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Abstract: We solved the N-dimensional Klein-

Gordon equation analytically using the Nikiforov-

Uvarov method to obtain the energy eigenvalues 

and corresponding wave function in terms of 

Laguerre polynomials with the ultra-generalized 

exponential –hyperbolic potential. The results were 

applied for calculating the mass spectra of heavy 

mesons including charmonium ( cc ) and 

bottomonium ( bb ) for different quantum states. 

Also, the thermodynamic properties such as free 

energy, mean energy, entropy, and specific heat 

were obtained. The data obtained in the study was 

in excellent agreement with experimental results 

and with results obtained from others with a 

maximum error of 0.0059 GeV  . 
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1.0 Introduction    

            The study of thermodynamic properties is important 

in various areas of physical and chemical sciences. 

This is made possible through the solutions of the 

quantum mechanical problems, which contain all 

the essential data to portray the quantum system 

under study (Florkowski, 2010). The thermody-

namic properties of systems are significance in the 

analyses of quark-gluon plasma and can provide 

useful information towards that can unfold some 

composition of the strange quark matter. For 
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example, Modarres, and Mohamadnejad (2013) 

calculated some thermodynamic properties of the 

quark-gluon plasma (QGP), as a function of baryon 

density(chemical potential) and temperature using 

the framework of a one gluon exchange model. 

Their results reveal the dependence of the 

investigated function on bag pressure and the 

quantum chromo dynamic (QCD) coupling 

constant. The statistical thermodynamics function 

needed for the determination of the thermodynamic 

properties of any physical system is the partition 

function (Ikot et al.,2016, 2018). Also, the solutions 

the Schrodinger and Klein-Gordon are relevant in 

probing the mass spectra of heavy quarkonia such 

as bottomonium and charmonium (Anisiu, 2015). 

The potential commonly utilized in simulating the 

interaction for this system is the confining-type 

potential such as Cornell potential or Killingbeck 

potential that has two important variables that 

account for the Coulomb interaction and the 

confinement of the quarks, respectively (Mocsy, 

2009). In recent times the solutions of the 

Schrödinger equation (SE) and Klein-Gordon 

equation (KGE) under the quarkonium interaction 

potential model such as the Cornell or the 

Killingbeck potential have attracted much interest 

from researchers (Abu-Shady & Ikot, 2019; Al-

Jamel, 2019; Ciftci & Kisoglu, 2018; Abu-Shady, 

et al.,2018; Mansour, & Gamal, 2018; Abu-Shady, 

2016; Vega & Flores, 2016; Al-Oun, et al., 2015; 

Al-Jamel and Widyan 2012).  The KGE for some 

potential can be solved exactly for angular 

momentum quantum number ( 0)l = , but it is 

complicated for other systems. Therefore, 

approximations techniques are necessary in other to 

obtain quantum mechanical solutions for systems 

with 0l  . Some of the approximation methods 

include, asymptotic iteration method (AIM) 

(Khokha, et al., 2016). Laplace transformation 

method, Abu-Shady, (2015), super symmetric 

quantum mechanics method (SUSQM) (Omugbe, et 

al., 2020; Abu-Shady, et al., 2019; Mutuk, 2018), 

Nikiforov-Uvarov(NU) method (Inyang, et al., 

2021; Ekpo, et al., 2020; Edet, et al., 2020; Ntibi, et 

al., 2020; William, et al.,2020; Okoi, et al.,2020; 

Edet, et al., 2020; Ikot, et al., 2020; Inyang, et 

al.,2020; Edet, et al., 2020; William, et al., 2020; 

Edet, et al., 2019;Abu-Shady, 2016) ,series 

expansion method (SEM) (Inyang, et al.,2021; 

Ibekwe, et al., 2020;Abu-Shady & Fath-Allah, 

2019) , analytical exact iterative method(AEIM) 

Ikot et al., (2021), and others (Inyang et al., 2020).  

Numerous researchers have solved exact 

solutions; like harmonic oscillator and 

approximate solutions of SE and KGE utilizing 

diverse insightful methods with potentials to 

obtained thermodynamic properties of some 

physical systems (Edet & Ikot, 2021; Abu-Shady, 

et al., 2019; Ikot, et al., 2019; Lutfuoglu, 2018; 

Okorie, et al., 2018; Song, et al., 2017; Jia, et al., 

2017; Oyewumi, et al., 2014). 

Recently, studies on mass spectra with exponential-

type potentials have been carried out by most 

researchers. For instance, Inyang et al. (2021) 

obtained the mass spectra with Yukawa potential 

using the NU method for relativistic and non 

relativistic regimes for heavy quarkonium system 

(HQS). Akpan, et al. (2021) obtained the mass 

spectra of heavy mesons in the non relativistic 

model with Huthern-Hellmann potential using the 

NU method for HQS. While Inyang et al. (2021) 

also adopted analytical solution to find the solution 

to the SE via the NU method to obtained the energy 

eigenvalues and corresponding wave function in 

terms of Laguerre polynomials with the Varshni 

potential. They applied their results for the 

calculation of the mass spectra of heavy mesons for 

different quantum states including charmonium (

cc ) and bottomonium ( bb ). In their study, 

Ibekwe, et al. (2021) solved the SE for HQS with 

screened Kratzer potential using the series 

expansion method. The results were used to obtain 

the mass spectra of heavy mesons.  

 The trigonometric hyperbolic potential plays a vital 

role in atomic and molecular physics. Since it can 

be used to model inter-atomic and inter-molecular 

forces (Rampho, et al.,2020; Suparmi, et al.,2014;). 

The ultra-generalized exponential –hyperbolic 

potential (UGEHP) takes the form (Parmar, 2020). 

( )24 2

2

Cosech  
( ) ,

r r rr r ce dCosh r e g reae be
V r f

rr

     − −− − − ++
= + +                                  (1) 

where , , , , ,   a b c d g and f are potential strengths and  is the screening parameter. When 1 = , then 
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2

2
Cosech

r r

r r

e e
Cosh r

r
e e

 

 





−

−

+
= 


=
− 

                   (2) 

The expansion of the exponential terms in equation 

1 and 2 ( up to order three, in order to model the 

potential to interact in the quark-antiquark system) 

and substitution of  the results obtained into 

equation 1 yields equation 3, 

20 1

2 3 42
( ) ,V r r r

rr

 
  = − + − +                 (3) 

The terms in equations 1 to 3 are defined as follows: 

( )

2

0 1 2

2 2

3 4

, 4 2 , 2

, 8 2 2

a b a b d g c d

d g a b c d g f

      

       

= + = + + − = + 


= − = + − − + + 

                                          (4) 

The third term of equation 3 is a linear variable for 

the confinement feature while the second term is the 

Coulomb potential that describes the short distance 

between quarks. Literature is scanty on application 

of generalized exponential-hyperbolic potential for 

calculating some thermodynamic properties of 

complex systems. 

Therefore, in this present work, we aim at studying 

the KGE with the ultra-generalized exponential –

hyperbolic potential (UGEHP) using the NU 

method to calculate the thermodynamic properties 

and mass spectra of heavy mesons such as 

charmonium ( )cc   and bottomonium ( )bb . The 

study is designed for a threefold approach which 

started with modeling the potential to interact in the 

quark-antiquark system. This was succeeded by 

solving the, model potential with KGE using the 

NU method and finally the calculations of the 

thermodynamic properties and mass spectra of 

quark that were considered as spineless particles.  

2.0 Bound state solution of the Klein-Gordon 

equation with the ultra-generalized exponential 

–hyperbolic potential (UGEHP) 

The Klein-Gordon equation for a spinless particle 

for 1c= =  in N-dimensions is given as (Louis, 

et al., 2018) 

( )
( )( )

( )   ( )
222

2

2 1 2 3
( ) , , ( ) , ,

4
nl

N l N l
M S r r E V r r

r
     

+ − + − 
− + + + = − 
 

                (5) 

where 
2   is the Laplacian, M  is the reduced 

mass, nlE  is the energy spectrum, n  and l  are the 

radial and orbital angular momentum quantum 

numbers respectively. A wave function that 

satisfies equation 5 can be represented according to 

equation 6 as follows:  

( ) ( ), , ,nl

lm

R
r Y

r
    =                                (6) 

The separation of the angular component of the 

wave function gave expression for the radial parts 

as follows: 

( )
( ) ( )

( )( )2

2 2 2 2

2 2

2 1 2 3
( ) ( ) 2 ( ) ( ) ( ) 0

4
nl nl

d R r N l N l
E M V r S r E V r MS r R r

dr r

+ − + − 
+ − + − − + − = 
        

(7) 

Thus, for equal vector and scalar potentials ( ) ( ) 2 ( )V r S r V r= = , then   equation 7 becomes

             

( )
( ) ( )

( )( )2

2 2

2 2

2 1 2 3
2 ( ) ( ) 0

4
nl nl

d R r N l N l
E M V r E M R r

dr r

+ − + − 
+ − − + − = 
 

                        (8) 

       (8) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Upon substituting equation 3 into equation 8, we obtain 
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( )
( ) ( )

( )( )

2 2 20 1
2 2 3 42

2

2

2 2
2 2 2

( ) 0
2 1 2 3

4

nl nlE M r r E M
d R r rr

R r
dr N l N l

r

 
  

  
− + − + − + − +  

  + =
 + − + −
− 
                 

(9)  

Transformation of the r (in equation 9) to s

coordinates yields equation 10 

   
1

s
r

=
                                                             

(10) 

Therefore, the second derivatives in equation 10 can 

be expressed according to equation 11, 

 
2 2

3 4

2 2

(r) (s) (s)
2

d R dR d R
s s

dsdr ds
= +

                  
(11)                                                                                                                       

The substitution of equations 10 and 11 into 

equation 9 gave equation 12 as follows:                                                                          

 

( )
( ) ( )

( )( )

2 2 2 32

0 1 42 2

2 4 2

22
2 2 2

2 1
(s) 0

2 1 2 3

4

nl nlE M s s E M
d R s s sdR

R
s dsds s N l N l s


  

  
− + − + − + − +  

  + + =
 + − + −
− 
 

     

           (12)                                                                                                                    

We were able to propose the following 

approximation scheme on the term
2

s


 and

3

2s



through the assumption that there is a characteristic 

radius 𝑟0 of the meson. The scheme was achieved 

by the expansion of
2

s


 and

3

2s


  in a power series 

around 0r ; i.e., around 
0

1

r
  , in the x-space up to 

the second order. This is similar to Pekeris-type 

approximation, which helps to deform the 

centrifugal term such that the potential can be 

solved by the NU method (Akpan et al., 2021) 

Setting y s = − and around 0y =  , it can be 

expanded into a series of powers as; 
1

2 2 2 2 1

1

y

ys y

   

  




−

 
= = = + 

+    
+ 

       

(13)  

which yields  
2

2

2 2 3

3 3s s

s




  

 
= − + 

                                 

(14) 

Similarly, 
2

3

32 2 3 4

6 8 3s s

s




  

 
= − + 

                                

(15) 

Also, the substitution of equations 14 and 15 into 

equation 12 led to equation 16 as follows: 
2

2

2 2 4

(s) 2 (s) 1
(s) 0

d R s dR
s s R

dsds s s
   + + − + − = 

   
(16) 

where 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
( )( )

2 2 32

42

32

1 2 3

32

0 3 4

126
2

166
2

2 1 2 362
2

4

nl nl nl nl

nl nl nl

nl nl nl

E M E M E M E M

E M E M E M

N l N l
E M E M E M


 

 


 

 


 

 

 
− = − − + + + − + 

  


  
= + + + − +  
  

+ − + − 
= + + + − + + 
                   (17)                                                                                                  

 

The comparison of equation 16 with equation A1 

resulted in the following functions (equation 18) 

2

2

(s) 2 ,  (s)

(s)

(s) 2 ,  (s) 2

s s

s s

s

 

   

 

= =


= − + − 
 = =


                                 (18)                                                                                                                      

(18) 
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We substitute equation 18 into   equation A9 and 

obtain 

( ) 2(s) s k s   =  − + +
                     

(19) 

In the process of determination of the 𝑘, in equation 

19, the discriminant of the function (equation 20) 

and equation 21 was obtained. 
2 4

4
k

 



−
=                                                  (20) 

(s)
2

s 


 

 
=  − 

                                     (21) 

Differentiation of the negative part of equation 21, 

required for bound state problems yielded a 

physical acceptable solution given by equation 22

  

(s)
2





−
 = −

                                                

(22) 

The substitution of equations 18 and 22 into 

equation A7 yielded equation 23 and upon 

differentiation, equation 24 was obtained. 

2
(s) 2

s
s

 


 
= − +

                                     

(23) 

(s) 2





 = −

                                                

(24) 

The simplification of equation 25 using equations 

A10 and A11 yielded equations 25 and 26 

respectively. 
2 4

4 2

  


 

−
= −

                                   (25)

 

2

n

n
n n





= − −                                          (26) 

The comparison of equations 25 with equation 26 

followed by substitution of equations 4 and 17 to 

the respective terms yielded the energy eigenvalue 

equation of the UGEHP in the  relativistic limit 

(equation 27) 

( )
( )

( )
( )

( )( )

( )( )

( )( ) ( )( )

( ) ( )
( )

( )

( )
( )

( )( )

2

2 2

2

2 2

2

2

2 3

2

3

4

6 2 12

2 8 2 2

4 2

6 2 16

1

4 2 21
2

1 4

2 6 2 1 2 3

4

nl nl nl

nl

nl

nl nl

nl nl

nl

c d d g
M E E M E M

a b c d g f E M

a b d g E M

c d E M d g E M

c d
a b E M E M

n
d g N l N l

E M

  

 

    

 

  

 

 







+ −
− = + − +

+ + − − + + +

 
 

+ + − + 
 + + − + + −
 

+  
+ 

− + + + + 
+ + 

− + − + − 
− + + 

 

                                            

(27) 

2.1 Non relativistic limit  

In order to analyze the non-relativistic limit arising 

from the analytical processes employed in this 

study, the form of transformations considered were 

2

2
nlM E


+ →   and nl nlM E E− → −  , where 

  is the reduced mass , and substituting it into   

equation  27, we have the non-relativistic energy 

eigenvalue equation as 

( ) ( )
( )

( ) ( ) ( )

( ) ( ) ( )
( )( )

2

2

2

2

2
2 2 2 2 3 2

2

2 3 2 4 2

6 212
2 8 2 2

2 12 32
4 2 2

8 2 1 2 31 1 4 4 12
2

2 4 4

nl

c dd g
E a b c d g f

a b d g c d d g

N l N l
n a b c d d g

 
    



  
   

 
   

 
 

−−
= − − + − − + +

 
 + + − + + − −
 −
 + − + −
 + + − + + + − − +
  

          (28)   
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However, the following special case was also 

considered 

1. Setting 0a b c g f = = = = = =  ,we 

obtain the energy equation for Coulomb 

potential  

 

( )( )

2

2 2

2

8 2 1 2 31 1

2 4 4

nl

d

E
N l N l

n





 
 
 = −
 + − + −
 + + +
  

                                                                                                                                            

(29) 

The result expressed by equation 29 is consistent 

with the one expressed by equation 36(obtained by 

Edet et al., 2020) especially when 3N =  .                               

The unnormalized wave function in terms of 

Laguerre polynomials is given as 

1 1

2
2

(s) ,s
nl nB s e L

s

 

   




− −  
=  

                   (30)                                                                                  

 

where nL  is the associated Laguerre polynomials 

and nlB is normalization constant, which can be 

obtain from 

2

0

| B ( ) | 1nl r dr



=
                                             (31) 

     3.0   Thermodynamic properties of the KGE with 

the ultra-generalized exponential –hyperbolic 

potential (UGEHP) 

 Thermodynamic properties of UGEHP can be 

obtain from the partition function by the 

simplification of    equation 28 to the form 

expressed by equation 32, 

( )

2
2

2

1
8

nl

P
E P

n 

 
= −  

+                                         (32)                                                                                                           

 

where,  

( ) ( ) ( )
( )( )2

2 3 2 4 2

2 1 2 31 1 4 4 12
2

2 4 4

N l N l
a b c d d g

  
  

 

+ − + −
= + − + + + − − +

              

(33) 

( ) ( )
( )

2

2

1 2

6 212
2 8 2 2

c dd g
P a b c d g f

 
    



−−
= − − + − − + +

                                      
(34) 

( ) ( ) ( )2

2 2 2 2 3 2

4 12 32
4 2 2P a b d g c d d g

  
   

 
= + + − + + − −   (35)

3.1 Partition function ( )Z   

The partition function according to Abu-Shady et al. (2019) is as equation 36 

0

( ) nlE

n

Z e


 −

=

=
                                                                                                                                    

(36) 

where,   is the reciprocal of the product of Boltzmann constant ( )K  and the absolute temperature 

(equation 37) 

1

KT
 =

                                                                                                                                                
(37) 

 n  is the principal quantum number, 0,1,2,3...n = and   is the maximum or upper bound quantum 

number. 

The substitution of equation 32 into equation 36 yielded equation 38  

( )

2
2

2
1

8

0

( )

P
P

n

n

Z e

  



  
 − −  
 +   

=

=
                                                                                                                

(38) 

In the classical limit, at high temperatureT , the 

summation can be replaced by an integral, 
1 2

0

( )

N
M

Z e d

 
 

+

= 
                                    

(39) 
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The parameters in the above equations are defined 

as follows: 

 

n  + =                                                  
(40) 

1 1M P= −
                                                         

(41) 

2 2

2

1
8

P
N


=

                                                                                                                                              

(42) 

The integration of equation 39 yielded the 

expression for the partition function shown in 

equation 43,

1

2

1

1

1

1

1

2 2
1

( ) 2
2

N

M

N
e N erfi

Z e N
N








  


  



  
 −  

   
= − 

 
 
                                                

(43) 

However, the imaginary error function (y)erfi  is 

defined according to equation 44 as follows 

(Okorie, et al., 2018) 

2

0

( ) 2
(y) .

y

terf iy
erfi e dt

i 
= = 

                                                                                                  

(44) 

3.2 Mean energy ( )U 
 

According to Abu-Shady et al.(2019), the mean energy of HQS takes the following form
 

 ( ) ( ),U InZ 



= −

                                                                                                                          

(45) 

The substitution of equation 43 into equation 45 gave equation 46 

1

1 1

1

1 1

1 1 1 1 2

1

1 1

1

14

2

( )

M

M M

M

e N

M e N e N
N

U
e N



 



 





 
 

 + +  
 
 

= −


                                                       (46) 

where, 

1

2 1

1

1

1

2 2

2

N
N

e N erfi

N






  





 
−  

 
 

 = −

                                                    

( 47) 

( ) ( )

2

3

1 12
1 1

1

2 3 32
2 21

1 1

N
N N

N erfi N erfi
e N

NN N





 
  

 

 

   
   
   
   

 = − − +                                              (48) 

3.3 Free energy F( )
 

The free energy of the HQS can be expressed as follows (Abu-Shady et al.,2019): 

 

( ) ln ( )F KT Z = −
                                                                                                                           

(49) 
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The substitution of equations 37 and 43 into   equation 49 gave equation 50, which is exponential form of 

the free energy 
1

2

1

1

1

1

1

2 2
1 1

( ) ln 2
2

N

M

N
e N erfi

F e N
N








  


  

 

   
  −  

    
= − −  

  
  
                                    

(50) 

3.4 Entropy S( )
 

The entropy of the HQS can be expressed as follows (Abu-Shady et al.,2019):
 

( ) ln ( ) ln ( )S K Z K Z   



= −

                                                                                                  

(51) 

The substitution of equations 43 and 46 into   equation 51 gave equation 52 
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
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  −  
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  
  
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 
 

 + +  
  
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−
                                    

(52) 

 

3.5 Specific heat C( )
 

The specific heat of the HQS can be expressed as follows (Abu-Shady et al.,2019):
 

2( )
U U

C K
T

 


 
= = −
                                                                                                                  

(53) 

The substitution of equations 47 and 49 into equation 46, yielded equation 54 
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4.0 Results and Discussion 

4.1 Results  

 We calculate mass spectra of the heavy 

quarkonium system such as charmonium and 

bottomonium in 3-dimensional space ( 3N = ) that 

have the quark and antiquark flavor, using the 

following relation (Inyang, et al.,2021; Inyang, et 

al., 2020). 

32 N

nlM m E == +
                                              

(58) 

where m is quarkonium bare mass, and 
3N

nlE =

 
is 

energy eigenvalues. By substituting equation 28 

into equation 58 we obtain the mass spectra for 

UGEHP as: 
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 −
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 + + − + + + − − +
  

        

(59) 

 

Table 1: Mass spectra of charmonium in ( )GeV  
 
 

2 1

3

22.17885 , 13.73217 , 10.73524 , 3.010241 , 10.64213 ,

0.05 , 0.01, 1.00252 , 1.209 , 3, 1, 0.6045 c

a GeV b GeV c GeV d GeV g

f GeV GeV m GeV N GeV  

− = − = = = =
  = = = = = = = 

  

State Present work Abu-Shady et al, 

2019 

Abu-Shady 2016 Experiment(Tanabashi, 

et al.2018) 

     

1S 3.096 3.096  3.096 3.096 

2S 3.686 3.686 3.672 3.686 

1P 3.526 3.255 3.521 3.525 

2P 3.767 3.779 3.951 3.773 

3S 4.040 4.040 4.085 4.040 

4S 4.262 4.269 4.433 4.263 

1D 3.768 3.504 3.800 3.770 

2D 4.034   -   - 4.159 

1F 4.162   -   -    - 
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Table 2: Mass spectra of bottomonium in ( )GeV   

2 1

3

20.99857 , 13.6254385 , 13.73524 , 4.110240 , 11.542130,

0.05 , 0.01, 1.00252 , 4.823 , 3, 1, 2.4115 c

a GeV b GeV c GeV d GeV g

f GeV GeV m GeV N GeV  

− = − = = = =
  = = = = = = = 

 

  State  Present work Abu-Shady  

et al, 2019 

Abu-Shady 

2016 

Experiment(Tanabashi, 

et al.2018) 

1S 9.460 9.460 9.4620 9.460 

2S 10.023 10.023 10.027 10.023 

1P 9.761 9.619 9.9630 9.899 

2P 10.261 10.114 10.299 10.260 

3S 10.355 10.355 10.361 10.355 

4S 10.579 10.567 10.624 10.580 

1D 9.998 9.864 10.209 10.164 

2D 10.206 - - - 

IF 10.109 - - - 

 

 

 
Fig. 1: Variation of mass spectra with potential strength ( )a  for different quantum numbers 

 

 
Fig. 2: Variation of mass spectra with potential strength ( )b  for different quantum numbers 
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Fig. 3: Variation of mass spectra with screening parameter

 
( )  for different quantum numbe

4.2   Thermodynamic properties plots 
In this subsection, we present the plots of thermodynamic properties. 

 

 
Fig. 4: Variation of the partition function ( )Z  versus temperature (  ) for different values of 

maximum quantum number ( ) 
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Fig. 5: Variation of the mean energy ( )U   versus temperature (  ) for different values of maximum 

quantum number ( ) 

 
Fig 6: Variation of the specific heat C( )  versus temperature (  ) for different values of maximum 

quantum number ( ) 
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Fig. 7: Variation of the free energy F( )  versus temperature (  ) for different values of maximum 

quantum number ( ) 

 
Fig.8: Variation of the entropy S( )  versus temperature (  ) for different values of maximum 

quantum number 

 

4.3 Discussion of results 

Equation 49 was used to calculate mass spectra of 

charmonium and bottomonium for different 

quantum states and the free parameters that were 

obtained from equation 59 were consequences of 

the two algebraic equations.  

 For bottomonium bb  and charmonium cc systems 

the numerical values of these masses as  bm =  

4.823GeV  and cm =  1.209GeV  were adopted 

(Barnett, et al., 2012). The corresponding reduced 

mass are b =  2.4115GeV  and c = 0.6045

GeV , respectively. The experimental data were 

taken from the results reported Tanabashi et al. 

(2018). We observed that the results obtained from 

the calculations of mass spectra of charmonium and 

bottomonium are in good agreement with 

experimental data with those reported by other 

researchers Abu-Shady et al. (2019) and Abu-

Shady (2016) as presented in Tables 1 and 2. In 

order to test for the accuracy of the predicted 

results, we used a Chi squared function to determine 

the error between the experimental data and 

theoretical predicted values. The maximum error in 

comparison with the experimental data was 0.0059

GeV .  We plotted the variation of mass spectra 

energy with respect to potential strengths, and 

screening parameter ( )  respectively.  In Figs. 1 

and 2, the mass spectra energy increases as the 
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potential strength increases for the different 

quantum numbers. Also from Fig. 3, the mass 

spectra energy was also to increase with increasing 

screening parameter.   

The thermodynamic properties were obtained by 

first obtaining the partition function. Fig. 4 reveals 

that the partition function ( )Z   decreases 

exponentially with temperature  . The plots of 

mean energy ( )U  with different values of   and 

  are shown in Fig.5, which clearly reveal a 

monotonic increase with increase values of  and

 before the decreasing trend was observed. Fig. 6 

show the plot of specific heat ( )C  with 

temperature for different values of maximum 

quantum number ( ).The Figure reveals that the 

heat capacity tend to increase monotonically as 

increases and then decreases as  and increases 

with each plot converging. The free energy ( )F   

is plotted as a function of temperature shown in 

Fig.7. The free energy is seen to decrease 

exponentially as  and increases and converges 

at a point close to zero. The plot of entropy ( )S  as 

a function of temperature  and maximum 

quantum number   is shown in Fig. 8. We 

observed that the entropy decreases with increasing

 . This finding is in agreement with Okorie et al. 

(2018) in which the entropy increases with 

increasing temperature for the system. 
  

5.0 Conclusion  

 In this study, we modelled the adopted ultra-

generalized exponential–hyperbolic potential to 

interact in quark-antiquark system. We obtained the 

approximate solutions of the KGE for energy 

eigenvalues and unnormalized wave function using 

the NU method. We applied the present results to 

compute heavy-meson masses of charmonium and 

bottomonium for different quantum states. The 

result agreed with experimental data (with a 

maximum error of 0.0059GeV ) and with the 

results obtained by other researchers. Mass spectra 

variation with potential strengths and screening 

parameter ( ) were plotted and discussed. We also 

obtained thermodynamic properties such as free 

energy, mean energy, entropy, and specific heat and 

their plots were in acceptable concurrence with the 

work of Abu-Shady et al. (2019) and Okorie et al. 

(2018). Therefore, ultra-generalized exponential–

hyperbolic potential provides satisfied results for 

thermodynamic properties and mass spectra of 

heavy quarkonium system. 
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APPENDIX A: Review of Nikiforov-Uvarov 

(NU) method 

The NU method according to Nikiforov & Uvarov 

(1988) is used to solve the second-order differential 

equation which takes the following form: 

( )
( )

( )
( )

( )

( )
( )

2
0

s s
s s s

s s

 
  

 
 + + =     (A1) 

where ( ) ( ) and s s  are polynomials of 

maximum second degree and ( )s  is a polynomial 

of maximum first degree. The exact solution of   

equation  (A1) takes the form 

( ) ( ) ( )s s s  =                                   (A2) 

Substituting   equation (A2) into   equation (A1), we 

obtain 

( ) ( ) ( ) ( ) ( ) 0s s s s s     + + =          (A3)     

Where the function ( )s  satisfies the following 

relation 
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( )

( )

( )

s s

s s

 
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
=                                                (A4) 

And ( )s
 

 is a hypergeometric-type function, 

whose polynomial solutions are obtained from the 

Rodrigues relation  
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where nB
 
is the normalization constant and ( )s

the weight function which satisfies the condition 

below;  

( ) ( )( ) ( ) ( )
d

s s s s
ds

   =          (A6) 

where also   

( ) ( ) ( )2s s s  = +                                     (A7) 

For bound solutions, it is required that 

( )
0

d s

ds


                                                     (A8) 

We can then obtain the eigenfunction and 

eigenvalues using the definition of the following 

function ( )s  and parameter λ, given as: 
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( ) ( ) ( ) ( )

( ) ( )
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2 2

s s s s
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     (A9) 

and   

( )k s  = +                                             (A10) 

The value of k  can be calculated if the function 

under the square root in   equation (A10) is the 

square of a polynomial. This is possible if its 

discriminate is equal to zero. As such, the new 

eigenvalues equation can be given as  

' ''( 1)
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2
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n n
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