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Abstract: There has been a shift toward the 

development of cost-effective and 

environmentally friendly technologies, due to 

increased energy demand and attendant 

environmental degradations. Among these 

technologies, significant progress has been 

made in the field of thermoelectricity. 

Thermoelectric materials are recognized for 

their proficiency in converting waste heat 

energy into electricity, with their efficiency 

commonly assessed using the ZT (Fig. of merit) 

value.. This study investigates the thermoelectric 
properties of chalcogenide magnesium sulfide 
(MgS2), with trigonal lattice structure, using 
Density Functional Theory (DFT) in conjunction 
with the Boltzmann Transport Theory. The initial 
assessment of structural and thermoelectric 
properties employs the Generalized Gradient 
Approximation (GGA) based on the Perdew–Burke–
Ernzerhof approximation (GGA-PBE). 

The results indicate that the studied compounds 

exhibit characteristics of a p-type 

semiconductor. The structural confirmation of 

MgS2 reveals a trigonal configuration. The 

absolute value of the Seebeck coefficient 

demonstrates an increase with rising 

temperature across the measured range (100-

400K). Simultaneously, the electrical 

conductivity exhibits a monotonically 

decreasing trend with increasing temperature, 

indicative of degenerating conduction 

behaviour. The power factor exhibits an 

upward trajectory with increasing 

temperature, consequently leading to an 

augmented dimensionless Fig. of merit ZT. The 

maximum ZT value observed for MgS2 is 0.057. 
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1.0 Introduction 

The challenges of the global energy crisis, such 

as excessive energy consumption, pollution, 

and the depletion of energy sources, are 
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intricately linked to global warming (Ismail & 

Ahmed, 2010). Simultaneously, the 

detrimental emissions associated with fossil 

fuels pose a significant threat to ecological 

equilibrium(Jaziri et al., 2020). To address 

these issues, there is a pressing need for 

affordable, efficient, and environmentally 

friendly alternative energy sources, including 

gas biofuels, solar energy, and devices for 

electrical energy conversion (Blaha, Maafa, 

Chahed, Boukli, & Sayade, 2021) 

In industrial processes, substantial amounts of 

waste heat are generated, representing a 

hitherto untapped resource. The conversion of 

waste heat to electricity presents a viable 

solution to the emerging global energy crisis. 

Traditional thermal energy conversion systems 

like Rankine engines, characterized by moving 

parts and maintenance demands, prove 

impractical for deployment in remote locations. 

Conversely, thermoelectric energy conversion 

utilizing thermoelectric materials offers a 

maintenance-free alternative, as it involves no 

moving parts (Nag, 2023). 

Thermoelectricity, denoting the direct 

conversion of thermal energy (waste heat) into 

electrical energy, encompasses three key 

effects: the Seebeck effect, which induces 

stress in a material exposed to a temperature 

gradient, the Peltier effect, which governs heat 

absorption or release rates, and the Thompson 

effect, which characterizes changes in heat flux 

density under an electric current, allowing for 

the flow of density. The Seebeck effect is 

harnessed in simple devices like thermocouples 

for capturing thermal energy (Weera, 2014). 

Devices built on the Seebeck effect within 

thermoelectric systems play a pivotal role in 

mitigating energy waste by converting waste 

heat into electrical energy. These established 

devices offer economic viability and align with 

modern energy system requirements. Materials 

such as chalcogenides have garnered 

significant attention for their versatility and 

have consequently gained popularity. 

Extensive research has been conducted on this 

class of compounds, focusing on their physical 

and chemical properties (Blaha et al., 

2021)(Tesfaye & Moroz, 2018)(Shi et al., 

2019). 

There have been experiments carried out to 

confirm the theoretical predictions of these 

materials (Gupta, Kumar, Kaur, & Bera, 2020). 

It is difficult to directly improve the basic 

materials to enhance thermoelectric efficiency 

due to the complex and conflicting 

relationships of these parameters (Nag, 2023). 

The primary objective of this investigation is to 

examine both the structural and thermoelectric 

characteristics of MgS2. Notably, and to the 

best of our knowledge, the thermoelectric 

properties of this chalcogenide with a trigonal 

structure have not been explored (Bousnina, 

Giovannelli, Perrière, Guegan, & Delorme, 

2019) These elements are considered less toxic 

than the commonly used alternatives such as 

lead (Pb), contributing to a more 

environmentally friendly condition (Alowa, 

2021). 
 

3.0 Materials and Methods  
 

 

Density functional theory (DFT) calculations 

have been performed [25, 26] utilizing the 

whole plane wave approach implemented in the 

Quantum Espresso tool [27]. The generalized 

gradient approximation of Perdew-Burke-

Ernzehof PBE-GGA) approximates the 

correlation-exchange interaction potential and 

energy [28, 29]. Also, to get beyond the 

restrictions of GGA, we have employed the 

modified Becke-Jonhson (mBJ) technique 

[30]. The wave function was enlarged to lmax = 

10 in the harmonic spherical basis set for the 

non-overlapping muffin-tin spheres. The wave 

function was enlarged in the interstitial areas 

using a plane wave basis set with a cut-off 

parameter of RMTKmax = 8, where Kmax 

denotes the biggest K-vector in the first 

Brillouin zone and RMT is the smallest muffin-

tin radius. We set the muffin-sphere radius to 

2.0, 2.2, 2.4 a.u for S and Mg atoms 
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respectively. To separate the core states from 

valence ones, cut-off energy is set to be 60.0 

Ry. The Brillouin zone integration is completed 

over a Monkhorst-Package [31, 32] with 12 × 

12 × 12 k-mesh. The convergence criterion of 

the self-consistent total energy is taken to be 

10-4 Ry. The dense k-mesh of 15 × 15 × 15 was 

used to obtain accurate thermoelectric 

properties, which are calculated with semi-

classical Boltzmann theory and constant 

relaxation time approximation asset in 

BoltzTrap code [33], Next, the thermoelectric 

properties are studied using DFT in 

conjunction with the Boltzmann equation. This 

involves figuring out the power factor, 

electrical conductivity, and Seebeck 

coefficient. Additionally, the study aims to 

investigate the relationship between the 

electrical and thermoelectric characteristics of 

MgS2's chemical structure. 

4.0 Results and Discussion  
 

The results of the computational studies are 

presented and discussed as follows: 
 

4.1 Structural properties 
 

The analyzed material exhibits a trigonal 

structure within the space group R3̅m, as 

illustrated in Fig. 1. This crystal structure was 

modelled and observed using the Burai 

software within the Quantum Espresso 

framework. The calculated structural 

parameters align with experimental reports and 

other previous findings, confirming the 

reliability of the results (Sahnoun, Bouhani-

Benziane, Sahnoun, & Driz, 2017) MgS2 

demonstrates stability with a lattice constant of 

6.8 Å. Our calculations show good agreement 

with prior research (Blaha et al, 2021). 
 

 

4.2 Thermoelectric properties 
 

The thermoelectric properties were 

investigated using the BoltzTraP code (Berri, 

2022). The performance of thermoelectric 

materials is characterized by a dimensionless 

parameter known as the Fig. of merit ZT = 

S2σT/k. In this context, the electrical 

conductivity, thermal conductivity, Seebeck 

coefficient, and temperature are denoted by σ, 

k, S and T, respectively. 

 
Fig. 1: Trigonal lattice structure of MgS2 

(Materials Project, n.d.) 
 

These parameters were calculated based on the 

Boltzmann transport theory (Saidi et al., 2023). 

The relationship between atomic composition 

and thermoelectric properties is depicted, and 

Fig. 3 illustrates the variation of ZT with the 

chemical potential at different temperatures. 

Positive and negative values of the chemical 

potential represent concentrations of holes and 

electrons. 

The relationship depicted in  Fig. 3 illustrates 

that the Fig. of merit is temperature-dependent, 

indicating an increase with temperature. 

Moreover, a ZT value less than 1 imposes 

limitations on the accuracy of applications. 

Generally, improved ZT values are essential to 

enhance thermoelectric performance (Chang et 

al., 2020). In Fig. 4, the plot of MgS2 versus 

Seebeck (S) at different chemical potentials is 

presented. Notably, there are both negative and 

positive values of S, with magnitudes 

exceeding 20 μV/K. This is beneficial for 

enhancing the performance of both p-type and 

n-type carriers. As evident from the graph, the 

dominant charge carrier type is p-type (since S 

> 0 at μ = 0) (Ramanathan & Khalifeh, 2018) 
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Fig 2: Optimization plot of MgS2 (Volume) 

 

 
Fig. 3: Plots of  figure . of merit against Energy. 
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Fig. 4: Calculated Seebeck of MgS2 for (a) xx component (b) yy component and (c) zz 

component  
 

In Fig. 4, Seebeck S increases with temperature 

for MgS2 compound across the entire range 

from 100 to 400 K. Understanding the 

electrical properties of various functional 

materials, including chalcogenides, poses 

challenges. However, our theoretical research, 

employing Density Functional Theory (DFT) 

combined with Boltzmann theory, enables us to 

comprehend the relationship between electrical 

conductivity and chemical structure. Electrical 

conductivity refers to the measure of a 

material's ability to conduct an electric current 

(Khan & Ur, 2018). 

The curves depicted in Fig. 5 reveal that at 

lower temperatures (100 K), the material 

exhibits enhanced electrical conductivity 
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compared to higher temperatures. Notably, at 

elevated temperatures, the compounds exhibit 

electrical conductivity variations distinct from 

MgS2, particularly in the range of 200 to 400 

K. 

 
 

 

 
 

Fig. 5: Calculated Electric conductivity of MgS2 for (a) xx component, (b) yy component and 

(c) zz component. 
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The performance of thermoelectric materials is 

assessed through the power factor (PF), a 

crucial thermoelectric parameter that correlates 

the Seebeck coefficient and electrical 

conductivity, expressed as PF = Sσ2. Fig. 6 

illustrates the power factor of MgS2 as a 

function of chemical strength (Khan & Ur, 

2018). 

 

 

 
Fig. 6: Calculated Power factor of MgS2 for (a) xx component (b) yy component and (c) zz 

component. 
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For MgS2, the power factor demonstrates an 

increase with rising temperature, reaching its 

peak at 400 K. Below this temperature, a 

gradual decrease is observed (Zemzemi, 2023) 

The graph reveals that p-type MgS2 exhibits a 

superior power factor compared to n-type 

variants, with the highest peaks at 3.06 x 1011 

Wm-1 K-2 s-1 at 0.0408 Ha, 1.409 x 1011 Wm-1 

K-2 s-1 at 0.0340 Ha, and 4.19 x 1011 Wm-1 K-2 

s-1 at 0.0654 Ha at 400 K for the xx, yy, and zz 

components of the plot, respectively 

(Jayaraman, Bhat Kademane, & Molli, 2016). 

The thermal conductivity diagrams presented 

in Fig. 7 indicate that the material exhibits high 

thermal conductivity, a characteristic that could 

potentially impact its efficacy as a 

thermoelectric material. 

 

 

 
Fig. 7: Calculated thermal conductivity of MgS2 for (a) xx component (b) yy component and 

(c) zz component

. 
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4.0 Conclusion 
 

In this study, we conducted a comprehensive 

investigation into the structural and 

thermoelectric properties of trigonal 

magnesium sulfide (MgS2) using Density 

Functional Theory (DFT) in conjunction with 

Boltzmann Transport Theory. Our analysis 

revealed several key findings regarding the 

thermoelectric behaviour of MgS2. 

Firstly, our computational simulations 

confirmed the trigonal lattice structure of 

MgS2, consistent with previous experimental 

reports. The calculated structural parameters 

aligned well with experimental data, validating 

the reliability of our computational approach. 

Regarding thermoelectric properties, our 

results demonstrated that MgS2 exhibits 

characteristics of a p-type semiconductor. The 

Seebeck coefficient showed an increasing trend 

with temperature across the measured range 

(100-400K), indicating its proficiency in 

converting waste heat into electricity. 

However, the electrical conductivity exhibited 

a monotonically decreasing trend with 

increasing temperature, suggesting 

degenerating conduction behaviour. 

Furthermore, the power factor, a crucial 

parameter in assessing thermoelectric 

materials, exhibited an upward trajectory with 

increasing temperature. This resulted in an 

augmented dimensionless Fig. of merit (ZT), 

reaching a maximum value of 0.057 for MgS2. 

Although this ZT value is less than unity, 

indicating limitations for power generation 

applications, it may still find utility in certain 

applications where a lower ZT is acceptable, 

such as in refrigeration systems. 

In conclusion, our study provides valuable 

insights into the thermoelectric properties of 

trigonal MgS2, shedding light on its potential 

for waste heat recovery and energy conversion 

applications. Future research could focus on 

enhancing the thermoelectric efficiency of 

MgS2 through doping or structural 

modifications to further optimize its 

performance. 
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