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Abstract: Several new improved, generalized, 
and extended families of distributions have been 
discovered in recent years from families of 
distributions to aid their application in a variety 
of fields. The Type I half-logistic exponentiated-
G family of distributions which generalizes and 
extends the Type I half-logistic family of 
distributions, with two extra positive shape 
parameters is investigated and proposed. We 
discuss some of the statistical properties of the 
proposed family such as explicit expressions for 
the quantile function, ordinary and incomplete 
moments, generating function, reliability and 
order statistics.  Some of the new family’s sub-
models are discussed.  We discuss the 
estimation of the model parameters by method 
of maximum likelihood. Two real data sets are 
employed to show the applicability and 
flexibility of the new family. 
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1.0 Introduction 
Statistical distributions are frequently used to 
describe real-life events and the theory of 
statistical distributions can be is intensively 
studied to obtain novel distributions for 
optimum utility. In statistics, there is a 
significant desire to construct more flexible 
statistical distributions. Many different types of 
generalized distributions have been devised and 
applied to various phenomena.  Several 
continuous univariate distributions have been 
extensively used for modeling data in many 
areas such as economics, engineering, 
biological studies and environmental sciences 
(Johnson et al., 1994). However, applications in 
areas such as finance, lifetime analysis and 
insurance clearly require extended forms of 
these distributions. Consequently, several 
classes of distributions have been constructed 
by extending common families of continuous 
distributions.   
Generated family of continuous distributions is 
a new improvement for creating and extending 
the usual classical distributions. The newly 
generated families have been broadly studied in 
several areas and have been observed to 
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generate more flexibility in applications. For 
example, Gupta et.al., (1998) pioneered the 
exponentiated-G (E-G) class, Eugene et.al., 
(2002) pioneered beta-G, Marshall-Olkin-G by 
Marshall and Olkin (1997), gamma G 
distributions by Zografos and Balakrishnan 
(2009), Kumaraswamy Weibull G family by 
Cordeiro et.al, (2010). Ristic and Balakrishnan 
(2011) proposed an Alternative Gamma G 
distribution, Kumaraswamy-G family by 
Cordeiro and Castro (2011), Kummer beta 
generalized family by Cordeiro et.al., (2012),a 
new methods for generating families of 
continuous distributions by Alzaatreh et.al., 
(2013).  
Exponentiated T-X family was proposed by 
Alzaghal et.al., (2013), Weibull-G family by 
Silva et.al., (2014), Exponentiated half-logistic 
family by Cordeiro et.al., (2014a), Lomax 
Generator by Cordeiro et.al., (2014b), Logistic-
generated distribution by Torabi and Montazari 
(2014), Type I half logistic family of 
distribution by Cordeiro et.al., (2015), beta 
Marshall-Olkin family of distributions by 
Alizadeh et.al., (2015a), Kumaraswamy Odd 
Log-Logistic-G by Alizadeh et.al., (2015b), the 
logistic-X family by Tahir et.al., (2016), the 
Topp-Leone family of distributions by Al-
Shomrani et.al., (2016), Exponentiated 
Marshal-Olkin family of distributions by Dias 
et.al., (2016), Generalized Burr-G family of 
distributions by Nasir et.al.,(2017), Odd 
Exponentiated Half-Logistic-G family by Afify 
et.al., (2017), Weibull-X family of distributions 
by Ahmad et.al., (2018), Marshall-Olkin 
generalized-G (MOG-G) family of distribution 
by Yousof et.al., (2018), Exponentiated 
Kumaraswamy-G by Silva et.al., (2019).  
Recently, Topp-Leone exponentiated-G (TLEx-
G) family of distributions was proposed by 
Ibrahim et.al., (2020a), Topp Leone 
Kumaraswamy-G family of distribution by 
Ibrahim et.al., (2020b), Burr X Exponential-G 
Family by Sanusi et.al., (2020a), Topp-Leone 

Exponential-G family of distributions by Sanusi 
et.al., (2020b), Kumaraswamy-Odd Rayleigh-G 
family by Falgore and Doguwa (2020a), Inverse 
Lomax-G (IL-G) family of distributions by 
Falgore and Doguwa (2020b), Inverse Lomax 
Exponentiated G family of distributions by 
Falgore and Doguwa (2020c). A new 
generalized Weibull-Odd Frechet family of 
distributions has also been proposed by Usman 
et.al., (2020). Others include Type II 
Exponentiated Half-logistic family of 
distributions by Al-Moeh et.al., (2020), Odd 
Weibull-Topp-Leone-G power series family of 
distributions by Broderick et.al., (2021), and 
Exponentiated Half Logistic Odd Lindley-G 
(EHLOL-G) distribution by Whatmore 
et.al.,(2021). 
The ability to model both monotonically and 
non-monotonically increasing, decreasing and 
constant or more importantly with bathtub-
shaped failure rates, even if the baseline failure 
rate is monotonic, is the motivation for 
extending distributions for modeling lifetime 
data. The following are the basic vindications 
for creating a new family of distributions in 
practice: to generate skewness for symmetrical 
models; to generate distributions with 
negatively skewed, positively skewed, and 
symmetric; to define special models with all 
types of hazard rate functions; to make the 
kurtosis more flexible than that of the baseline 
distribution, to construct tail weight 
distributions for modeling various real data sets; 
to provide consistently better fits than other 
generated distributions with the same 
underlying model.  
The objective of this paper is to develop and 
investigate the Type I Half-Logistic 
Exponentiated-G 
family of distributions (TIHLEt-G). The layout 
of the paper is in 8 sections: Section 1 covers 
the introduction; Section 2 defines the T1HLEt-
G family of probability distributions. 
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We obtained a very useful and important 
representation for the TIHLEt-G cumulative 
distribution function in Section 3.  Section 4 
derives some statistical properties of the new 
family such as the survivor function, the hazard 
function, the quantile function and the order 
statistics. Two sub-models of the new family 
are discussed in Section 5. The parameters of 
the new family were estimated using the 
maximum likelihood estimation approach in 
Section 6.  The application of the sub-model to 
two real data sets was shown in Section 7 to 
demonstrate the use of the new family. Finally, 
Section 8 concludes the paper. 
2.0 Type I Half-Logistic Exponentiated-G 
Family 
The Exponentiated G (Et-G) family of 
distributions as defined in Ibrahim et.al., (2020) 
has cumulative distribution function (cdf) given 
as 

 ( ; , ) ( ; ) ( 1)EGF x H x
 β β

 
and its corresponding probability density 
function (pdf) is defined as  

  1
( ; , ) ( , ) ( ; ) , 0 ( 2 )E Gf x h x H x x

   β β β

 
where α > 0 is the shape parameter and h(x; β) 
and H(x; β) are the probability density function  

(pdf) and cumulative distribution function (cdf) 
of the baseline distribution with parameter 
vector β. 
Cordeiro, et.al. (2015) proposed the Type I half 
logistic family (TIHL) of distributions with cdf 
defined as:  

 
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where λ > 0, x > 0 and G(x; ξ) and g(x; ξ) are 
the cdf and pdf of the baseline distribution with 
parameter vector ξ. 
Proposition 
The cdf of a new family of distribution that 
extends the TIHL family called Type I Half-
Logistic Exponentiated-G Family of 
distributions is given as 

_
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and the pdf is derived as 
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Proof: 
Let the Exponentiated G family be the baseline family with cdf and pdf given in equations (1) and 
(2) respectively, then the proposed Type I Half-Logistic Exponentiated-G family of probability 
distributions has cdf given as: 
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Then  
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3. 0  Important Representation 
In this section, we derived a useful representation for the TIHLEt−G cdf. The cdf defined in  

equation (5) can be expressed as 
1

( ) 1 1 ( ) 1 1 ( )

A B

F x H x H x
  


                     

Using the generalized binomial series, we have  
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Combining A and B, we obtain 
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According to Jamal, et.al., (2018)  
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Also, we have an expansion for the pdf as 
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4.0   Statistical Properties 
In this section, we derived statistical properties 
of the new family of distribution. 
4.1   Moments 
Since the moments are necessary and important 
in any statistical analysis, especially in 
applications. Therefore, we derive the rth 
moment for the new family. 

'

0
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r E x x f x dx


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By using the important representation of the pdf 
in equation (8), we have 
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4.2   Moment generating function (mgf) 
The Moment Generating Function of x is given 
as: 

0
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xM t e f x dx


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Also, by using the important representation of the pdf in equation (8), we have  
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4.3    Incomplete moment 
The sth incomplete moments, say ( )t  is given 
by 

'

0

( ) ( ) (13)
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s
s st x f x dx    

From the important representation of the pdf in 
equation (8), we have  
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The first incomplete moment of the TIHLEt-G 
family ( )s t can be obtained by setting s = 1. 

4.4    Mean deviation 
The mean deviation about the mean 

'
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From the important representation of the pdf in equation (3.2), we have  
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4.5   Reliability function 
The reliability function which is also known as survivor function, that gives the probability 

that a patient will survive longer than specified period of time. It is defined as 
( ; , , ) 1 ( ; , , )R x F x    β β  
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Obtaining survival probabilities for different values of time x provides crucial summary information 
from survival data. 
4.6   Hazard function 

The hazard function is the probability of an event of interest occurring within a relatively 
short time frame and is defined as: 

( ; , , ) ( ; , , )
( ; , , ) (19)
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The hazard function also known as 
conditional failure rate, gives the 
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instantaneous potential per unit time for the 
event of interest to occur, given that the 
individual has survived up to time x. 
4.7   Quantile Function 
The quantile function is a vital tool to create  
random variables from any continuous 
probability distribution. As a result, it has a 
significant position in probability theory. For 

x, the quantile function is F(x) = u, where u is 
distributed as U(0,1).The TIHLEt-G family is 
easily simulated by inverting equation (2.5) 
which yields the Quantile function Q(u) 
defined as: 

         (20) 

where 1H   is the quantile function of the 
baseline cdf H(x; β). The first quartile, the 
median and the third quartile are obtained by 
putting u = 0.25, 0.5 and 0.75, respectively in 
equation (20). 
4.8   Order Statistics 
Many areas of statistics including reliability and 
life testing, have made substantial use of order 
statistics. Let X1, X2, ..., Xn be independent and 

identically distributed random variables with 
their corresponding continuous distribution 
function F (x). Let X1, X2,.., Xn be n 
independently distributed and continuous 
random variables from the TIHLE-G family of 
distribution.  Let Fr:n(x) and fr:n(x), r = 1, 2, 3, 
..., n denote the cdf and pdf of the rth order 
statistics Xr:n respectively. David (1970) gave 
the probability density function of Xr:n as: 

 1
:

1
( ) ( ) 1 ( ) ( ) (21)

( , 1)

n rr
r nf x F x F x f x

B r n r

 
 

 

By substituting equation (5) and equation (6) into equation (21), we have, 
1

:

11

2

1 1 ( ; , , ) 2 1 ( ; , , )1
( ; , , )

( , 1) 1 1 ( ; , , ) 1 1 ( ; , , )
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1 1 ( ; , , )
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                 
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      

β β
β

β β

β β β
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(22)

 

The equation above is called the rth order statistics for the TIHLEt-G family of distributions. 
Let r = n, then the probability density function of the maximum order statistics is  

111

: 2

2 ( ; , , ) ( ; , , ) 1 ( ; , , ) 1 ( ; , , )
( ; , , ) (23)
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Also, let r = 1, then the probability density function of the minimum order statistics is  

111

1: 2
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β β β β
β

ββ

5.0   Sub-Models 
In this section, we describe two sub-models of 
the TIHLEt-G family namely, TIHLEt- 

Exponential and TIHLEt-Log-logistic 
respectively. 
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5.1   Type I Half-Logistic Exponentiated 
Exponential (TIHLEtE) Distribution 

 The cdf and pdf of Exponential 
distribution which is our baseline distribution 
with parameter   are: 

( ; ) 1 (25)xH x e     
and  

( ; ) , 0, 0 (26)xh x e x      
The TIHLEtE has cdf and pdf as follows: 

1 1 1
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1 1 1
0 (27)
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Furthermore, the following are the reliability function, hazard rate function and the quantile 
function respectively: 
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5.2   Type I Half-Logistic Exponentiated Log-Logistic (TIHLEtLL) Distribution 
 cdf and pdf of Log-Logistic distribution with parameter   as our baseline distribution are: 

( ; ) (32)
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Fig. 1: Plots of Pdf of the TIHLEtE distribution for different parameter values. 

 
Fig.  2: Plots of hazard of the TIHLEtE distribution for different parameter values 

 
The TIHLEtLL distribution has CDF and PDF given as; 
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Moreso, the following are the reliability function, hazard rate function and the quantile function 
respectively: 
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Fig. 3: Plots of Pdf of the TIHLEtLL distribution for different parameter values. 
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Fig.  4: Plots of hazard of the TIHlEtLL distribution for different parameter values. 

6.0   Parameter Estimation 
In this paper, we explore the maximum 
likelihood technique to estimate the unknown 
parameters of the TIHLEt-G family for 
complete data.  Maximum likelihood estimates 
(MLEs) have appealing qualities that may be 
used to generate confidence ranges and provide 
simple approximations that function well in 

finite samples. In distribution theory, the 
resulting approximation for MLEs is easily 
handled, either analytically or numerically. Let 
x1, x2, x3, ..., xn be  a random sample of size n 
from the TIHLEt-G family. Then, the likelihood 
function based on observed sample for the 
vector of parameter (λ, α, β)T is given by 

 
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The components of score vector ( , , )TU U U U    are given as 
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The MLEs are obtained by setting ,U U  and 

U to zero and solving these equations 

simultaneously. These Equations cannot be 
solved analytically, necessitating the use of 
analytical tools to solve them numerically. 
7. 0 Applications to Real Data 
In this section, we fit the TIHLEtE distribution 
to two real data sets and give a comparative 
study with the fits of the Type I half logistic 
exponential (TIHLE) by Almarashi et.al., 
(2019), Topp-Leone exponential distribution 

(TLEx) by Al-Shomrani et.al., (2016), 
Kumaraswamy exponential distribution (KEx) 
by Adepoju and Chukwu (2015), Exponentiated 
exponential Distribution (ExEx) by Gupta and 
Kundu (1999), and Logistic-X exponential 
distribution (LoEx) by Oguntunde et.al., (2018), 
as comparator distributions for illustrative 
purposes. 
The TIHLE distribution proposed by Almarashi 
et.al., (2019) has probability density function 
given as: 
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The TLEx distribution proposed by Al-Shomrani et.al., (2016) has pdf defined as: 
12 2( ; , ) 2 1 (44)x xf x e e

   
      

The KE distribution developed by Adepoju and Chukwu (2015) has pdf defined as: 
1

( ; , , ) (1 ) 1 1 (45)x x xf x e e e
     
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The ExEx distribution pioneered Gupta and Kundu (1999) has pdf given as: 
1

( ; , ) 1 (46)x xf x e e
   
      

And the LoEx distribution developed by Oguntunde et.al., (2018) has pdf given as: 
2( 1)( ; , ) 1 ( ) (47)f x x x 



  


       

The two datasets that were used as examples in 
the application demonstrate the new family of 
distributions’ flexibility and ‘best fit’ compared 
to the above comparator distributions in 

modeling the data sets experimentally. The R 
programming language is used to carry out all of 
the computations. 
Data set 1 
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The first data set as listed below represents the 
COVID-19 positive cases record in Pakistan 
from March 24 to April 28, 2020, previously 
used by Al-Marzouki, et.al., (2020): 

2, 2, 3, 4, 26, 24, 25, 19, 4, 40, 87, 172, 38, 105, 
155, 35, 264, 69, 283, 68, 199, 120, 67, 36, 102, 
96, 90, 181, 190, 228, 111, 163, 204, 192, 627, 
263. 

 
Fig. 5: Fitted pdfs for the TIHLEtE, TIHLE,  TLEx,  KE, ExEx, and LoEx distributions to 
the data set 1 

 

 
Table 1: MLEs, Log-likelihoods and Goodness of Fits Statistics for the Data Set 1 

 
Distributions       LL AIC 

TIHLEtE 0.6143 0.0189 0.5265 -207.4909 420.9818 
TIHLE 0.0033 3.4313  -208.8547 421.7094 
ToLE 1.2301  0.0040 -210.0476 424.0952 

KE 0.0711 0.0538 0.1297 -213.8326 433.6653 
ExEx 0.0154  2.7179 -227.4619 459.9237 
LoEx 0.0137 1.2440  -212.0221 428.0442 
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Fig. 6: Fitted pdfs for the TIHLEtE, TIHLE, TLEx, KE, ExEx, and LoEx distributions 
to the data set 2 

Table 1 presents the results of the Maximum 
Likelihood Estimation of the parameters of the 
proposed distribution and the five comparator 
distributions. Based on the goodness of fit 
measure, the proposed distribution reported the 
minimum AIC value, though followed closely 
by the T1HLE. The visual inspection of the fit 
presented in Figure 5, also confirms the 
superiority of the proposed distribution amongst 
its comparators. Thus the proposed distribution 
‘best fit’ COVID 19 data set amongst the range 
of distributions considered. 
Data set 2 

The second data set shown below represents the 
survival times (in days) of seventy-two (72) 
guinea pigs infected with virulent tubercle 
bacilli. It has been previously used by Bjerkedal 
(1960) and Shanker et.al., (2015): 
12, 15, 22, 24, 24, 32, 32, 33, 34, 38, 38, 43, 44,  
48, 52, 53, 54, 54, 55, 56, 57, 58, 58, 59, 60, 60, 
60, 60, 61, 62, 63, 65, 65, 67, 68, 70, 70, 72, 73, 
75, 76, 76, 81, 83,84, 85, 87, 91, 95, 96, 98, 99, 
109, 110, 121, 127, 129, 131, 143, 146, 146, 
175, 175, 211, 233, 258, 258, 263, 297, 341, 
341, 376. 

Table 2: MLEs, Log-likelihoods and Goodness of Fits Statistics for the Data Set 2 
 

Distributions       LL AIC 
TIHLEtE 3.558 0.3341 0.0541 -393.7824 793.5648 

TIHLE 0.0029 4.8756  -400.0553 804.1106 
ToLE 0.5000  0.0032 -423.6331 851.2662 

KE 0.0291 0.0874 0.0936 -427.4184 860.8369 
ExEx 0.0059  0.4756 -424.8795 853.759 
LoEx 0.0128 0.8691  -429.0641 862.1282 

Table 2 shows the results of the Maximum 
Likelihood Estimation of the parameters of the 

T1HLEtE distribution and the five comparator 
distributions. Based on the goodness of fit 
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statistic AIC, the new distribution reported the 
minimum AIC value suggesting that the 
distribution is the ‘best fit’ to the survival times 
of the guinea pigs infected with tubercle bacilli. 
The visual inspection of the fit presented in 
Figure 6, also reaffirms the superiority of the 
new distribution amongst its comparators. Thus, 
using the survival function of the new 
distribution, one can obtain survival 
probabilities for different values of x in order to 
provide crucial summary information from the 
analyzed survival data. 
8. 0  Conclusion 
A new family of continuous distributions called 
the Type I Half Logistic Exponentiated-G 
(TIHLEt-G) family is proposed and studied.  
Some of the statistical aspects of the proposed 
family, such as explicit quantile function 
expressions, ordinary and incomplete moments, 
generating function, survivor functions, and 
order statistics are investigated. Some of the 
new family’s sub-models were discussed. The 
method of maximum likelihood is used to 
estimate the model parameters. In comparison to 
well-known models, two real data sets are 
evaluated to highlight the importance and 
flexibility of one of the sub model. The findings 
reveal that the new model appears to be superior 
to the existing models considered and, therefore, 
provides new distribution to model data in many 
applications. 
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