Monitoring, Assessment, and Remediation of Heavy Metal Contamination: Techniques, Strategies, and Policy Frameworks

Aniekan Udongwo

Received 24 May 2023/Accepted 20 January 2024/Published online: 29 January 2024

Abstract: Heavy metal contamination in ecosystems aquatic poses significant environmental and public health challenges. This manuscript provides a comprehensive review of the sources, pathways, and environmental impacts of heavy metals in water bodies. It examines the intricate interactions between water, sediments, and highlighting aquatic organisms, the bioaccumulation risks to both wildlife and humans. The study also evaluates current and assessment monitoring techniques, including advanced analytical methods and biological indicators, to detect and quantify heavy metal presence. Various remediation strategies are discussed, ranging from traditional methods like chemical stabilization innovative approaches such to as phytoremediation and bioremediation. Additionally, the manuscript reviews existing regulatory frameworks, focusing on Nigerian and international laws aimed at controlling heavy metal pollution. The findings underscore the need for integrated management approaches, combining *effective policy* enforcement with sustainable remediation practices, to mitigate the adverse effects of heavy metal contamination in aquatic environments.

Keywords: Heavy metal contamination, aquatic ecosystems, bioaccumulation, remediation strategies and environmental policy

Aniekan Udongwo

Department of Chemistry Education College of Education, Afaha Nsit Akwa Ibom State, Nigeria Email: <u>amudongwo@yahoo.cmm</u> Orcid id: 0009-0007-9365-9734

1.0 Introduction

metal contamination in aquatic Heavy ecosystems poses a significant threat to environmental and public health, affecting water quality, sediment composition, and organisms. Industrial aquatic effluents. agricultural runoff, mining operations, and urban activities are major contributors to the release of toxic metals such as lead, cadmium, mercury, and arsenic into water bodies. Due to their non-degradable nature, heavy metals persist in the environment, bioaccumulate through the food chain, and cause adverse health effects, including organ damage and neurological disorders in humans (Sinclair et al., 2024). This has prompted increased effective attention toward monitoring. assessment, and remediation strategies.

Recent studies have employed advanced techniques for detecting and quantifying heavy metals in water, sediment, and aquatic organisms. Analytical methods such as Atomic Absorption Spectroscopy (AAS) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) have proven effective for the precise measurement of trace metal concentrations in water samples (Ali et al., 2013). Sequential extraction techniques and Xray fluorescence (XRF) are widely applied for sediment analysis, offering insights into the chemical forms and bioavailability of metals (Kadim, & Risjani 2022). Fish tissue analysis, particularly of bioindicator species, has emerged as a critical tool for evaluating the ecological impact of metal pollution, with quantification of metals in gills, liver, and muscle tissues providing valuable data on exposure levels (Varol et al., 2020). Despite advancements in analytical techniques and remediation technologies, significant gaps remain. Many existing studies focus on isolated compartments environmental without integrating assessments across water, sediment, and biota. Additionally, while remediation strategies such as chemical precipitation and nanomaterial-based adsorption have shown promise, their scalability and long-term environmental impact require further investigation (Eddy et al., 2024). Policies and regulatory frameworks also need to be strengthened, with enhanced enforcement mechanisms to address the rising threat of heavy metal contamination.

This study aims to provide a comprehensive evaluation of monitoring and assessment techniques for heavy metal contamination, alongside effective remediation strategies and policy recommendations. By investigating water, sediment, and fish tissue analyses and examining emerging remediation technologies, the study seeks to bridge existing knowledge gaps and offer practical solutions for pollution management.

The significance of this study lies in its potential to inform environmental regulators, policymakers, and industry stakeholders on best practices for mitigating heavy metal pollution. The findings will contribute to developing cost-effective and sustainable remediation approaches, ultimately promoting the protection and restoration of aquatic ecosystems and public health.

2.0 Monitoring and Assessment of Heavy Metal Contamination

Heavy metal contamination in environmental systems, particularly aquatic ecosystems, has emerged as a significant concern due to its persistent nature and detrimental impacts on both ecosystems and human health. Effective monitoring and assessment of heavy metal contamination require a multidisciplinary approach encompassing advanced analytical techniques, comprehensive environmental assessments, and biological monitoring. The

2.1 Water Analysis Techniques

Monitoring heavy metals in water bodies is crucial for understanding contamination dynamics and assessing risks to aquatic organisms and human populations. Several analytical techniques have been employed to achieve precise and accurate metal quantification:

Atomic Absorption Spectroscopy (AAS): AAS is one of the most widely used methods for detecting trace metal concentrations in water samples. Ali et al. (2013) highlighted the effectiveness of AAS in providing accurate and reproducible results for metals such as lead, cadmium, and mercury. However, the technique is limited by its requirement for sample pre-treatment and single-element detection per analysis.

Coupled Inductively Plasma Mass Spectrometry (ICP-MS): ICP-MS offers sensitivity superior and multi-element detection capabilities compared to AAS. Studies by Kadim & Risjani (2022) demonstrated the use of ICP-MS for simultaneous detection of multiple heavy metals in complex water matrices. Its high detection limit and precision make it suitable for environmental monitoring, though the high operational cost remains a limitation.

2.2 Sediment Analysis Techniques

Sediments act as sinks and sources for heavy metals, making their analysis crucial for understanding long-term contamination trends and bioavailability.

Sequential Extraction Techniques: These techniques help partition heavy metals into different chemical fractions, providing insights into their mobility and bioavailability. Markert *et al.* (1999) emphasized that sequential

extraction is valuable for distinguishing between metals bound to organic matter, carbonates, and oxides.

X-ray Fluorescence (XRF): XRF spectroscopy is a non-destructive technique used for rapid and precise metal quantification in sediments. Marguí et al. (2022) demonstrated its effectiveness in large-scale environmental assessments, noting its ability to analyze multiple elements simultaneously without extensive sample preparation.

2.3 Fish Tissue Analysis

Fish are excellent bioindicators for monitoring heavy metal contamination due to their ability to bioaccumulate metals in their tissues.

Metal Quantification in Gills, Liver, and Muscle Tissues: Analysis of these tissues provides comprehensive information on metal exposure and accumulation patterns. Sinclair et al. (2024) found that liver tissues generally exhibit higher metal concentrations due to their role in detoxification.

Bioindicator Species Assessment: Using specific fish species as bioindicators helps assess the ecological impact of metal contamination. Studies by Okwuosa *et al.*(209) highlighted the importance of selecting species with wide habitat distribution and known feeding habits for effective monitoring.

3.4. Emerging Techniques and Approaches

Recent advancements in technology have led to the development of novel methods for monitoring heavy metals.

Sensor-based Monitoring: Electrochemical sensors offer real-time monitoring of heavy metal concentrations in water. These sensors are portable, cost-effective, and provide immediate results, making them suitable for field applications.

Remote Sensing and GIS Applications: Geospatial technologies are increasingly used for large-scale monitoring and mapping of heavy metal contamination. Remote sensing data, combined with GIS, enable spatial and temporal analysis of pollution patterns.

2.5. Biological Monitoring

Biomonitoring involves using living organisms to assess the presence and effects of heavy metals in the environment.

Biomarkers of Exposure and Effect: Biochemical, physiological, and molecular biomarkers are used to detect early signs of metal-induced stress in aquatic organisms. Kadim, *et al.* (2022) emphasized the role of biomarkers in providing early warning signals for environmental pollution.

Bioaccumulation Studies: These studies focus on the accumulation of heavy metals in various trophic levels of the food chain. Nnaji et al. (2023) noted that bioaccumulation data are critical for assessing the ecological and human health risks of metal contamination.

2.6. Challenges and Limitations in Monitoring Heavy Metals

While significant progress has been made in monitoring heavy metal contamination, several challenges remain:

Sample Variability: Environmental samples often exhibit high spatial and temporal variability, complicating the interpretation of monitoring data.

Detection Limits: Although advanced techniques such as ICP-MS offer high sensitivity, the detection limits of some methods may still be inadequate for trace-level monitoring.

Cost and Accessibility: The high cost of analytical instruments and the need for specialized expertise limit the widespread adoption of advanced monitoring techniques in resource-constrained settings.

The table 1 below summarizes various analytical instruments commonly used for the determination of heavy metals, highlighting their respective advantages, disadvantages, detection limits, and references. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is renowned for its high sensitivity and rapid multi-element analysis capabilities, making it suitable for detecting trace levels of heavy metals. However, its high operational costs and

the need for skilled operators can be limiting factors. Atomic Absorption Spectroscopy (AAS), while widely used and precise for specific elements, is limited to single-element detection per analysis and often requires sample pre-treatment. X-ray Fluorescence (XRF) offers the advantage of being nondestructive with minimal sample preparation, but it has lower sensitivity compared to ICP-MS and AAS, and is less effective for light elements. Anodic Stripping Voltammetry (ASV) provides high sensitivity at relatively low costs but is time-consuming and susceptible to interferences from other electroactive species. Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) allows for multi-element analysis with good precision, yet it has higher detection limits compared to ICP-MS and may encounter spectral interferences. The choice of instrument depends on various factors, including the specific requirements of the analysis, available resources, and the nature of the samples being tested.

Table 1: Analytical Inst	ruments for Heavy	Metal Determination
--------------------------	-------------------	----------------------------

Instrument	Advantages	Disadvantages	Detection Limit	References
Inductively	High sensitivity;	High operational	Typically in the	Han <i>et al</i> .
Coupled Plasma	capable of multi-	costs; requires	low parts per	(2020)
Mass	element analysis;	skilled operators;	trillion (ppt)	
Spectrometry	low detection	potential spectral	range.	
(ICP-MS)	limits; rapid	interferences.		
	analysis.			
Atomic	Widely used; good	Limited to single-	Generally in the	He et al.
Absorption	accuracy and	element detection	low parts per	(2024)
Spectroscopy	precision; suitable	per analysis;	billion (ppb)	
(AAS)	for specific	requires sample pre-	range.	
	element analysis.	treatment.		
X-ray	Non-destructive;	Lower sensitivity	Typically in the	Lu <i>et al</i> .
Fluorescence	rapid analysis;	compared to ICP-	parts per million	(2023)
(XRF)	minimal sample	MS and AAS; less	(ppm) range.	
	preparation;	effective for light		
	portable options	elements; potential		
	available.	matrix effects.		
Anodic	High sensitivity;	Time-consuming;	Can detect	Zhang and
Stripping	capable of	requires specialized	concentrations	Campton
Voltammetry	detecting metals at	equipment and	as low as parts	(2022)n
(ASV)	very low	trained technicians;	per trillion (ppt).	
	concentrations;	potential		
	relatively low cost.	interferences from		
		other electroactive		
		species.		
Inductively	Capable of multi-	Higher detection	Typically in the	Douvris <i>et</i>
Coupled Plasma	element analysis;	limits compared to	low parts per	al. (2023)
Optical	good precision;	ICP-MS; potential	billion (ppb)	
Emission	suitable for high-	spectral	range.	
	matrix samples.	interferences;		

Spectroscopy	requires	skilled
(ICP-OES)	operators.	

3.0 Remediation of Heavy Metal

Remediation of heavy metal contamination involves various strategies aimed at reducing the concentration, mobility, or toxicity of heavy metals in the environment. These strategies can be broadly categorized into physical, chemical, and biological methods, each with its own set of advantages and limitations. Physical methods, such as soil involve the extraction washing. of contaminants from soils using washing solutions. This technique can effectively reduce contaminant concentrations to below regulatory standards; however, it often requires the removal of coarse particles and may not be suitable for all soil types.

Chemical remediation techniques include stabilization and solidification, where contaminants are immobilized within the soil matrix to prevent their migration. While these methods can effectively reduce the bioavailability of heavy metals, they do not remove the contaminants from the site and may require long-term monitoring.

Biological approaches, such as phytoremediation, utilize plants to absorb, accumulate, and detoxify heavy metals from contaminated soils and water. This method is cost-effective and environmentally friendly but is generally slower and may be limited by the depth of root systems and the toxicity of contaminants to the plants.

Another emerging biological method is bioremediation, which employs microorganisms to detoxify heavy metals. This approach can be effective for certain metals but may require specific environmental conditions to maintain microbial activity.

In situ chemical oxidation is a technique that involves injecting oxidizing agents into the contaminated medium to transform heavy metals into less toxic forms. This method can be effective for certain contaminants but may also pose risks of mobilizing heavy metals, potentially increasing their bioavailability. Each remediation method has its own set of advantages and disadvantages, and the selection of an appropriate strategy depends on various factors, including the type and contaminants. concentration of site characteristics, and regulatory requirements. Table 2 presents various remediation measures for heavy metal ions, outlining their principles, advantages, disadvantages, and references. Soil washing involves the use of water, sometimes with additives, to remove heavy metals from contaminated soils. It is effective in reducing contaminant concentrations, can be applied onsite, and is relatively fast. However, it generates secondary waste requiring treatment, is not suitable for all soil types, and may not remove all contaminants. Phytoremediation utilizes plants to absorb, accumulate, and detoxify heavy metals from soils and water. This method is environmentally friendly, costeffective, and can improve soil structure. Nevertheless, it is a slow process, limited to surface soils, and its effectiveness depends on plant species and contaminant type. Chemical stabilization involves the addition of chemical agents to convert heavy metals into less soluble forms, reducing their mobility. It reduces leachability of contaminants and allows for relatively quick implementation. However, it does not remove contaminants, may have potential long-term stability issues, and can alter soil properties. Electrokinetic remediation applies an electric field to mobilize and remove heavy metals from soils. It is effective for finegrained soils and can target specific contaminants. On the downside, it is energyintensive, may require soil pre-treatment, and has the potential for secondary waste generation. Vitrification uses high temperatures to melt contaminated soil, immobilizing heavy metals in a glass-like

matrix. This method permanently immobilizes contaminants and reduces the volume of hazardous material. However, it incurs high energy costs, is not suitable for all soil types, and may result in potential air emissions during process. Bioremediation the employs microorganisms to degrade or transform heavy metals into less toxic forms. It is natural and sustainable, can be applied in situ, and causes minimal disturbance to the environment. Its limitations include being restricted to biodegradable contaminants, its effectiveness depending on environmental conditions, and being a slower process. Adsorption utilizes materials to adsorb heavy metals from contaminated water or soil onto their surfaces. It offers high removal efficiency, is applicable

to a wide range of heavy metals, and is a relatively simple process. However, adsorbent materials may require regeneration or disposal, effectiveness can be influenced by environmental conditions, and there is potential for secondary waste generation.

In summary, each remediation measure has its unique set of advantages and disadvantages. The selection of an appropriate remediation strategy should consider factors such as the specific contaminants present, site characteristics, environmental conditions, and availability. resource thorough Α understanding of these factors is essential to effectively mitigate heavy metal contamination in various environmental settings.

Remediation	Principle	Advantages	Disadvantages	References
Measure				
Soil Washing	Involves the use of water,	Effective in reducing	Generates secondary waste	Liu <i>et al.</i> (2018)
	sometimes with additives, to	contaminant concentrations:	requiring treatment: not	
	remove heavy	can be applied	suitable for all	
	contaminated soils.	fast process.	not remove all contaminants.	
Phytoremediation	Utilizes plants to absorb,	Environmentally friendly; cost-	Slow process; limited to surface	Eddy & Ekop (2007)
	accumulate, and detoxify beavy	effective; can	soils;	
	metals from soils	structure.	depends on plant	
	and water.		contaminant	
Chemical	Involves the	Reduces	Does not remove	Tak <i>et al</i> .
Stabilization	addition of	leachability of	contaminants;	(2023)
	to convert heavy	relatively quick	term stability	
	metals into less	implementation.	issues; may alter	
	soluble forms,		soil properties.	
	reducing their mobility.			
Electrokinetic	Applies an	Effective for fine-	Energy-	Abou-Shady
Remediation	electric field to	grained soils; can	intensive; may	<i>et al.</i> (2024)

Table 1: Remediation Measures for Heavy Metal Ions

	mobilize	targat aposifia	maguina cail mna	
	modifize and	target specific	require son pre-	
	remove neavy	contaminants.	treatment;	
	metals from		potential for	
	soils.		secondary waste	
			generation.	
Vitrification	Uses high	Permanently	High energy	Xu <i>et al</i> .
	temperatures to	immobilizes	costs; not	(2024)
	melt	contaminants;	suitable for all	
	contaminated	reduces volume	soil types;	
	soil.	of hazardous	potential air	
	immobilizing	material	emissions during	
	heavy metals in a		process	
	glass-like matrix		p1000055.	
Rioromodiation	Employs	Natural and	Limited to	Eddy and
Diorenteuration	microorganisms	sustainable: can	biodegradable	Even (2007)
	to degrade or	be emplied in situ	oontominanta	Екор (2007)
	to degrade of	be applied in situ,	containinaints,	
	transform neavy	minimai	enectiveness	
	metals into less	disturbance to	depends on	
	toxic forms.	environment.	environmental	
			conditions;	
			slower process.	
Adsorption	Utilizes	High removal	Adsorbent	Eddy <i>et</i> al.
	materials to	efficiency;	materials may	(2024)Sharma
	adsorb heavy	applicable to a	require	<i>et al.</i> (2023)
	metals from	wide range of	regeneration or	
	contaminated	heavy metals;	disposal;	
	water or soil onto	relatively simple	effectiveness can	
	their surfaces.	process.	be influenced by	
			environmental	
			conditions;	
			potential for	
			secondary waste	
			generation.	

4.0 Strategies for Mitigating Heavy Metal Pollution

Addressing heavy metal pollution necessitates comprehensive strategies and robust policy frameworks at both national and international levels.

Effective mitigation of heavy metal pollution involves a multifaceted approach:

(i) **Regulatory Enforcement**: Strict enforcement of environmental regulations is crucial. In Nigeria, the National Environmental Standards and Regulations Enforcement Agency (NESREA) is responsible for enforcing environmental laws and ensuring compliance to mitigate heavy metal pollution.

(ii) **Pollution Prevention**: Implementing cleaner production techniques and promoting the use of environmentally friendly materials can reduce the introduction of heavy metals into the environment. This includes encouraging industries to adopt best

practices that minimize waste generation.

- (iii)**Public Awareness and Education**: Raising awareness about the sources and dangers of heavy metal pollution is essential. Educational programs can inform the public and industries about the importance of pollution prevention and the health risks associated with heavy metals.
- (iv) **Research and Development**: Investing in research to develop innovative remediation technologies, such as phytoremediation and bioremediation, can offer sustainable solutions for contaminated sites.
- (v) **International** Collaboration: Participating in international agreements and collaborations can enhance the effectiveness of national efforts to control heavy metal pollution.

Policy Frameworks

Robust policy frameworks provide the foundation for strategies aimed at controlling heavy metal pollution:

National Policies: In Nigeria, policies such as the National Policy on the Environment outline the country's commitment to sustainable development and pollution control. These policies set standards for emissions and waste management, guiding industries and other stakeholders in their operations.

International Conventions: Nigeria is a signatory to several international conventions addressing heavy metal pollution, including the Basel Convention, which regulates the transboundary movements of hazardous wastes and their disposal, and the Minamata Convention on Mercury, which aims to protect human health and the environment from anthropogenic emissions and releases of mercury and mercury compounds.

4.1 Regulatory Framework for Heavy Metal

Heavy metal pollution poses significant environmental and public health challenges globally, necessitating robust regulatory frameworks to mitigate its impacts. In Nigeria, the regulatory landscape comprises several key legislations and agencies dedicated to environmental protection. Internationally, various conventions and protocols have been established to address heavy metal pollution.

4.2 Nigeria's Regulatory Framework

The Nigerian Constitution, under Section 20 of Chapter 2, mandates the State to protect and improve the environment, emphasizing the nation's commitment environmental to stewardship. To operationalize this mandate, the Federal Environmental Protection Agency (FEPA) was established in 1988, providing a comprehensive framework for environmental protection and management. FEPA was instrumental in formulating policies and setting standards to control the discharge of hazardous substances, including heavy metals, into the environment. In 2007, the National Environmental Standards and Regulations Enforcement Agency (NESREA) was established, taking over the responsibilities of FEPA. NESREA is tasked with enforcing environmental laws. regulations, and standards, playing a pivotal role in monitoring and ensuring compliance to mitigate heavy metal pollution. Despite these frameworks, challenges persist in implementation and enforcement, often due to resource constraints and limited capacity.

4.3 International Regulatory Frameworks

Globally, several conventions and protocols have been established to address heavy metal pollution. The Convention on Long-Range Transboundary Air Pollution (CLRTAP), adopted in 1979, aims to protect the human environment against air pollution and to gradually reduce and prevent air pollution, long-range transboundary including air pollution. Under CLRTAP, the Protocol on Heavy Metals was adopted in 1998 in Aarhus, protocol Denmark. This targets three particularly harmful metals: cadmium, lead,

and mercury, requiring parties to reduce their emissions below 1990 levels. It sets stringent limit values for emissions from stationary sources and mandates the phase-out of leaded petrol. Another significant international treaty is the Minamata Convention on Mercury, a global, legally binding treaty that aims to protect human health and the environment from anthropogenic emissions and releases of mercury and mercury compounds. Adopted in 2013, the convention addresses the entire life cycle of mercury, including its supply, trade, use in products and processes, emissions, releases, and disposal.

Also, the Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and Their Disposal, which came into force in 1992, seeks to prevent the transportation of hazardous wastes, including heavy metals, to developing countries. Over 170 countries have joined the convention, underscoring its global significance.

4.3 Challenges and Recommendations

While Nigeria has established a robust legislative framework to address heavy metal pollution, challenges in implementation, enforcement, and funding persist. Resource constraints and limited capacity hinder effective monitoring and compliance. To enhance the effectiveness of current policies, periodic reviews, increased funding, and community-based monitoring programs are Internationally, recommended. while conventions and protocols provide comprehensive frameworks for reducing heavy metal emissions, their success largely depends on the commitment and compliance of participating nations. Continuous global cooperation and capacity-building efforts are essential to mitigate the impacts of heavy metal pollution effectively.

Agency	Jurisdiction	Responsibilities	Reference
National Environmental	Nigeria	Enforces environmental laws,	NESREA
Standards and	C	regulations, and standards;	Official
Regulations		monitors compliance to mitigate	Website
Enforcement Agency		heavy metal pollution.	
(NESREA)		v 1	
Federal Ministry of	Nigeria	Formulates policies and	Federal
Environment	C	supervises activities for	Ministry of
		environmental protection,	Environment
		including control of heavy metal	
		pollution.	
Convention on Long-	International	Aims to protect the human	CLRTAP
Range Transboundary		environment against air pollution	Overview
Air Pollution		and to gradually reduce and	
(CLRTAP)		prevent air pollution, including	
		long-range transboundary air	
		pollution.	
Minamata Convention	International	A global treaty to protect human	<u>Minamata</u>
on Mercury		health and the environment from	Convention
-		anthropogenic emissions and	
		releases of mercury and mercury	
		compounds.	

Table 3: Key Regulatory Agencies Addressing Heavy Metal Pollution

Basel Convention	International	Seeks to prevent the transportation	Basel
		of hazardous wastes, including	Convention
		heavy metals, to developing	Overview
		countries.	

5.0 Conclusion and Recommendations

Heavy metal contamination in aquatic ecosystems is a critical environmental concern, primarily driven by industrial activities, agricultural runoff, and urbanization. These pollutants persist in the environment, leading to bioaccumulation in aquatic organisms and posing significant health risks to humans through the consumption of contaminated water and seafood. The detrimental effects on aquatic life include reduced growth. reproductive challenges, organ damage, and behavioral alterations. To address these issues, various remediation strategies have been phytoremediation, explored. such as bioremediation. and chemical treatments. However, the effectiveness of these methods varies based on site-specific conditions and the particular heavy metals involved. Regulatory both within frameworks, Nigeria and internationally, have been established to control and mitigate heavy metal pollution. these efforts. challenges Despite in enforcement and compliance persist, underscoring the need for more robust policies and effective implementation.

In conclusion, while significant strides have been made in understanding and managing heavy metal contamination, ongoing research is essential to develop more efficient remediation technologies and to strengthen regulatory frameworks. It is recommended that future efforts focus on enhancing monitoring systems, promoting sustainable industrial fostering practices. and international collaboration to effectively mitigate the impacts of heavy metal pollution on aquatic ecosystems and human health.

6.0 References

- Abou-Shady, A., Eissa, D., Abd-Elmottaleb, O., Bahgaat, A. K., & Osman, M. A. (2024). Optimizing electrokinetic remediation for pollutant removal and electroosmosis/dewatering using lateral anode configurations. *Scientific Reports*, *14*, 25380. <u>https://doi.org/10.1038/s41598-024-</u> 75060-6
- Alshawabkeh, A. N. (2009). Electrokinetic soil remediation: Challenges and opportunities. *Separation Science and Technology*, 44(10), 2171–2187. <u>https://doi.org/10.1080/01496390902976</u> 681
- Douvris, C., Vaughan, T., Bussan, D., Bartzas, G., & Thomas, R. (2023). How ICP-OES changed the face of trace element analysis: Review of the global application landscape. Science of The **Total** Environment, 905. 167242. https://doi.org/10.1016/j.scitotenv.2023.1 67242
- Eddy, N. O., & Ekop, A. S. (2007). Phytoremediation potentials of some Nigerian weeds. *Asian Journal of Chemistry*, 19(2), 1825–1831.
- Eddy, N. O., Garg, R., Ukpe, R. A., Ameh, P. O., Gar, R., Musa, R., Kwanchi, D., Wabaidur, S. M., Afta, S., Ogbodo, R., Aikoye, A. O., & Siddiqu, M. (2024). Application of periwinkle shell for the synthesis of calcium oxide nanoparticles and in the remediation of Pb²⁺- contaminated water. *Biomass Conversion and Biorefinery*. https://doi.org/10.1007/s13399-024-05285-y.
- Han, J., Busse, M. S., Soloshonok, V. A., Javahershenas, R., Vanhaecke, F., & Makarem, A. (2024). Inductively Coupled

Plasma-Mass Spectrometry (ICP-MS): An Emerging Tool in Radiopharmaceutical Science. *Journal of the American Chemical Society*, *146*, *45*, 30717–30727. https://doi.org/10.1021/jacs.4c12254.

- He, S., Niu, Y., Xing, L., Liang, Z., Song, X., Ding, M., & Huang, W. (2024). Research progress of the detection and analysis methods of heavy metals in plants. *Frontiers in Plant Science*, 15, 1310328. <u>https://doi.org/10.3389/fpls.2024.131032</u> <u>8</u>
- Kadim, M. K., & Risjani, Y. (2022). Biomarker for monitoring heavy metal pollution in aquatic environment: An overview toward molecular perspectives. *Emerging Contaminants*, 8, 195–205. <u>https://doi.org/10.1016/j.emcon.2022.02.</u> 003
- Klika, K. D., Han, J., Busse, M. S., Soloshonok, V. A., Javahershenas, R., Vanhaecke, F., & Makarem, A. (2024). Inductively coupled plasma-mass spectrometry (ICP-MS): An emerging tool in radiopharmaceutical science. *Journal of the American Chemical Society*, *146*(45), 30717–30727.

https://doi.org/10.1021/jacs.4c12254

- Liu, L., Li, W., Song, W., & Guo, M. (2018). Remediation techniques for heavy metalcontaminated soils: Principles and applicability. *Science of The Total Environment*, 633, 206–219. <u>https://doi.org/10.1016/j.scitotenv.2018.0</u> <u>3.161</u>
- Lu, X., Li, F., Yang, W., Zhu, P., & Lv, S. (2023). Quantitative analysis of heavy metals in soil by X-ray fluorescence with improved variable selection strategy and Bayesian optimized support vector regression. *Chemometrics and Intelligent Laboratory Systems*, 238, 104842. <u>https://doi.org/10.1016/j.chemolab.2023.1</u> 04842

- Markert, B., Wappelhorst, O., Weckert, V., Herpin, U., Siewers, U., Friese, K., & Breulmann, G. (1999). The use of bioindicators for monitoring the heavymetal status of the environment. *Journal of Radioanalytical and Nuclear Chemistry*, 240(2), 425–429. https://doi.org/10.1007/BF02349387
- Nnaji, N. D., Onyeaka, H., Miri, T., & Ugwa, C. (2023). Bioaccumulation for heavy metal removal: A review. SN Applied Sciences, 5(5), 125. <u>https://doi.org/10.1007/s42452-023-</u> 05351-6
- Okwuosa, O. B., Eyo, J. E., & Omovwohwovie, E. E. (2019). Role of fish as bioindicators: A review. *Iconic Research and Engineering Journals*, 2(11), 354–368.
- Sinclair, C. A., Garcia, T. S., & Eagles-Smith, C. A. (2024). A meta-analysis of mercury biomagnification in freshwater predatory invertebrates: Community diversity and dietary exposure drive variability. *Environmental Science & Technology*, 58(43), 19429–19439. https://doi.org/10.1021/acs.est.4c05920
- Varol, M., Kaçar, E., & Karadede Akın, H. (2020). Accumulation of trace elements in muscle, gill and liver of fish species (*Capoeta umbla* and *Luciobarbus mystaceus*) in the Tigris River (Turkey), and health risk assessment. *Environmental Research*, 186, 109570. <u>https://doi.org/10.1016/j.envres.2020.109</u> <u>570</u>
- Xu, L., Zhao, F., Xing, X., Peng, J., Wang, J., Ji, M., & Li, B. L. (2024). A review on remediation technology and the remediation evaluation of heavy metalcontaminated soils. *Toxics*, *12*(12), 897. <u>https://doi.org/10.3390/toxics12120897</u>
- Zhang, G., Zhang, F., Liu, W., Liu, C., You, J., Tian, M., Cao, T., Jiang, J., Yang, Z., Wu, H., & Wu, W. (2023). A simple, rapid method for simultaneous determination of

multiple elements in serum by using an ICP-MS equipped with collision cell. *BMC Chemistry*, 17, 34. <u>https://doi.org/10.1186/s13065-023-00946-x</u>.

Zhang, Y., & Compton, R. G. (2022). Anodic stripping voltammetry using underpotential deposition allows sub 10 ppb measurement of Total As and As(III) in water. *Talanta, 247*, 123578. https://doi.org/10.1016/j.talanta.2022.123 578 for 4 seconds.

Compliance with Ethical Standards Declarations:

The authors declare that they have no conflict of interest.

Data availability: All data used in this study will be readily available to the public.

Consent for publication: Not Applicable.

Availability of data and materials: The publisher has the right to make the data public.

Competing interests

The authors declared no conflict of interest.

Funding

The authors declared no source of funding

Authors' Contributions

The author designed and carried out the entire work

