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Abstract

The power lomax distribution is a very good model in modelling real life finan-
cial and reliability data. However, we extend the power lomax distribution with the
Weibull G family in order to increase its flexibility and usage. Therefore, in this paper
a new five-parameter distribution is introduced called the Weibull-Power Lomax distri-
bution. The structural properties of the proposed distribution such as hazard function,
moments, probability weighted moments, distribution of order statistics and quantile
function are derived. The maximum likelihood estimation technique is employed to esti-
mate the parameters of the proposed distribution. To also prove the increased flexibility
and performance of the distribution, it is used to model 63 observations of strengths
of 1.5cm glass fibers, along with its other competing distributions. The results indicate
that the proposed distribution fit the glass fiber data and performs much better than its
competitors.
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1 Introduction

The Lomax or Pareto II, distribution by Lomax (1954) was originally used for modeling
business failure data, however, it has been widely applied in a variety of contexts. Hassan
and Al-Ghamdi (2009) mentioned that it is used for reliability modelling and life testing. The
distribution has been used for modeling different data studied by so many authors: - Harris
(1968) used Lomax distribution for income and wealth data; Atkinson and Harrison (1978)
used the distribution for modelling business failure data, while Corbelini et al. (2007) used it
to model firm size and queuing problems. The lomax distribution has also found application
in the biological sciences and in modelling the distribution of the sizes of computer files on
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servers Holland et al. (2006). Some authors, such as Bryson (1974), have suggested the use
of this distribution as an alternative to the exponential distribution when the data are heavy-
tailed. This distribution has established wide application in numerous fields especially in
engineering, actuarial science, medical and biological sciences, in lifetime and reliability
modelling Tahir et al. (2015b). The Lomax distribution is suggested to be a good alternative
to exponential, gamma, and Weibull distributions Tahir et al. (2015b).
Power Lomax distribution belongs to inverted family of distributions and known to be very
flexible in fitting data sets, where the non-monotonicity of failure rate has been realized
Rady et al. (2016). Power Lomax was applied to bladder Cancer data by Rady et al. (2016).
The Weibull Generalized (Weibull-G) family, is very flexible and can be used for analysing
life time data of different types Bourguignon et al. (2014). The main reasons for using the
Weibull G family are to make the kurtosis more flexible (compared to the baseline model)
and also to construct heavy-tailed distributions that are not long-tailed for modelling real
data Tahir et al. (2015a).

In this paper we extend the Power Lomax distribution using Weibull-G family of prob-
ability distributions, in order to increase the flexibility of the baseline Power Lomax distri-
bution. The rest of the paper is outlined as follows. In Section 2, we define the cumulative
distribution function (cdf), probability density function (pdf), hazard function and quantile
function of the proposed Weibull Power Lomax (W-PL) distribution. Section 3 provides the
mixture distribution of the proposed distribution. Some statistical properties of the distribu-
tion are discussed in Section 4. Section 5 discusses the estimation methods. The glass fibers
data are analyzed in Section 6, while Section 7 concludes the paper.

2 The Proposed Weibull-Power Lomax Distribution (WPLD)

2.1 The WG- Distribution

Given a continuous baseline distribution function G(x, ξ) and probability density function
g(x, ξ), Bourguignon et al. (2014)Bourguignon, defined the cdf of the Weibull-G family of
distributions, F (x; ρ, ϕ, ξ) as

F (x; ρ, ϕ, ξ) == 1− exp
{
−ρ
[
G(x; ξ)

G(x; ξ)

]ϕ}
x ∈ D ⊆ <; ρ, ϕ > 0,

(1)

where baseline cdf depends on a parameter vector ξ. The family pdf f(x; ρ, ϕ, ξ) is obtained
from (1) as,

f(x; ρ, ϕ ξ) = ρϕg(x; ξ)
G(x; ξ)ϕ−1

Ḡ(x; ξ)ϕ+1
exp

{
−ρ
[
G(x; ξ)

G(x; ξ)

]ϕ}
(2)

2.2 The Power Lomax Distribution as a Baseline Distribution

Abdul-Moniem (2017) define the probability density function and the cumulative distribution
function of the Power Lomax Distribution as (3) and (4) respectively.
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g(x;α, β, λ) = αβλ−1xβ−1

(
1 +

xβ

λ

)−(α+1)

;x > 0, (α, β, λ > 0) (3)

G(x;α, β, λ) = 1−
(

1 +
xβ

λ

)−α

(4)

Where, α, β, are shape parameters, while λ, is a scale parameter.

3 The Weibull-Power Lomax Distribution (WPL)

This is the five parameter, distribution, written as WPLD (ξ) with the parameter vector (ξ) =
(ρ, ϕ, α, β, λ) . Now inserting(4) in (3) yields the WPL-cdf

F (x; ρ, ϕ, α, β, λ, ) = 1− exp

{
−ρ
[(

1 +
xβ

λ

)α
− 1

]ϕ}
(5)

The pdf corresponding to( 5) is given by

f(x; ρ, ϕ, α, β, λ) =
ρϕαβ

λ
xβ−1

[
1 +

xβ

λ

](α−1)([
1 +

xβ

λ

]α
− 1

)ϕ−1

× exp

{
−ρ
([

1 +
xβ

λ

]α
− 1

)ϕ}
(6)

where ρ,ϕ, and α > 0,β > 0 are the shape parameters while λ is the scale parameter.
Henceforth, we denote a random variable X having pdf (6) by X∼WpL(a,b, α,β,λ).
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Figure 1 The Graph of the Probability density function of WPL distribution, at different
values of the parameters

The graph of the pdf and cdf of Weibull-Power Lomax Distribution, with different pa-
rameter values are given in Fig (1) and Fig (2), respectively. The proposed distribution
appears to be right Skewed and flexible heavy/fat tailed distribution as can be glanced by
varying the shape parameter values.
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Figure 2 The Graph of the Cumulative distribution function of WPL distribution, at different
values of the parameters
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Figure 3 Hazard rate function of WPL distribution

3.1 Hazard Rate

The hazard function which has an important application in survival (reliability) analysis, and
is defined by:

h(x) =
g(x)

1−G(x)
(7)

Hence, the hazard function for Weibull-Power Lomax Distribution is given by 8. The hazard
function is the probability of failure in an infinitesimally small time period betweenx and
x+ ∂(x) given that the subject has survived up to time x . The graph of the hazard function
of Weibull-Power Lomax Distribution is shown in fig 3.

h(x; ρ, ϕ, α, β, λ) =
ρϕαβ

λ
xβ−1

[
1 +

xβ

λ

](α−1)([
1 +

xβ

λ

]α
− 1

)ϕ−1

(8)

3.2 Quantile Function

The Quantile Function Q(u), is used to partition probability distributions. It can also be
used to obtain median of a distribution and for simulation of random samples of different
sizes. Quantile Function can be obtained by taking the inverse of the cumulative distribution
function of a distribution.
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3.2.1 Lemma 1:

Let the random variable u be uniformly distributed on the interval (0, 1) and define another
random variable as

y =
1

1 +
{
−11

ρ ln(1− u)
}−1

ϕ

(9)

then the Quantile functionQ(u) of the Weibull Power Lomax Distribution WPLD (ϕ, ρ, α, β, λ)
is given by

Q(u) =
{
λ
[
(1− y)

−1
α − 1

]} 1
β (10)

3.2.2 Lemma 2:

Let the random variable u follow a uniform distribution on the interval (0, 1), then the Quan-
tile function Q(u) of the Weibull Power Lomax Distribution WPLD (ϕ, ρ, α, β, λ) is given
by

Q(u) =

λ
(1 +

{
−1

ρ
ln(1− u)

} 1
ϕ

) 1
α

− 1


1
β

(11)

The median of Weibull Power Lomax Distribution WPLD can be obtained by substituting
u = 1

2 in equation (11) which gives

Q(u) =

λ
(1 +

{
−1

ρ
ln(1− 1

2
)

} 1
ϕ

) 1
α

− 1


1
β

(12)

4 Mixture Representation
The WPL density can be expressed as

f(x; ρ, ϕ, α, β, λ) = ρϕg(x)
G(x)ϕ−1

Ḡ(x)ϕ+1
exp

{
−ρ
[
G(x)

G(x)

]β}
(13)

Inserting (3) and (4) in (13), we obtain

f(x; ρ, ϕ, α, β, λ) =
ρϕαβ

λ
xβ−1

[
1 +

xβ

λ

](α−1)([
1 +

xβ

λ

]α
− 1

)ϕ−1
× exp

{
−ρ
([

1 +
xβ

λ

]α
− 1

)ϕ}
(14)

873



Communication in Phsical Sciences, 2020, 6(2):869-881

for us to obtain a simple form for the WPL pdf,we can expand (14) in power series.

Let A = exp

{
−ρ
([

1 + xβ

λ

]α
− 1
)ϕ}

A =

∞∑
k=0

(−1)kρk

k!

{([
1 +

xβ

λ

]α
− 1

)ϕk}

Inserting this expansion in (14) and, after some simplification, we obtain

f (ρ, ϕ, α, β, λ) =

∞∑
k=0

(−1)kρk+1

k!

(
ϕαβλ−1

)
xβ−1

×
[
1 +

xβ−1

λ

](α−1)
×
([

1 +
xβ

λ

]α
− 1

)ϕ(k+1)−1

(15)

After a power series expansion the last term in equation (15) becomes

(k+1)ϕ−1∑
j=0

(−1)
j
(
[(k+1)ϕ−1]
j

){[
1 + (

xβ

λ
)

]}αj
putting the two results together we have,

f (ρ, ϕ, α, βλ) = ∑∞
k=0(−1)kρk

∑(k+1)ϕ−1
j=0 (−1)

j
(
[(k+1)ϕ−1]
j

)
k! vk,j︸ ︷︷ ︸
×
(
ρϕαβλ−1

)
xβ−1

[
1 +

xβ

λ

][α(j+1)−1]

g[α(j+1)−1](x)︸ ︷︷ ︸ (16)

The above equation can be written as

f (ρ, ϕ, α, βλ) =

∞∑
k,=o

(k+1)ϕ−1∑
j=0

Vkg [α(j + 1)− 1] (x) (17)

Equation (17) shows that the WPL density function has a double mixture representation of Exponen-
tial densities. So, several of it’s structural properties can derived from those of Exponential distribu-
tion. The coefficients vk,j depends on the generator parameters.

5 some statistical properties

5.1 moments
Most of the features and characteristics of a distribution can be studied through moments (for example
Kurtosis, skewness and dispersion ).
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5.1.1 Lemma 3

If X ∼Wpl(a,b,α,β,λ) then the rth moments of X is given as

µ
′

r =E(Xr) =

∫ ∞
0

Xrf(x)dx (18)

From (17) the f(x) of WPL is given as,

f (ρ, ϕ, α, βλ) =

∞∑
k,=o

(k+1)ϕ−1∑
j=0

Vkg [α(j + 1)− 1] (x)

µ
′

r = E(Xr) =

∞∑
k,=0

(k+1)ϕ−1∑
j=0

Vk,j

∫ ∞
0

Xrgα[(j + 1) − 1](x)dx (19)

(for r ≤ α)

µ
′

r = λ
r
β

r∑
k=0

(k+1)ϕ−1∑
j=0

(−1)jVk,jB

[
r

β
+ 1,

(
(−α(j + 1))−

(
r

β

))]
(20)

Where Vk,j is given in (16).

5.2 Moment Generating Function
Theorem 1. If X ∼ Wpl(ρ, ϕ, α, β, λ) then the moment generating function(mgf) of X is given as,

Mx(t) =

∞∑
r=0

tr

r!
µ1
r (21)

Proof 1. By definition, the mgf of a variable X with density f(x) is given as

Mx(t) =

∫ ∞
−∞

etxf(x)dx (22)

By substituting the value of f(x) from (17) in (22) we’ve

Vk,j

∫ ∞
0

xβ−1
(

1 +
xβ

λ

)−[1−α(j+1)]

etxdx (23)

After some algebra and simplification (23) can be written as,

∞∑
n=0

Vk,j(−1)n!

(
1−α(j+1)
n

)
λn+1

∫ ∞
0

xβ(n+1)−1etxdx (24)

Mx(t) =

∞∑
n=0

Vk,j(−1)n!

(
1−α(j+1)
n

)
λn+1

[
(−t)−(n+1)β , Γ (β (n+ 1))

]
(25)

forβ(n+ 1) > 0, and t < 0.

Vk,j is given in equation (17)
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5.3 Probability Weighted Moments
The probability weighted moments (pwms) are very useful in driving estimators of the distribution
parameters and quantiles of generalized distributions. They have low variance and non severe bias,
and they are comparably favourable with maximum likelihood estimators.
the (q, r)th pwm of X for (r ≥ 1, q ≥ 0) is formally defined by

Pr,q = E [xr F (x)q] =

∫ ∞
0

F (x)qf(x)dx (26)

So from (5) we can write,

F (x : ρ, ϕ, α, β, λ)q =

∞∑
i=0

(−1)i
(
q

i

)

× exp

{
ρi

{(
1 +

xβ

λ

)α
− 1

}ϕ}
(27)

Then after some algebra from (5) and (6) we can express

Pr,q =

∞∑
q,i=0

(−1)i
(
q
i

)
i+ 1

∫ ∞
o

xrf(x : (i+ 1)ρ, ϕ, α, β, λ)dx

by using (19) we can obtain for (r < α)

pr,q = λ
r
β

∞∑
i=0

(k+1)ϕ−1∑
j=0

(−1)i+j
(
q
i

)
i+ 1

Qk,j

r∑
k=0

B

[
r

β
+ 1,

(
(−α(j + 1))− r

β

)]
(28)

where

Qk,j =

∑∞
k=0(−1)kρk(1 + i)

k∑(k+1)ϕ−1
j=0 (−1)

j
(
[(k+1)ϕ−1]
j

)
k!

5.4 Order Statistics
Order statistics are used in various areas of statistical theories, for example, identifying of outliers in
quality control process. In this section we derive the the density of the ith order statistics expression,
for the pdf of the Weibull power Lomax distribution.
Let X1, X2, ..., Xn be a random sample of size n from a continuous population having a pdf f(x) and
distribution function (cdf) F(x) Let X1:n ≤ X2:n ≤ ... ≤ Xn:n be the corresponding order statistics
(OS). The pdf of Xi:n the ith OS is given by Tahir et al. (2015b), as,

fi:n(x) =
f(x)

B(j, n− i+ 1)

n−i∑
j=0

(−1)j
(
n− i
j

)
F (x)i+j−1 (29)

Thus we can write

F (x)i+j−1 =

∞∑
t=0

(−1)t
(
i+ j − i

t

)
exp

{
−tρ

{(
1 +

xβ

λ

)α
− 1

}ϕ}
(30)

Now inserting (6) in (29) the above equation we obtained

fi:n(x) =

∞∑
t=0

Zt+1f(x : (t+ 1)ρ, ϕ, α, β, λ) (31)
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where

Zt+1 =
1

B(j, n− i+ 1)(t+ 1)

n−i∑
j=0

∞∑
t=0

(−1)j+t
(
n− i
j

)(
i+ j − i

t

)
(32)

Where (f(x : (t+ 1)ρ, ϕ, α, β, λ)) denotes the density of WPL with parameters (t+ 1)ρ, ϕ, α, β, λ
so the density function of WPL order statistics is a mixture of WPL densities.

6 Estimation

6.1 Maximum Likelihood Estimation
In this section we make estimation of the parameters of WPL, by the maximum likelihood method,
Let X1, X2,
, Xn be a random sample of size n from the Wpl distribution given by

f(x; ρ, ϕ, α, β, λ) =
ρϕαβ

λ
xβ−1

[
1 +

xβ

λ

](α−1)
×
([

1 +
xβ

λ

]α
− 1

)ϕ−1
× exp

{
−ρ
([

1 +
xβ

λ

]α
− 1

)ϕ}
(33)

the log-likelihood function for the vector of parameters Θ = (ρ, ϕ, x, β, λ)T can be expressed as

l = l(Θ) = n log(ρϕαβ)− n log λ+ (β − 1)

n∑
i=1

log xi + (α− 1)

n∑
i=1

log

(
1 +

xβi
λ

)
+ (ϕ− 1)

×
n∑
i=1

log

[(
1 +

xβi
λ

)α
− 1

]
+

n∑
i=1

{
−ρ

[(
1 +

xβi
λ

)α
− 1

]ϕ}
(34)

The log-likelihood function can be maximized by solving the non-linear likelihood equations below
obtained by differentiating the above equation.

d(l(Θ))

dρ
= Uρ =

n

ρ
−

n∑
i=1

{[(
1 +

xβ

λ

)α
− 1

]ϕ}
(35)

∂(l(Θ))

∂ϕ
= Uϕ =

n

ϕ
+

n∑
i=1

log

[(
1 +

xβi
λ

)α
− 1

]

− ρ
n∑
i=1

{[(
1 +

xβi
λ

)α
− 1

]ϕ
log

[(
1 +

xβi
λ

)α
− 1

]}
(36)

∂(l(Θ))

∂α
= Uα =

n

α
+

n∑
i=1

log

(
1 +

xβi
λ

)α
+ (ϕ− 1)

n∑
i=1

(
1 +

xβi
λ

)α
log
(

1 +
xβi
λ

)
[(

1 +
xβi
λ

)α
− 1

] − ϕρ
n∑
i=1[(1 +

xβi
λ

)α
log

(
1 +

xβi
λ

)][(
1 +

xβi
λ

)α
− 1

]ϕ−1 (37)
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∂(l(Θ))

∂β
= Uβ =

n

β
+

n∑
i=1

log(xi)x
β
i

λ


λ

xβi
+

 (α− 1)(
1 +

xβi
λ

) +
(ϕ− 1)[(

1 + xβ

λ

)λ
− 1

]

− ρϕα

×
n∑
i=1

log(xi)x
β
i

λ

([(
1 +

xβ

λ

)α
− 1

]ϕ−1(
1 +

xβ

λ

)α−1)
(38)

∂(l(Θ))

∂λ
= Uλ = −n

λ
−

n∑
i=1

xβi
λ2

(α− 1)(
1 +

xβi
λ

) − n∑
i=1

xβi
λ2

(
1 +

xβi
λ

)α−1

×

 α(ϕ− 1)[(
1 +

xβi
λ

)α
− 1

] − αρϕ[(1 +
xβi
λ

)α
− 1

]ϕ−1 (39)

Solving the equations (35), (36), (6.1), (38), and (39) algebraically may be intractable. To
avoid this problem, one can obtain the MLEs numerically by applying any of the following methods:
NewtonRaphson algorithm.

7 Data Analysis
Here, an application of the Weibull-Power Lomax Distribution, is provided by comparing the fit of
this model with that of some Weibull-G families. The glass fibres data set analyzed by Smith and
Naylor (1987) was used for this comparison. The data set originate from 63 observations of strengths
of 1.5cm glass fibres, primitively obtained by workers at the UK National Physical Laboratory as
reported by Bourguignon et al.(2014). The data set is presented below:
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Table 1 MLEs for 63 observations of strengths of glass fibres

Distribution â b̂ α̂ β̂ λ̂

WPL 0.1404 0.2314 2.1273 13.5221 16.0408
WL 0.1700 3.5281 5.9560 6.0375 -
EW 0.7309 3.2677 2.3134 - -
WIL 0.6583 0.8122 0.7737 0.0371 -

WBXII 0.9866 0.4816 0.2873 0.6236 1.7957
PL - - 4.5151 6.1960 77.3271

WLL 19.9972 0.3236 17.8183 2.7373 -

Table 2 The Statistics `(.), AIC, CAIC, BIC, and HQIC, for strengths of glass fibres

Distribution model `(.) AIC BIC CAIC HQIC
WPL 12.5516 35.1032 36.1559 45.0446 39.3177
WL 14.4533 36.9065 37.5962 45.6791 40.2781

WLL 15.2515 385030 39.1927 47.0756 41.8746
PL 16.3075 38.6151 39.0218 45.8189 45.1438
EW 19.0089 44.0274 44.4342 50.4568 46.5561
WIL 96.8718 185.7433 185.0530 177.1768 182.3717

WBXII 172.6723 355.3446 356.3973 366.0603 359.5592

The method of maximum likelihood is employed to fit the proposed Weibull-Power Lomax distri-
bution, Weibull distribution, Exponentiated Weibull (EW)” distribution, Weibull-Lomax, the baseline
Power-Lomax (PL) distribution, Weibull-Inverse Lomax (WIL), Weibull-Burr Twelve (WBXII) and
Weibull Log-Logistic (WLL) as provided in the work of Bourguignon et al.(2014), to these data.
Criteria such as Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Hannan
Quinn information criterion (HQIC), and Consistent Akaike Information Criterion (CAIC) are used
to compare the distribution models. The distribution model with the smallest AIC, BIC, HQIC, and
CAIC values is considered to be the best distribution. Table 1 and Table 2 shows MLEs of the param-
eters for each of the fitted distributions and the statistics: AIC, BIC, HQIC, and CAIC respectively.
The results from the Weibull-G family of distributions showed that, the proposed Weibull-Power Lo-
max distribution, has the least AIC, BIC, HQIC and CAIC values. Hence, this is an indication that
Weibull-Power Lomax distribution, is a very strong competitor to other distributions used here for
fitting the data set.

8 CONCLUSION
In this paper, we developed a new distribution called Weibull-Power Lomax distribution, which gen-
eralizes the Power Lomax distribution. The pdf, cdf, and hazard function were derived.Moreover,
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some of the mathematical and statistical properties like moments, moments generating function, order
statistics and entropy were alsoderived. The model parameters were estimated by using the maximum
likelihood estimation procedure. Finally, we fit the proposed model to a data and compared it with
estimates from other Weibull-G family distributions. The new distribution was found to provide a
better fit than its competitors.

880



Communication in Phsical Sciences, 2020, 6(2):869-881

References
Abdul-Moniem, I. B. (2017). Order statistics from power lomax distribution. International Journal

of Innovative Science, Engineering and Technology, 4:1–4.

Atkinson, A. and Harrison, A. (1978). Distribution of personal wealth in britain cambridge university
press.

Bourguignon, M., Silva, R. B., and Cordeiro, G. M. (2014). The weibull-g family of probability
distributions. Journal of Data Science, 12(1):53–68.

Bryson, M. C. (1974). Heavy-tailed distributions: properties and tests. Technometrics, 16(1):61–68.

Harris, C. M. (1968). The pareto distribution as a queue service discipline. Operations Research,
16(2):307–313.

Hassan, A. S. and Al-Ghamdi, A. S. (2009). Optimum step stress accelerated life testing for lomax
distribution. Journal of Applied Sciences Research, 5(12):2153–2164.

Holland, O., Golaup, A., and Aghvami, A. (2006). Traffic characteristics of aggregated module
downloads for mobile terminal reconfiguration. IEE Proceedings-Communications, 153(5):683–
690.

Lomax, K. (1954). Business failures: Another example of the analysis of failure data. Journal of the
American Statistical Association, 49(268):847–852.

Rady, E.-H. A., Hassanein, W., and Elhaddad, T. (2016). The power lomax distribution with an
application to bladder cancer data. SpringerPlus, 5(1):1838.

Smith, R. L. and Naylor, J. (1987). A comparison of maximum likelihood and bayesian estimators
for the three-parameter weibull distribution. Journal of the Royal Statistical Society: Series C
(Applied Statistics), 36(3):358–369.

Tahir, M. H., Cordeiro, G. M., Alizadeh, M., Mansoor, M., Zubair, M., and Hamedani, G. G. (2015a).
The odd generalized exponential family of distributions with applications. Journal of Statistical
Distributions and Applications, 2(1):1.

Tahir, M. H., Cordeiro, G. M., Mansoor, M., and Zubair, M. (2015b). The weibull-lomax distribution:
properties and applications. Hacettepe Journal of Mathematics and Statistics, 44(2):461–480.

881


