasonal characteristics (Udo, 2000). Despite 

variances in the volume and duration of the 

data used, there exists no significant difference 

between the findings of this study and those of 

Udo (2000). While the daily average 𝐾𝑇 in this 

research stands at 0.47  0.10, the monthly 

average clearness index was reported as 0.48  

0.06 in Udo (2000).  

Although daily values were used in this study, 

further alignment with established findings 

suggests that maximum temperature is viable 

for modelling the clearness index in this region 

(Nwokolo and Ogbulezie, 2018; Chukwujindu, 

2017; Olayinka, 2011). Using maximum 

temperature, sunshine hours, and other 

variables, Olayinka (2011) modelled a six-year 

monthly clearness index with multiple 

regression for Ilorin and three other cities. 

Therein, the correlation coefficient values were 

mostly around 97% and above, with much 

lower errors. Additionally, apart from the 

differences in the regression constants, the 

sunshine hours-based model (Equation 26) 

slightly outperformed the max temperature-

based model (Equation 27), whereas the 

reverse is observed in this study. 
 

As mentioned earlier, ML can surpass 

traditional statistical methods depending on 

certain circumstances. Due to the adopted 

technique, support vector regression can be a 

viable tool for modelling physical phenomena 

such as the intensity of solar radiation, possibly 

due to its generalisation mapping approach and 

the deployed kernel function (Obot et al., 

2023). However, multiple regression models 

can be easily utilised unlike ML algorithms, 

which are expert-based systems. 
 

5.0  Conclusion 
 

In this study, using Python software and 

hyperparameter tuning, support vector 

regression with three kernel functions, namely 

linear, radial basis function, and sigmoid, were 

employed to estimate the clearness index in 

Ilorin (8° 32′ N, 4° 34′ E), Nigeria, from 

maximum temperature, sunshine hours, 

minimum temperature, and the ratio of both 

temperatures. In addition to statistical measures 

such as the correlation coefficient, mean 

absolute error, and root mean square error, 

multiple regression models were used to 

evaluate the performance of the SVR models. 

Approximately 972 days were selected 

between 1992 and 2006, with 72% used for 

training and the remainder for testing the 

models. Likely due to the large volume of data 

and the use of daily values, there were some 

differences between this study and previous 

studies. For instance, the daily mean 𝐾𝑇 is 0.47 

 0.10, compared to an earlier monthly value of 

0.48  0.06 (Udo, 2000). In contrast to 

Olayinka (2011), the errors are larger and the 

correlations are smaller in this study. 

Furthermore, the sunshine hours-based linear 

regression outperformed the max temperature-

based linear regression in Olayinka (2011), 

which is the opposite here. In addition to the 

training phase, the performance of RBF mostly 

surpasses that of the linear kernel function and 

sigmoid kernel function at the testing phase. 

Although the multiple regression model, 

conditioned similarly to the SVR models, 

competed reasonably well with the other kernel 

functions, it neither met nor surpassed the RBF 

kernel function in any capacity. The RBF 

kernel function of SVR is recommended for the 

estimation of the nonseasonal daily clearness 

index in Ilorin, Nigeria, and other places with 

similar climatic conditions. 
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