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Abstract: The aim of this paper is to study the 

optimal investment plans of a member in a defined 

contribution (DC) pension scheme with 

proportional administrative fee and tax on 

invested funds under logarithm utility function 

and Ornstein-Uhlenbeck (O-U) model. This is 

done by considering a portfolio consisting of a 

risk free asset (bank security) and two risky assets 

(stocks) where the stock market prices are driven 

by the Ornstein-Uhlenbeck (O-U) process. An 

optimization problem known as the Hamilton 

Jacobi Bellman (HJB) equation is obtained by 

maximizing the expected utility of the member’s 

terminal wealth. Since the HJB equation is a non 

linear partial differential equation (PDE) and 

could be complex to solve, we use the Legendre 

transformation method and dual theory to reduce 

it to a linear PDE. By method of variable change 

and separation of variable, closed form solutions 

of the optimal investment plans are obtained using 

logarithm utility function. More so, sensitivity 

analysis of some parameters are carried out 

theoretically on the optimal investment plans with 

observations that apart from the changes 

experienced in the stock market prices caused by 

the O-U process, the optimal investment plans for 

the risky assets are inversely proportional to 

contribution rate, tax rate imposed on the invested 

fund , proportional administration fee, investment 

time 𝑡, but directly proportional to the 

appreciation rate of the risky assets. 
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1.0  Introduction 

In determining the optimal investment plan for a 

member in a defined contribution pension 

scheme, the concept of stochastic volatility is 

informative in guiding decision making with 

respect to suitable and best investment strategy. 

Consequently, there is need to establish in depth 

of the behaviour of the different volatility models 

available in the financial market in order to model 

the behaviour of the risky assets arising from its 

fluctuating nature that is associated with the 

various information available in the financial 

market. The basic types of volatility models are 

the constant elasticity of variance (CEV), the 

Heston volatility model, the jump diffusion 

model, the Ornstein-Uhlenbeck (O-U) model etc 

Gao (2009), Sheng and Rong (2014), Ihedioha et 

al. (2017). 

The defined contribution pension scheme is a type 

of retirement plan in which member’s contribute 

a certain percentage of their income into a 

retirement saving account for the purpose of 

planning for their old age income. Funds 

accumulating from the saving are invested in the 

financial market since their retirement benefits 

depend mostly on the returns of their investments 

Deelstra et al. (2003) and Gao (2008). Due to the 

volatile nature of the risky assets and the risk 

involvement in those assets, there is need to 

develop an efficient and robust investment plan 

which will serve as a guide during investment

 period. This has led to the study of optimal 

investment plan. There are numerous work done 
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in this area which include Xiao et al. (2007), Gao 

(2009) who studied utility maximization under 

constant elasticity model in DC pension scheme. 

The optimal investment and reinsurance problem 

of utility maximization under CEV model was 

also studied by Gu et al. (2010). Li et al. (2013), 

studied optimal investment problem with taxes, 

dividend and transaction cost using CEV model 

and logarithm utility function. The optimal 

portfolio strategy with multiple contributors in a 

DC pension fund using Legendre transformation 

method was studied by Osu et al. (2017). Li et al. 

(2017) solved the optimal portfolio problem with 

default risk and refund of premium clause in a DC 

plan; in their work, the stock market price 

followed the CEV model. Akpanibah and 

Oghenero (2018) investigated the effect of 

additional voluntary contribution on the 

investment strategies under CEV model using 

power transformation method in solving their 

problem. Boulier et al. (2001) studied the optimal 

portfolio management with stochastic interest rate 

for a protected case of DC fund. Deelstra et al. 

(2003) and Gao (2008) adopted stochastic interest 

rate model to obtain optimal investment plan in a 

DC fund. Also, Battocchio and Menoncin (2004) 

as well as Cairns et al. (2006) considered 

investment strategy with interest rate of Vasicek 

type while Zhang and Rong (2013), Njoku et al. 

(2017) and Akpanibah et al. (2017) studied the 

optimal portfolio problem when the interest rate is 

of affine interest. 

According to Xiao and Yonggui (2020), the O-U 

process can be used to model both interest rate and 

stock market price since it reflects the fluctuation of the 

interest rates and asset prices. Also, the O-U process is 

closer to the change in interest rate.Ihedioha et al. 

(2020) studied the optimal investment plan for an 

investor with exponential utility under the 

modified CEV model. In their work, they used the 

O-U process to model their interest rate. 

Akpanibah and Ini (2020) studied an investor’s 

investment plan with stochastic interest rate under 

the CEV model and the Ornstein-Uhlenbeck 

Process. They used the O-U process to model their 

interest rate and considered a portfolio consisting 

of one risk free asset and two risky assets 

modelled by the CEV model. The optimal 

investment plan for a DC plan under the O-U process 

was studied by Xiao and Yonggui (2020) in which 

a single risky asset modelled by the O-U process was 

combined with a risk-free asset and also investment in 

loan. Also, the strategic portfolio management for 

a pension plan member with Couple risky assets 

and transaction cost under the O-U Process was 

studied by Ini and Akpanibah (2020). In their 

work, they used the O-U process to model their 

risky assets and the exponential utility function to 

obtain their investment strategies. 

In this work, we maximize the expected utility of 

a DC member’s wealth under logarithm utility by 

studying the optimal investment plan whose risky 

assets are modelled by the O-U process. Also, we 

consider cases where there is proportional 

administrative fee and tax imposed on the invested 

funds. Furthermore, the Legendre transformation 

and change of variable method are used to derive 

the optimal investment plans for the three assets. 

We present some sensitivity analysis of the impact 

of some parameters on the investment strategies. 

1.1 Preliminaries 

Let us consider a member whose portfolio is made 

up of bank security and two stocks which are 

modelled by the O-U process. We also consider a 

financial market that is continuously open over an 

interval 𝑡 ∈ [0, 𝑇] such that 𝑇 represents the date 

of expiration of such investment. Let 

{𝒵1(𝑡), 𝒵2(𝑡): 𝑡 ≥  0} be standard Brownian 

motion defined on a complete probability space 

(Ω, 𝐹, 𝑃) where Ω is a real space, 𝑃 is a probability 

measure and 𝐹 is the filtration which represents 

the information generated by the two correlated 

Brownian motions, 𝒵1(𝑡) and 𝒵2(𝑡). 

Let ℬ0(𝑡) denote the price of the risk free asset at 

time 𝑡 and the model is given as follows 

 
𝑑ℬ0(𝑡)

ℬ0(𝑡)
= 𝓇𝑑𝑡 ℬ0(0) = 𝒷0 > 0           (1) 

where 𝓇 > 0 is the risk free interest rate 

   Let ℬ1(𝑡) and ℬ2(𝑡) denote the prices of two 

different stocks which are described by the O-U 

process which describes the fluctuation in the 

stock market prices and the dynamics of the stock  

Let ℬ1(𝑡) and ℬ2(𝑡) denote the prices of two 

different stocks which are described by the O-U 

process which describes the fluctuation in the 
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stock market prices and the dynamics of the stock 

market prices are described by the stochastic 

differential equations as follows 

𝑑 (
ℬ1(𝑡)

ℬ2(𝑡)
) = (

(
𝑘1(𝓃1 − ℬ1)

𝑘2(𝓃2 − ℬ2)
) 𝑑𝑡

+(
𝜎11 𝜎12
𝜎21 𝜎22

) (
𝑑𝒵1(𝑡)
𝑑𝒵2(𝑡)

)

)          (2) 

where 𝑘1 > 0 and 𝑘2 > 0 are the recovery rates of 

the risky assets𝓃1 and 𝓃2are the appreciation  

rates of the two risky assets, 𝜎11, 𝜎12, 𝜎21and 𝜎22 

are instantaneous volatilities which forms a 2 × 2 

matrix 𝜎 = (
𝜎11 𝜎12
𝜎21 𝜎22

)such that 𝜎𝜎𝑇is positive 

definite Zhao and Rong (2012). 

2.0 Model Formulation and Methodology 

2.1 Hamilton Jacobi Bellman Equation 

Let 𝜋 be the optimal investment strategy, when the 

utility attained is defined by the investor from a 

given state 𝓍 at time 𝑡 as  

𝒬𝜋(𝑡, 𝒷1, 𝒷2, 𝓍) =

(𝐸𝜋 [ 𝑈(𝒳(𝑇)) ∣
∣
∣ ℬ1(𝑡) = 𝒷1,

ℬ2(𝑡) = 𝒷2, 𝒳(𝑡) = 𝓍
]),    (3) 

where 𝑡 is the time, 𝑟 is the risk free interest rate 

and 𝓍 is the wealth, 𝒷1 and 𝒷2 are the stock 

market prices of the two risky assets 

 The objective here is to determine the optimal 

investment plan and the optimal value function of 

the investor given as  

𝜋∗ 𝑎𝑛𝑑 𝒬(𝑡, 𝒷1, 𝒷2, 𝓍) = sup
𝜋
𝒬𝜋(𝑡, 𝒷1, 𝒷2, 𝓍) 

respectively such that  

𝒬𝜋∗(𝑡, 𝒷1, 𝒷2, 𝓍) = 𝒬(𝑡, 𝒷1, 𝒷2, 𝓍).                       (4) 

Let 𝒳(𝑡) represents the surplus wealth of an 

investor at time 𝑡 and let 𝑐, 𝜗 and 𝒶 represent the 

tax rate in the financial market, the investor’s 

contributions rate at any given time and the 

administrative fee respectively. Also we assume 

that 
𝑘1(𝓃1−𝒷1)

𝒷1
−
𝒶

2
−𝓇 > 0 and 

𝑘2(𝓃2−𝒷2)

𝒷2
−
𝒶

2
−

𝓇 > 0 .Therefore, the investor’s surplus wealth 

can be expressed in differential form according to 

equation 5, 

d𝒳(𝑡) =

(

 
 𝒳(𝑡) (

𝜋0
𝑑ℬ0(𝑡)

ℬ0(𝑡)
+ 𝜋1

𝑑ℬ1(𝑡)

ℬ1(𝑡)

+𝜋2
𝑑ℬ2(𝑡)

ℬ2(𝑡)

)

−𝜗𝒳(𝑡)𝑑𝑡 + 𝑐𝑑𝑡 )

 
 

   (5) 

Putting (1) and (2) into (5), we have 

d𝒳(𝑡) =

(

 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 

𝒳(𝑡)

(

 
 
 
 𝜋1(

𝑘1(𝓃1−𝒷1)

𝒷1

−
𝒶

2
−𝓇

)

+𝜋2(

𝑘2(𝓃2−𝒷2)

𝒷2

−
𝒶

2
−𝓇

)

)

 
 
 
 

+(𝒳(𝑡)(𝑟 − 𝜗)) + 𝑐 )

 
 
 
 
 

𝑑𝑡

+𝒳(𝑡) (
(
𝜋1𝜎11

𝒷1
+
𝜋2𝜎21

𝒷2
)𝑑𝒵1

+(
𝜋1𝜎12

𝒷1
+
𝜋2𝜎22

𝒷2
) 𝑑𝒵2

)

𝒳(0) = 𝒳0 )

 
 
 
 
 
 
 
 
 
 

   (6) 

where 𝜋0, 𝜋1 and 𝜋2 are the optimal investment plans 

for the risk-free asset and the two risky assets 

respectively, such that 𝜋0 = 1 − 𝜋1 − 𝜋2. 

According to Ihedioha (2020) and applying the 

Ito’s lemma and maximum principle, the 

Hamilton Jacobi Bellman (HJB) equation which 

is a nonlinear PDE associated with (6) is obtained 

by maximizing  𝒬𝜑∗(𝑡, 𝑟, 𝒷1, 𝒷2, 𝓍) subject to the 

insurer’s wealth as follows 

𝒬𝑡 + 𝑘1(𝓃1 −𝒷1)𝒬𝒷1
+𝑘2(𝓃2 −𝒷2)𝒬𝒷2
+((𝑟 − 𝜗)𝑥 + 𝑐)𝒬𝑥

+
1

2
𝒥1𝒬𝒷1𝒷1 +

1

2
(𝒥3)𝒬𝒷2𝒷2 + 𝒥2𝒬𝒷1𝒷2

+ sup
𝜋1,𝜋2

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 𝑥2

2
(
𝜋1
2 (

𝒥1

𝒷1
2) + (

𝒥2

𝒷1𝒷2
)𝜋1𝜋2

+𝜋2
2(
𝒥3

𝒷2
2)

)𝒬𝑥𝑥

+𝑥

(

 
 
 
 (

𝑘1(𝓃1−𝒷1)

𝒷1

−
𝒶

2
−𝓇

)𝜋1

+(

𝑘2(𝓃2−𝒷2)

𝒷2

−
𝒶

2
−𝓇

)𝜋2
)

 
 
 
 

𝒬𝑥

𝑥 ((
𝒥1

𝒷1
)𝜋1 + (

𝒥2

𝒷2
)𝜋2)𝒬𝑥𝒷1

𝑥 ((
𝒥2

𝒷2
)𝜋1 + (

𝒥3

𝒷2
)𝜋2)𝒬𝑥𝒷2 }

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

= 0(7) 
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where 𝒥1 = (𝜎11
2 + 𝜎12

2 ), 𝒥2 = (𝜎11𝜎21 +

𝜎12𝜎22), 𝒥3 = (𝜎21
2 + 𝜎22

2 ) 

Differentiating (7) with respect to 𝜋1 𝑎𝑛𝑑 𝜋2, 

we obtain the first order maximizing condition for 

the equation as follows,   

𝜋1
∗ =

(

 
 
[
𝒥2(𝑘2(𝓃2−𝒷2)−

𝒶

2
𝒷2−𝓇𝒷2)

−𝒥3(𝑘1(𝓃1−𝒷1)−
𝒶

2
𝒷1−𝓇𝒷1)

]

𝑥(𝒥1𝒥3−𝒥2
2)

𝒷1𝒬𝑥

𝒬𝑥𝑥

−
𝒷1𝒬𝑥𝒷1
𝑥𝒬𝑥𝑥 )

 
 

          (8) 

𝜋2
∗ =

(

 
 
[
𝒥2(𝑘1(𝓃1−𝒷1)−

𝒶

2
𝒷1−𝓇𝒷1)

−𝒥1(𝑘2(𝓃2−𝒷2)−
𝒶

2
𝒷2−𝓇𝒷2)

]

𝑥(𝒥1𝒥3−𝒥2
2)

𝒷2𝒬𝑥

𝒬𝑥𝑥

−
𝒷2𝒬𝑥𝓈2
𝑥𝒬𝑥𝑥 )

 
 

          (9) 

Substituting (8) and (9) into (7), yields equation 

10, 

𝒬𝑡 + 𝑘1(𝓃1 − 𝒷1)𝒬𝓈1 + 𝑘2(𝓃2 − 𝒷2)𝒬𝒷2

+((𝑟 − 𝜗)𝑥 + 𝑐)𝒬𝑥 +
1

2
𝒥1𝒬𝒷1𝒷1

+
1

2
𝒥3𝒬𝒷2𝒷2 + 𝒥2𝒬𝒷1𝒷2

+
1

2
(𝒥4 − 𝒥5 − 𝒥6)

𝒬𝑥
2

𝒬𝑥𝑥

−(𝑘1(𝓃1 − 𝒷1) −
𝒶

2
𝒷1 −𝓇𝒷1)

𝒬𝑥𝒬𝑥𝒷1

𝒬𝑥𝑥

−(𝑘2(𝓃2 − 𝒷2) −
𝒶

2
𝒷2 − 𝓇𝒷2)

𝒬𝑥𝒬𝑥𝒷2

𝒬𝑥𝑥

−
1

2
𝒥1

𝒬𝑥𝒷1
2

𝒬𝑥𝑥
−

1

2
𝒥3

𝒬𝑥𝒷2
2

𝒬𝑥𝑥
− 𝒥2

𝒬𝑥𝒷1𝒬𝑥𝒷2

𝒬𝑥𝑥 }
 
 
 
 
 

 
 
 
 
 

= 0 (10) 

where 

{
 
 
 
 

 
 
 
 

𝒥1 = (𝜎11
2 + 𝜎12

2 ), 𝒥2 = (𝜎11𝜎21 + 𝜎12𝜎22),

𝒥3 = (𝜎21
2 + 𝜎22

2 ),

𝒥4 =
2𝒥2(𝑘1(𝓃1−𝒷1)−

𝒶

2
𝒷1−𝓇𝒷1)(𝑘2(𝓃2−𝒷2)−

𝒶

2
𝒷2−𝓇𝒷2)

(𝒥1𝒥3−𝒥2
2)

,

𝒥5 =
𝒥3(𝑘1(𝓃1−𝒷1)−

𝒶

2
𝒷1−𝓇𝒷1)

2

(𝒥1𝒥3−𝒥2
2)

,

𝒥6 =
𝒥1(𝑘2(𝓃2−𝒷2)−

𝒶

2
𝒷2−𝓇𝒷2)

2

(𝒥1𝒥3−𝒥2
2)

,

2.2 Legendre Transformation and Dual theory 

The differential equation obtained in (10) is a non 

linear PDE and is somehow complex to solve. In 

this section, we will introduce the Legendre 

transformation and dual theory and use it to 

transform the non linear PDE to a linear PDE. 

Theorem 2.1: Let 𝑓: 𝑅𝑛 → 𝑅 be a convex 

function for 𝓏 > 0, define the Legendre transform 

𝑊(𝓏) = max
𝑥
{ℊ(𝑥) − 𝓏𝑥},         (11) 

The function𝑊(𝓏) is the Legendre dual of the 

function ℊ(𝑥). Jonsson and Sircir (2002) 

Since ℊ(𝑥) is convex, from theorem 3.1, the 

Legendre transform for the value function 

𝒬(𝑡, 𝒷1, 𝒷2, 𝓍) can be defined as follows 

𝒬̂(𝑡, 𝒷1, 𝒷2, 𝓏) =

(
sup {

𝒬(𝑡, 𝒷1, 𝒷2, 𝓍)
−𝑧𝑥 ∣∣

∣ 0 < 𝑥 < ∞}

 0 < 𝑡 < 𝑇
)        (12) 

where 𝒬̂ is the dual of 𝒬 and 𝓏 > 0 is the dual 

variable of 𝑥.  

The value of 𝑥 where this optimum is achieved is 

represented by ℓ(𝑡, 𝒷1, 𝒷2, 𝓏), such that 

ℓ(𝑡, 𝒷1, 𝒷2, 𝓏) =

(inf { 𝑥 ∣
∣
∣ 𝒬(𝑡, 𝒷1, 𝒷2, 𝓍)

≥ 𝓏𝑥 + 𝒬̂(𝑡, 𝒷1, 𝒷2, 𝓏)
} 

0 < 𝑡 < 𝑇.

)        (13)

  

From equation (13), the function ℓ and 𝒬̂ are very 

much related and can be refers to as the dual of 𝒬 

and are related thus 

𝒬̂(𝑡, 𝒷1, 𝒷2, 𝓏) = 𝒬(𝑡, 𝒷1, 𝒷2, ℓ) − 𝓏ℓ.        (14) 

where 

ℓ(𝑡, 𝒷,𝒷2, 𝓏) = 𝑥, 𝒬𝑥 = 𝓏, ℓ = −𝒬̂𝓏.        (15) 

differentiating equation 14 with respect to 

𝑡, , 𝒷1, 𝒷2 and 𝑥 leads to the following, 

{
 
 
 

 
 
 

𝒬𝑡 = 𝒬̂𝑡 , 𝒬𝒷1 = 𝒬̂𝒷1  , 𝒬𝒷2 = 𝒬̂𝒷2 ,

𝒬𝑥 = 𝓏, 𝒬𝒷1𝑥 =
−𝒬̂𝒷1𝓏

𝒬̂𝓏𝓏
, 𝒬𝒷2𝑥 =

−𝒬̂𝒷2𝓏

𝒬̂𝓏𝓏
,

𝒬𝑥𝑥 =
−1

𝒬̂𝓏𝓏
 , 𝒬𝒷1𝒷1 = 𝒬̂𝒷1𝒷1 −

𝒬̂𝒷1𝓏
2

𝒬̂𝓏𝓏
,

𝒬𝒷2𝒷2 = 𝒬̂𝒷2𝒷2 −
𝒬̂𝒷2𝓏

2

𝒬̂𝓏𝓏

        (16) 

At terminal time 𝑇, we define the dual utility in 

terms of the original utility function 𝑈(𝑥) as 

𝑈̂(𝓏) = 𝑠𝑢𝑝{𝑈(𝑥) − 𝓏𝑥 ∣ 0 < 𝑥 < ∞}, 

and 

𝐺(𝓏) = 𝑠𝑢𝑝 {𝑥 ∣ 𝑈(𝑥) ≥ 𝓏𝑥 + 𝑈̂(𝓏). 

as a result 𝒬̂(𝑡, 𝑟, 𝒷1, 𝒷2, 𝓏) =

𝒬(𝑡, 𝑟, 𝒷1, 𝒷2, ℓ) − 𝓏ℓ.  

𝐺(𝓏) = (𝑈′)−1(𝓏),          (17) 

where 𝐺 is the inverse of the marginal utility U 

and note that 𝒬(𝑇, 𝑟, 𝒷1, 𝒷2, 𝑥) = 𝑈(𝑥) 

At terminal time 𝑇, we can define 
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ℓ(𝑇, 𝑟, 𝓈1, 𝓈2, 𝓏)

= 𝑖𝑛𝑓
𝑥>0

{ 𝑥 ∣∣ 𝑈(𝑥) ≥ 𝓏𝑥 + 𝒬̂(𝑡, 𝑟, 𝒷1, 𝒷2, 𝓏) } 𝑎𝑛𝑑 

𝒬̂(𝑡, 𝑟, 𝒷1, 𝒷2, 𝓏) = 𝑠𝑢𝑝
𝑥>0

{ 𝑈(𝑥) − 𝓏𝑥} 

such that 

ℓ(𝑇, 𝑟, 𝒷1, 𝒷2, 𝓏) = (𝑈
′)−1(𝓏).                     (18) 

     Substituting equation 16 into (8), (9) and (10), 

we have 

𝒬̂𝑡 + 𝑘1(𝓃1 −𝒷1)𝒬̂𝒷1
+𝑘2(𝓃2 −𝒷2)𝒬̂𝒷2 + ((𝑟 − 𝜗)𝑥 + 𝑐)𝓏

+
1

2
𝒥1𝒬̂𝒷1𝒷1 +

1

2
𝒥3𝒬̂𝒷2𝒷2 + 𝒥2𝒬̂𝒷1𝒷2

−
1

2
(𝒥4 − 𝒥5 − 𝒥6)𝓏

2𝒬̂𝓏𝓏

−(𝑘1(𝓃1 −𝒷1) −
𝒶

2
𝒷1 −𝓇𝒷1) 𝓏𝒬̂𝒷1𝓏

−(𝑘2(𝓃2 −𝒷2) −
𝒶

2
𝒷2 −𝓇𝒷2) 𝓏𝒬̂𝒷2𝓏}

 
 
 
 

 
 
 
 

= 0 (19) 

𝜋1
∗ =

(

 
 
[
(𝑘2(𝓃2−𝒷2)−

𝒶

2
𝒷2−𝓇𝒷2)𝒥2

−(𝑘1(𝓃1−𝒷1)−
𝒶

2
𝒷1−𝓇𝒷1)𝒥3

]

𝑥(𝒥1𝒥3−𝒥2
2)

𝒷1𝓏𝒬̂𝓏𝓏

−
𝒷1𝒬̂𝒷1𝓏

𝑥 )

 
 

  (20) 

𝜋2
∗ =

(

 
 
[
(𝑘1(𝓃1−𝒷1)−

𝒶

2
𝒷1−𝓇𝒷1)𝒥2

−(𝑘2(𝓃2−𝒷2)−
𝒶

2
𝒷2−𝓇𝒷2)𝒥1

]

𝑥(𝒥1𝒥3−𝒥2
2)

𝒷2𝓏𝒬̂𝓏𝓏

−
𝒷2𝒬̂𝓈2𝓏

𝑥 )

 
 

  (21) 

From equation 15 and differentiating equations 

19, 20 and 21 with respect to 𝓏, we have  

ℓ𝑡 + 𝑟𝒷1ℓ𝒷1 + 𝑟𝒷2ℓ𝒷2
−((𝑟 − 𝜗)ℓ + 𝑐) − (𝑟 − 𝜏)𝓏 ℓ𝓏

+
1

2
𝒥1ℓ𝒷1𝒷1 +

1

2
𝒥3ℓ𝒷2𝒷2 + 𝒥2ℓ𝒷1𝒷2

+
1

2
(𝒥4 − 𝒥5 − 𝒥6)𝓏

2ℓ𝓏𝓏

+
1

2
(𝒥4 − 𝒥5 − 𝒥6)𝓏ℓ𝓏

−(𝑘1(𝓃1 −𝒷1) −
𝒶

2
𝒷1 −𝓇𝒷1) 𝓏ℓ𝒷1𝓏

−(𝑘2(𝓃2 −𝒷2) −
𝒶

2
𝒷2 −𝓇𝒷2) 𝓏ℓ𝒷2𝓏}

 
 
 
 
 

 
 
 
 
 

= 0  (22) 

𝜋1
∗ =

(

 
 
[
(𝑘2(𝓃2−𝒷2)−

𝒶

2
𝒷2−𝓇𝒷2)𝒥2

−(𝑘1(𝓃1−𝒷1)−
𝒶

2
𝒷1−𝓇𝒷1)𝒥3

]

𝑥(𝒥1𝒥3−𝒥2
2)

𝒷1𝓏 ℓ𝓏

−
𝒷1ℓ𝒷1
𝑥 )

 
 

    (23) 

𝜋2
∗ =

(

 
 
[
(𝑘1(𝓃1−𝒷1)−

𝒶

2
𝒷1−𝓇𝒷1)𝒥2

−(𝑘2(𝓃2−𝒷2)−
𝒶

2
𝒷2−𝓇𝒷2)𝒥1

]

𝑥(𝒥1𝒥3−𝒥2
2)

𝒷2𝓏 ℓ𝓏

−
𝒷2ℓ𝒷2
𝑥 )

 
 

   (24) 

Our next interest here is to solve equation 22, for 

ℓ for an investor with logarithm utility, after 

which we substitute the solution into equations 23 

and 24 to obtain the optimal investment strategies 

for the two risky assets. 

3. 0 Optimal Investment Plans for a DC 

member with Logarithm Utility 

From Li et al. (2013), Xiao and Yonggui (2020), 

the logarithm utility function is given as 

𝑈(𝓍) = 𝑙𝑛𝓍 ,  𝓍 > 0  

Recall from (18),  

ℓ(𝑇,𝒷1, 𝒷2, 𝓏) = (𝑈
′)−1(𝓏) =

1

𝓏
        (25) 

Furthermore, we construct a solution for (22) 

similar to Yonggui (2020), in the form: 

{

ℓ(𝑡, 𝒷1, 𝒷2, 𝓏) =
1

𝓏
[ℯ(𝑡, 𝒷1) + 𝒻(𝑡, 𝒷2)]

+𝒽(𝑡)

ℯ(𝑇,𝒷1) =
1

2
, 𝒻(𝑇, 𝒷2) =

1

2
, 𝒽(𝑇) = 0,

 (26) 

ℓ𝑡 =
1

𝓏
[ℯ𝑡 + 𝒻𝑡] + 𝒽𝑡, ℓ𝒷1 =

1

𝓏
ℯ𝒷1  ,

ℓ𝒷2 =
1

𝓏
𝒻𝒷2ℓ𝒷1𝒷1 =

1

𝓏
ℯ𝒷1𝒷1 ,

ℓ𝒷2𝒷2 =
1

𝓏
𝒻𝒷2𝒷2 , ℓ𝓏 = −

1

𝓏2
[ℯ + 𝒻],

ℓ𝓏𝓏 =
2

𝓏3
[ℯ + 𝒻] ,

ℓ𝒷1𝓏 = −
1

𝓏2
ℯ𝓈1  , ℓ𝒷2𝓏 = −

1

𝓏2
𝒻𝓈2 }

 
 
 

 
 
 

        (27) 

Substituting (27) into (22), we have 

[𝒽𝑡 − (𝑟 − 𝜏)𝒽 − 𝑐]

+
1

𝓏
[
ℯ𝑡 + (𝑘1𝓃1 − (𝑘1 +

𝒶

2
)𝒷1) ℯ𝒷1

+
1

2
𝒥1ℯ𝒷1𝒷1

]

+
1

𝓏
[
𝒻𝑡 + (𝑘2𝓃2 − (𝑘2 +

𝒶

2
)𝒷2) 𝒻𝒷2

+
1

2
𝒥3𝒻𝒷2𝒷2

]

}
 
 
 

 
 
 

= 0(28) 

Splitting (28), we have 

{
𝒽𝑡 − (𝑟 − 𝜗)𝒽 − 𝑐 = 0

𝒽(𝑇) = 0
         (29) 

{
 

 ℯ𝑡 + (
𝑘1𝓃1

−(𝑘1 +
𝒶

2
)𝒷1

)ℯ𝒷1 +
1

2
𝒥1ℯ𝒷1𝒷1 = 0

ℯ(𝑇,𝒷1) =
1

2

(30) 

{
 

 𝒻𝑡 + (
𝑘2𝓃2

−(𝑘1 +
𝒶

2
)𝒷2

)𝒻𝒷2 +
1

2
𝒥3𝒻𝒷2𝒷2 = 0

𝒻(𝑇, 𝒷2) =
1

2

(31) 

Solving equation (29) for 𝒽, we obtain 

𝒽 =
𝑐

𝜗−𝑟
[ 1 − 𝑒(𝑟−𝜏)(𝑡−𝑇)]           (32) 

Next, we assume a solution for (30) and (31) as 

follows 
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{
ℯ(𝑡, 𝓈1) = 𝐴(𝑡) + 𝒷1𝐵(𝑡),

𝐴(𝑇) =
1

2
, 𝐵(𝑇) = 0

                           (33) 

{
𝒻(𝑡, 𝓈2) = 𝑀(𝑡) + 𝒷2𝑁(𝑡),

𝑀(𝑇) =
1

2
, 𝑁(𝑇) = 0

                         (34) 

Differentiating (33) and (34), we have 

{
ℯ𝑡 = 𝐴𝑡 +𝒷1𝐵𝑡, ℯ𝒷1 = 𝐵, ℯ𝒷1𝒷1 = 0,

𝒻𝑡 = 𝑀𝑡 +𝒷2𝑁𝑡, 𝒻𝒷2 = 𝑁, 𝒻𝒷2𝒷2 = 0,
        (35) 

Substituting (35) into (30) and (31), we have 

𝐴𝑡 + 𝑘1𝓃1 + (𝐵𝑡 − (𝑘1 +
𝒶

2
)𝐵)𝒷1 = 0       (36) 

𝑀𝑡 + 𝑘1𝓃2 + (𝑁𝑡 − (𝑘2 +
𝒶

2
)𝑁)𝒷2 = 0      (37) 

Splitting (36) and (37), we have 

{
𝐴𝑡 + 𝑘1𝓃1 = 0

𝐴(𝑇) =
1

2
 ,

           (38) 

{
𝐵𝑡 − (𝑘1 +

𝒶

2
)𝐵 = 0

𝐵(𝑇) = 0 ,
           (39) 

{
𝑀𝑡 + 𝑘2𝓃2 = 0

𝑀(𝑇) =
1

2
 ,

           (40) 

{
𝑁𝑡 − (𝑘2 +

𝒶

2
)𝑁 = 0

𝑁(𝑇) = 0 ,
           (41) 

Solving (38), (39), (40) and (41), we have 

𝐴(𝑡) =
1

2
, 𝐵(𝑡) = 0,𝑀(𝑡) =

1

2
, 𝑁(𝑡) = 0       (42) 

Substituting (42) into (33) and (34), we have 

ℯ(𝑡, 𝒷1) =
1

2
            (43) 

𝒻(𝑡, 𝒷2) =
1

2
            (44) 

Substituting (32), (43) and (44) into (26), we have 

ℓ(𝑡, 𝒷1, 𝒷2, 𝓏) =
1

𝓏
+

𝑐

𝜗−𝑟
[ 1 − 𝑒(𝑟−𝜏)(𝑡−𝑇)]    (45) 

Proposition 1 The optimal portfolio strategies for 

the three assets are given as 

𝜋1
∗ =

(

 
 
 
 𝒷1

[
 
 
 
 (
𝑘1(𝓃1−𝒷1)

−
𝒶

2
𝒷1−𝓇𝒷1

)𝒥3

−(
𝑘2(𝓃2−𝒷2)

−
𝒶

2
𝒷2−𝓇𝒷2

)𝒥2
]
 
 
 
 

(𝒥1𝒥3−𝒥2
2)

× (1 −
𝑐

(𝑟−𝜗)𝑥
[1 + 𝑒(𝑟−𝜗)(𝑡−𝑇)]))

 
 
 
 

   (46) 

𝜋2
∗ =

(

 
 
 
 𝒷2

[
 
 
 
 (

𝑘2(𝓃2−𝓈2)

−
𝒶

2
𝒷2−𝓇𝒷2

)𝒥1

−(
𝑘1(𝓃1−𝒷1)

−
𝒶

2
𝒷1−𝓇𝒷1

)𝒥2
]
 
 
 
 

(𝒥1𝒥3−𝒥2
2)

× (1 −
𝑐

(𝑟−𝜗)𝑥
[ 1 + 𝑒(𝑟−𝜗)(𝑡−𝑇)]))

 
 
 
 

  (47) 

Proof 

From (45), we have  

 {
ℓ𝒷1 = ℓ𝒷2 = 0, ℓ𝓏 = −

1

𝓏2
,

 
1

𝓏
= 𝑥 −

𝑐

𝜗−𝑟
[ 1 − 𝑒(𝑟−𝜗)(𝑡−𝑇)]

  (48) 

Substituting (48) into (23) and (24), proposition 1 is 

proved. 

4.0. Sensitivity Analysis 

In this section, we present some lemmas to 

demonstrate the impact of some parameters on 

the optimal investment plan. 

Proposition 2 Suppose 𝒶 > 0,𝓃1 > 0, 𝑟 >

0, 𝜗 > 0, 𝑡 ∈ [0, 𝑇], 𝑘1 > 0, 𝑘2 > 0, , 𝒷1 > 0, 

𝒷2 > 0, 𝑥 > 0, (𝒥1𝒥3 − 𝒥2
2) > 0, and 𝑇 − 𝑡 > 0 

then  

(i) 
𝜕𝜋1

∗

𝜕𝑐
< 0 (ii)

𝜕𝜋1
∗

𝜕𝒶
< 0 (iii) 

𝜕𝜋1
∗

𝜕𝜗
< 0 (iv) 

𝜕𝜋1
∗

𝜕𝓃1
> 0(v) 

𝜕𝜋1
∗

𝜕𝑡
< 0 

Proof 

Recall that 

𝜋1
∗ =

(

 
 
 
 𝒷1

[
 
 
 
 (
𝑘1(𝓃1−𝒷1)

−
𝒶

2
𝒷1−𝓇𝒷1

)𝒥3

−(
𝑘2(𝓃2−𝒷2)

−
𝒶

2
𝒷2−𝓇𝒷2

)𝒥2
]
 
 
 
 

(𝒥1𝒥3−𝒥2
2)

× (1 −
𝑐

(𝑟−𝜗)𝑥
[1 + 𝑒(𝑟−𝜗)(𝑡−𝑇)]))

 
 
 
 

    

(i) 
𝜕𝜋1

∗

𝜕𝑐
=

(

 
 

−
1

(𝑟−𝜗)𝑥
[ 1 + 𝑒(𝑟−𝜗)(𝑡−𝑇)]

×

𝒷1[
(𝑘1(𝓃1−𝒷1)−

𝒶

2
𝒷1−𝓇𝒷1)𝒥3

−(𝑘2(𝓃2−𝒷2)−
𝒶

2
𝒷2−𝓇𝒷2)𝒥2

]

(𝒥1𝒥3−𝒥2
2) )

 
 

 

Since 
1

(𝑟−𝜗)𝑥
[ 1 + 𝑒(𝑟−𝜗)(𝑡−𝑇)] > 0 and 

𝒷1[
(𝑘1(𝓃1−𝒷1)−

𝒶

2
𝒷1−𝓇𝒷1)𝒥3

−(𝑘2(𝓃2−𝒷2)−
𝒶

2
𝒷2−𝓇𝒷2)𝒥2

]

(𝒥1𝒥3−𝒥2
2)

> 0 

Then  

𝜕𝜋1
∗

𝜕𝑐
=

(

 
 

−
1

(𝑟−𝜗)𝑥
[ 1 + 𝑒(𝑟−𝜗)(𝑡−𝑇)]

×

𝒷1[
(𝑘1(𝓃1−𝒷1)−

𝒶

2
𝒷1−𝓇𝒷1)𝒥3

−(𝑘2(𝓃2−𝒷2)−
𝒶

2
𝒷2−𝓇𝒷2)𝒥2

]

(𝒥1𝒥3−𝒥2
2) )

 
 
< 0  

Therefore 
𝜕𝜋1

∗

𝜕𝑐
< 0 
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(ii) 
𝜕𝜋1

∗

𝜕𝒶
= (

−
[𝒷1

2𝒥3−𝒷1𝒷2𝒥2]

2(𝒥1𝒥3−𝒥2
2)

× (1 −
𝑐

(𝑟−𝜗)𝑥
[ 1 + 𝑒(𝑟−𝜗)(𝑡−𝑇)])

), 

Since [𝒷1
2𝒥3 −𝒷1𝒷2𝒥2] > 0 and  

(1 −
𝑐

(𝑟−𝜗)𝑥
[ 1 + 𝑒(𝑟−𝜗)(𝑡−𝑇)]) > 0  

Then  

𝜕𝜋1
∗

𝜕𝒶
= (

−
[𝒷1

2𝒥3−𝒷1𝒷2𝒥2]

2(𝒥1𝒥3−𝒥2
2)

× (1 −
𝑐

(𝑟−𝜗)𝑥
[ 1 + 𝑒(𝑟−𝜗)(𝑡−𝑇)])

) < 0  

Therefore 
𝜕𝜋1

∗

𝜕𝒶
< 0 

(iii) 
𝜕𝜋1

∗

𝜕𝜗
=

(

 
 
 
 
 −(

𝑐

𝑥𝜗2

+
𝑐(𝑇−𝑡)

(𝑟−𝜗)𝑥

) [ 1 + 𝑒(𝑟−𝜗)(𝑡−𝑇)]

×

𝒷1

[
 
 
 
 (
𝑘1(𝓃1−𝒷1)

−
𝒶

2
𝒷1−𝓇𝒷1

)𝒥3

−(
𝑘2(𝓃2−𝒷2)

−
𝒶

2
𝒷2−𝓇𝒷2

)𝒥2
]
 
 
 
 

(𝒥1𝒥3−𝒥2
2) )

 
 
 
 
 

 

Since(
𝑐

𝑥𝜗2
+

𝑐(𝑇−𝑡)

(𝑟−𝜗)𝑥
) [ 1 + 𝑒(𝑟−𝜗)(𝑡−𝑇)] > 0 and 

𝒷1[
(𝑘1(𝓃1−𝒷1)−

𝒶

2
𝒷1−𝓇𝒷1)𝒥3

−(𝑘2(𝓃2−𝒷2)−
𝒶

2
𝒷2−𝓇𝒷2)𝒥2

]

(𝒥1𝒥3−𝒥2
2)

> 0 

Then  

𝜕𝜋1
∗

𝜕𝜗
=

(

 
 
 
 
 −(

𝑐

𝑥𝜗2

+
𝑐(𝑇−𝑡)

(𝑟−𝜗)𝑥

)[ 1 + 𝑒(𝑟−𝜗)(𝑡−𝑇)]

×

𝒷1

[
 
 
 
 (
𝑘1(𝓃1−𝒷1)

−
𝒶

2
𝒷1−𝓇𝒷1

)𝒥3

−(
𝑘2(𝓃2−𝒷2)

−
𝒶

2
𝒷2−𝓇𝒷2

)𝒥2
]
 
 
 
 

(𝒥1𝒥3−𝒥2
2) )

 
 
 
 
 

< 0  

Therefore 
𝜕𝜋1

∗

𝜕𝜗
< 0 

(iv) 
𝜕𝜋1

∗

𝜕𝓃1
= (

[𝒷1𝑘1𝒥3]

(𝒥1𝒥3−𝒥2
2)

× (1 −
𝑐

(𝑟−𝜗)𝑥
[ 1 + 𝑒(𝑟−𝜗)(𝑡−𝑇)])

) 

Since [𝒷1𝑘1𝒥3] > 0 and 

 (1 −
𝑐

(𝑟−𝜗)𝑥
[ 1 + 𝑒(𝑟−𝜗)(𝑡−𝑇)]) > 0 

Then  

𝜕𝜋1
∗

𝜕𝓃1
= (

[𝒷1𝑘1𝒥3]

(𝒥1𝒥3−𝒥2
2)

× (1 −
𝑐

(𝑟−𝜗)𝑥
[ 1 + 𝑒(𝑟−𝜗)(𝑡−𝑇)])

)  

Therefore 
𝜕𝜋1

∗

𝜕𝓃1
> 0 

(v) 
𝜕𝜋1

∗

𝜕𝑡
=

(

 
 

−
𝑐

𝑥
[𝑒(𝑟−𝜗)(𝑡−𝑇)]

×

𝒷1[
(𝑘1(𝓃1−𝒷1)−

𝒶

2
𝒷1−𝓇𝒷1)𝒥3

−(𝑘2(𝓃2−𝒷2)−
𝒶

2
𝒷2−𝓇𝒷2)𝒥2

]

(𝒥1𝒥3−𝒥2
2) )

 
 

 

Since 
𝑐

𝑥
[𝑒(𝑟−𝜗)(𝑡−𝑇)] > 0 and 

𝒷1[
(𝑘1(𝓃1−𝒷1)−

𝒶

2
𝒷1−𝓇𝒷1)𝒥3

−(𝑘2(𝓃2−𝒷2)−
𝒶

2
𝒷2−𝓇𝒷2)𝒥2

]

(𝒥1𝒥3−𝒥2
2)

> 0 

Then  

𝜕𝜋1
∗

𝜕𝑡
=

(

 
 

−
𝑐

𝑥
[𝑒(𝑟−𝜗)(𝑡−𝑇)]

×

𝒷1[
(𝑘1(𝓃1−𝒷1)−

𝒶

2
𝒷1−𝓇𝒷1)𝒥3

−(𝑘2(𝓃2−𝒷2)−
𝒶

2
𝒷2−𝓇𝒷2)𝒥2

]

(𝒥1𝒥3−𝒥2
2) )

 
 
< 0  

Therefore 
𝜕𝜋1

∗

𝜕𝑡
< 0 

Proposition 3 Suppose 𝒶 > 0,𝓃1 > 0,𝓃2 > 0,

𝑟 > 0, 𝜗 > 0, 𝑡 ∈ [0, 𝑇], 𝑘1 > 0, 𝑘2 > 0, , 𝒷1 >

0, 𝒷2 > 0, 𝑥 > 0, (𝒥1𝒥3 − 𝒥2
2) > 0, and 𝑇 − 𝑡 >

0 then  

(i) 
𝜕𝜋1

∗

𝜕𝑐
< 0 (ii)

𝜕𝜋1
∗

𝜕𝒶
< 0 (iii) 

𝜕𝜋1
∗

𝜕𝜗
< 0 (iv) 

𝜕𝜋1
∗

𝜕𝓃1
> 0(v) 

𝜕𝜋1
∗

𝜕𝑡
< 0 

Proof 

Recall that 

𝜋2
∗ =

(

 
 
 
 𝒷2

[
 
 
 
 (

𝑘2(𝓃2−𝓈2)

−
𝒶

2
𝒷2−𝓇𝒷2

)𝒥1

−(
𝑘1(𝓃1−𝒷1)

−
𝒶

2
𝒷1−𝓇𝒷1

)𝒥2
]
 
 
 
 

(𝒥1𝒥3−𝒥2
2)

× (1 −
𝑐

(𝑟−𝜗)𝑥
[ 1 + 𝑒(𝑟−𝜗)(𝑡−𝑇)]))
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(i) 
𝜕𝜋2

∗

𝜕𝑐
=

(

 
 
 
 

−
1

(𝑟−𝜗)𝑥
[ 1 + 𝑒(𝑟−𝜗)(𝑡−𝑇)]

×

𝒷2

[
 
 
 
 (

𝑘2(𝓃2−𝓈2)

−
𝒶

2
𝒷2−𝓇𝒷2

)𝒥1

−(
𝑘1(𝓃1−𝒷1)

−
𝒶

2
𝒷1−𝓇𝒷1

)𝒥2
]
 
 
 
 

(𝒥1𝒥3−𝒥2
2) )

 
 
 
 

 

Since
1

(𝑟−𝜗)𝑥
[ 1 + 𝑒(𝑟−𝜗)(𝑡−𝑇)] > 0 and 

𝒷2[
(𝑘2(𝓃2−𝓈2)−

𝒶

2
𝒷2−𝓇𝒷2)𝒥1

−(𝑘1(𝓃1−𝒷1)−
𝒶

2
𝒷1−𝓇𝒷1)𝒥2

]

(𝒥1𝒥3−𝒥2
2)

> 0 

Then  

𝜕𝜋2
∗

𝜕𝑐
=

(

 
 
 
 

−
1

(𝑟−𝜗)𝑥
[ 1 + 𝑒(𝑟−𝜗)(𝑡−𝑇)]

×

𝒷2

[
 
 
 
 (

𝑘2(𝓃2−𝓈2)

−
𝒶

2
𝒷2−𝓇𝒷2

)𝒥1

−(
𝑘1(𝓃1−𝒷1)

−
𝒶

2
𝒷1−𝓇𝒷1

)𝒥2
]
 
 
 
 

(𝒥1𝒥3−𝒥2
2) )

 
 
 
 

< 0  

Therefore 
𝜕𝜋2

∗

𝜕𝑐
< 0 

(ii) 
𝜕𝜋2

∗

𝜕𝒶
= (

−
[𝒷2

2𝒥1−𝒷1𝒷2𝒥2]

2(𝒥1𝒥3−𝒥2
2)

× (1 −
𝑐

(𝑟−𝜗)𝑥
[ 1 + 𝑒(𝑟−𝜗)(𝑡−𝑇)])

) 

Since [𝒷2
2𝒥1 −𝒷1𝒷2𝒥2] > 0 and  

(1 −
𝑐

(𝑟−𝜗)𝑥
[ 1 + 𝑒(𝑟−𝜗)(𝑡−𝑇)]) > 0  

Then  

𝜕𝜋2
∗

𝜕𝒶
= (

−
[𝒷2

2𝒥1−𝒷1𝒷2𝒥2]

2(𝒥1𝒥3−𝒥2
2)

× (1 −
𝑐

(𝑟−𝜗)𝑥
[ 1 + 𝑒(𝑟−𝜗)(𝑡−𝑇)])

) < 0  

Therefore 
𝜕𝜋2

∗

𝜕𝒶
< 0 

(iii) 
𝜕𝜋2

∗

𝜕𝜗
=

(

 
 
 
 −(

𝑐

𝑥𝜗2

+
𝑐(𝑇−𝑡)

(𝑟−𝜗)𝑥

) [ 1 + 𝑒(𝑟−𝜗)(𝑡−𝑇)]

×

𝒷2[
(𝑘2(𝓃2−𝓈2)−

𝒶

2
𝒷2−𝓇𝒷2)𝒥1

−(𝑘1(𝓃1−𝒷1)−
𝒶

2
𝒷1−𝓇𝒷1)𝒥2

]

(𝒥1𝒥3−𝒥2
2) )

 
 
 
 

 

Since(
𝑐

𝑥𝜗2
+

𝑐(𝑇−𝑡)

(𝑟−𝜗)𝑥
) [ 1 + 𝑒(𝑟−𝜗)(𝑡−𝑇)] > 0 and 

𝒷2[
(𝑘2(𝓃2−𝓈2)−

𝒶

2
𝒷2−𝓇𝒷2)𝒥1

−(𝑘1(𝓃1−𝒷1)−
𝒶

2
𝒷1−𝓇𝒷1)𝒥2

]

(𝒥1𝒥3−𝒥2
2)

> 0 

Then  

𝜕𝜋2
∗

𝜕𝜗
=

(

 
 
 
 −(

𝑐

𝑥𝜗2

+
𝑐(𝑇−𝑡)

(𝑟−𝜗)𝑥

)[ 1 + 𝑒(𝑟−𝜗)(𝑡−𝑇)]

×

𝒷2[
(𝑘2(𝓃2−𝓈2)−

𝒶

2
𝒷2−𝓇𝒷2)𝒥1

−(𝑘1(𝓃1−𝒷1)−
𝒶

2
𝒷1−𝓇𝒷1)𝒥2

]

(𝒥1𝒥3−𝒥2
2) )

 
 
 
 

< 0  

Therefore 
𝜕𝜋2

∗

𝜕𝜗
< 0 

(iv) 
𝜕𝜋2

∗

𝜕𝓃2
= (

[𝒷2𝑘2𝒥1]

(𝒥1𝒥3−𝒥2
2)

× (1 −
𝑐

(𝑟−𝜗)𝑥
[ 1 + 𝑒(𝑟−𝜗)(𝑡−𝑇)])

) 

Since[𝒷2𝑘2𝒥1] > 0 and  

(1 −
𝑐

(𝑟 − 𝜗)𝑥
[ 1 + 𝑒(𝑟−𝜗)(𝑡−𝑇)]) > 0 

Then  

𝜕𝜋2
∗

𝜕𝓃2
= (

[𝒷2𝑘2𝒥1]

(𝒥1𝒥3−𝒥2
2)

× (1 −
𝑐

(𝑟−𝜗)𝑥
[ 1 + 𝑒(𝑟−𝜗)(𝑡−𝑇)])

) > 0  

Therefore 
𝜕𝜋2

∗

𝜕𝓃2
> 0 

(v) 
𝜕𝜋2

∗

𝜕𝑡
=

(

 
 

−
𝑐

𝑥
[𝑒(𝑟−𝜗)(𝑡−𝑇)]

×

𝒷2[
(𝑘2(𝓃2−𝓈2)−

𝒶

2
𝒷2−𝓇𝒷2)𝒥1

−(𝑘1(𝓃1−𝒷1)−
𝒶

2
𝒷1−𝓇𝒷1)𝒥2

]

(𝒥1𝒥3−𝒥2
2) )

 
 

 

Since 
𝑐

𝑥
[𝑒(𝑟−𝜗)(𝑡−𝑇)] > 0 and 

𝒷2[
(𝑘2(𝓃2−𝓈2)−

𝒶

2
𝒷2−𝓇𝒷2)𝒥1

−(𝑘1(𝓃1−𝒷1)−
𝒶

2
𝒷1−𝓇𝒷1)𝒥2

]

(𝒥1𝒥3−𝒥2
2)

> 0 

Then  
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𝜕𝜋2
∗

𝜕𝑡
=

(

 
 

−
𝑐

𝑥
[𝑒(𝑟−𝜗)(𝑡−𝑇)]

×

𝒷2[
(𝑘2(𝓃2−𝓈2)−

𝒶

2
𝒷2−𝓇𝒷2)𝒥1

−(𝑘1(𝓃1−𝒷1)−
𝒶

2
𝒷1−𝓇𝒷1)𝒥2

]

(𝒥1𝒥3−𝒥2
2) )

 
 
< 0  

Therefore 
𝜕𝜋2

∗

𝜕𝑡
< 0 

Here, we examine the effect of some sensitive 

parameters on the optimal investment strategies. 

From proposition 2 and 3, it is observed that the 

optimal investment strategies for the risky assets 

are inversely proportional to contribution rate 𝑐, 

tax rate imposed on the invested fund 𝜗, 

proportional administration fee 𝒶, investment 

time 𝑡, and directly proportional to the 

appreciation rate of the risky assets.We also 

observed that the proportion of  investment in the 

two risky assets increases as the risky asset value 

appreciate; this is so since we know that as the 

value of stock market prices appreciate, the 

investor will love to invest more to make more 

dividend and such investments are attractive and 

lucrative at the same time hence plays a vital role 

in the mind of the investor while taking his or her 

decision. On the contrary, the optimal investment 

plans are decreasing functions of taxes imposed 

on investment in the risky assets; this is because 

high tax rate discourages investment hence the 

investor may be discouraged in investing in assets 

with high taxation rate and may likely move on to 

invest more in a lesser or non-taxable asset. Also, 

it is observed that the as the administration fee 

increases, the proportion of the investor’s wealth 

to be invested in the risky assets decreases; this so 

because most pension administrators demand 

some fees for portfolio management and since 

investment in stock is highly volatile, the 

administrative fee may also be high and, in some 

cases, discouraging for the investor to continue 

investing in the risky assets. Similarly, we 

observed as the contribution rate of the member 

increases the fund manager prefer invest more in 

the risk free asset and less in the risky assets. This 

is so because with more money in the system, the 

fund manager may be unwilling to take more risk 

hence a decrease in investment in the risky assets. 

Finally, we observed that as retirement time draw 

closer, the member shows unwillingness to invest 

in the two risky assets.  

5.0 Conclusion 

In general, the optimal investment plans of a 

member with logarithm utility in defined pension 

(DC) scheme with proportional administrative fee 

and tax on invested funds was studied. A portfolio 

of one risk free asset and two risky assets was 

considered where the market prices of the two 

risky assets were modelled by the O-U process. 

The Legendre transformation and dual theory with 

asymptotic expansion technique was used to find 

closed form solutions of the optimal investment 

plans. Finally, the impact of some sensitive 

parameters of the optimal investment plans was 

presented with observations that aside from the 

fluctuation in the stock market prices which can 

be seen in equation (2), the optimal investment 

plans for the risky assets are inversely 

proportional to contribution rate 𝑐, tax rate 

imposed on the invested fund 𝜗, proportional 

administration fee 𝒶, investment time 𝑡, and 

directly proportional to the appreciation rate of the 

risky assets. in conclusion, this research will 

enable fund managers in a DC pension scheme to 

make a relatively right choice of investment 

strategies when dealing with markets modelled by 

stochastic volatilities such the O-U process which 

shows that there exist fluctuations in the stock 

market prices. 
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