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Abstract: Quantum confinements in 𝛼 −
𝐺𝑎௫𝐼𝑛ଵି௫𝑁 spherical semiconductor quantum 
dots (QDs) has been theoretically studied using 
the Particle in a box Model based on the effective 
mass approximation and quantum confinement 
effects. The valence band degeneracy in Г point 
of the Brillouin zone and the effective mass 
anisotropy are also taken into account. The 
emission intensity spectrum was also 
investigatedtoo understand the effect of alloy 
composition(x) on the spectrum.  The results 
show that the ground state confinement energy is 
largely dependent on radius of the dot and alloy 
composition(x). Thus, as dot radius decreases, 
the confinement energy increases. Hence, 
confinement energies could be tuned by changing 
the radius of QDs and the GaNcompositions, 
which play a fundamental role in the optical and 
electronic properties of QDs of all the transitions 
in the degenerate bands. Also, the theoretically 
calculated emission intensity spectrum shifted 
towards higher energy region (lower 
wavelengths) by mere increasing the alloy 
compositions (x) of the semiconductor quantum 
Dot active region 𝛼 − 𝐺𝑎௫𝐼𝑛ଵି௫𝑁. 
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1.0  Introduction 
Semiconductor quantum dots (SQDs) also 
known as artificial atoms have attracted 
much attention for many potential 
applications due to their unique physical and 
optical properties such as size-dependent 
band gap,size-dependentt excitonic emission, 
enhanced nonlinear optical properties and 
size-dependent electronic properties 
attributed to quantum size-effect (QSE) 
(Ahmed et al.,2010; Weiet al., 2014). Past 
few decades has witnessed the substantial 
expansion of Group III-nitride 
semiconductors (Xuet al., 2008). Most of the 
interest in nitride-based alloys and devices 
has been on their unique benefit inshort-
wavelengthh lights, high-power electrical 
devices, wide band gap ranging from Infrared 
to ultraviolet frequencies which are 
appropriate for electronic and optoelectronic 
device applications (Steigerwaldetal., 
1997;Song et al., 2019). GaN and its alloys, 
particularly InGaN have been proved to be 
most promising materials for optical devices 
(Schubert et al., 2008).  
Although some dynamic improvement has 
been actualized in the study of Nitride based 
devices, numerous fundamental 
characteristics are still unclear or 
uninvestigated. For example, knowledge on 
the quantum confinements in wurzite Nitride 
QDs that takes full account of the existing 
anisotropy in the effective masses which is 
essential for understanding the behaviour of 
the confined particles has not yet been 
reported.  
Quantum confinement is a unique 
characteristics of QDs as it transforms the 
density of states near the band edge (Beraet 
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al., 2010 andEric et al., 2019
transformation in the density of electronic 
states (Wei, et al., 2014), size quantization of 
exciton states shifts the band gap 
emission spectrum which is a function of 
quantum dot sphere’s radius (Efros,1982). 
This shiftschanges the energy levels fr
continuous to discrete levels (Robinson 
2005, Imran et al., 2018 and 
2018). 
In this paper, quantum confinement
spherical 𝛼 − 𝐺𝑎௫𝐼𝑛ଵି௫𝑁  semiconductor quantum 
dots are theoretically investigated 
framework of a particle in a box
that takes full account of the existing anisotropy in 
the dielectric constants, electron and hole 
masses and also taking into consideration 
valence band degeneracies is discussed
parameters obtained in this method are used as 
inputs in the calculations of the confinement 
energies and photon emissions are these are 
discussed in terms of alloy composition and 
quantum dot radius. 
1.1 Theory 
The particle in a box model describes the free movement 
of a particle in a small space surrounded by impenetrable 
barriers according to Samrat, (2014
energy of a particle trapped in a spherically symmetric 
box with  V(r) = ∞outside and a co
energy V(r) = 0 inside is found by solving the radial part 
of the Schrodinger equation: 
ଵ

௥మ

ௗ

ௗ௥
ቀ𝑟ଶ ௗோ೗(௥)

ௗ௥
ቁ + ቀ

ଶ௠

ћమ −
௟(௟ାଵ)

௥మ ቁ 𝑅௟

where M is the mass of the particle, 

Planck constant, Rl(r) is the  eigen function of 
energy E with l representing 
momentum of the particle quantum 
of the boundary condition, (Rl(r) = 0 for r = a where V(r) 
→ ∞) leads to the simplification of equation 1 to 
generate equation 2 

𝑅଴(𝑟) =
஻ ௦௜௡௞௥

௥
    

where B is the normalization constant. 
state energy of a particle confined in a
box can be written as follows:  

𝐸଴ =
௛మ

଼௠ మ    

The modification of equation 3 to contain the 
corresponding to each of the allowed 
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is the normalization constant. Also, the ground 
state energy of a particle confined in a one dimensionall 

  (3) 

on of equation 3 to contain the energies 
corresponding to each of the allowed wavenumbers 

associated with the respective principal quantum number 
leads to equation 4 

𝐸௡ =
௡మ୦మ

଼௠௥మ   

Equation 4 is an extension of the Schrödinger equation 
that is best referred to as, the particle in a box model. 
The mathematical implication 
energy of a particle will always assume a non
This model can be applied to analyse
problem, since in quantum dot, electron
typically confined within the dots (E
extension of the one the particle in a box problem to 
account for the masses of electrons and hole gives the 
solution to the theoretical energy expected within the 
quantum dot according to the form expressed in equation 
5 while equation 6 represen
confinement energy o  electrons and holes in the 
quantum dots.  

𝐸 =
௡௛మ
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∗  are the effective mass
respectively. In Wurtzitee Structure
mass, 𝜇 = 𝑚௘𝑚௛/(𝑚௘+𝑚௛) and static dielectric 
constant 𝜀(0)arising from the structural anisotropy
best be approximated to the forms expressed by Hanada 
et al. (2013) as follow: 
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Also, the average statistical dielectric constant 
be written as equation 9, (Hanada 

𝜀(0) = ඥ𝜀‖(0)𝜀ୄ(0) 
where 𝜀‖(0)𝑎𝑛𝑑 𝜀ୄ(0) are static dielectric parallel and 

perpendicular respectively,𝑚௘
‖

effective masses of electron and hole 
perpendicular respectively. Consequently, the energy 
gap of a quantum dot can be w
1996):  

∆𝐸(𝑅) = 𝐸௚ +
୦మ

ଶோమ ൬
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The bandgap,𝐸௚of the ternary alloy can be interpol
from the bandgap of the constituent binary alloy using 
the quadratic function (equation 11)
𝐸௚(𝑥) = (1 − 𝑥)𝐸௚

஺஼ + 𝑥𝐸௚
஻஼ −

where 𝐸௚ is bandgap of the bulk 
material being studied, x is the 
isthe  bowing parameter. 
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2.0 Absorption spectra of the s
 

The linear optical absorption, α at a given frequency ω
can be investigated using 
phenomenological formula of the type
equation 12 (Osuwa,and Oriaku,2010, Oriaku and 
Osuwa, 2009, andPelant and Valenta

𝛼(𝜔) =
஺(ћఠି∆ா(ோ))೙

ћఠ
∀ ћ𝜔 > 𝐸௚ 

In equation 12, ω and ћ denote the incident sampled 
photon frequency and thereduced Planck's
respectively. A is the material parameter to be extracted 
from the semiconductor.  
Table 1: Parameters used in modeling the Tunable Exciton Energies of WZ
 
 

 

Material 𝐸௚(𝑒𝑉) 𝑚௘
‖ 𝑚

GaN 3.510 0.20 0.18

InN 0.78 0.11 0.10

3. 0  Results and Discussion 
The effects of composition x on the 
anisotropic electron effective masses
bothparallel (‖) and perpendicular (
directions in the dot material were evaluated 
and the electron effective masses were 
 

Fig. 1: Variation of dielectric with composition, x for 
Figs. .2 and3 are the plots the variation of 
effective-mass as a function of alloy 
composition(x).The figures reveals that 
effective-masses for the three holes
heavy hole(hh), light hole(lh) and
hole(ch) in the parallel direction
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semiconductor photoluminescence intensity can be 
expressed as follows (Yanlin H. and Hyo J. S. 2012): 
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Here 𝛽 is simply the inverse thermal energy given as 1 
/𝐾஻𝑇, where𝐾஻and T are the Boltzmann's constant and 
temperature. The band parameters adopted in the 
calculations are summarized in Table 1.
 

Table 1: Parameters used in modeling the Tunable Exciton Energies of WZ-GaInNQDs

𝑚௘
ୄ 𝑚௛௛

‖  𝑚௟௛
‖  𝑚஼௛

‖  𝑚௛௛
ୄ  𝑚௟௛

ୄ  

0.18 1.10 1.10 0.15 1.65 0.15 

0.10 1.67 1.67 0.10 1.61 0.11 

(Source: Hanada, 2013) 
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accord with the observation reporte
Zhou and Sheng (2008) for 
quantum dot. 
 

Variation of dielectric with composition, x for 𝜶 − 𝑮𝒂𝒙𝑰𝒏𝟏ି𝒙𝑵 nanostructure dots
variation of hole 

as a function of alloy 
figures reveals that hole 

masses for the three holes namely: 
heavy hole(hh), light hole(lh) and crystal field 

in the parallel direction was found to 

be inversely dependent on the alloy 
composition. A similar characteristic was 
observed for light hole and cry
perpendicular plane. The heavy hole in the 
perpendicular plane displayed
dependent on the alloy composition. 
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0.10 9.5 10.4 

1.67 15.0 15.0 

observed to increase with composition x 
as shown in Fig. 1. This result is in 

accord with the observation reported by 
Zhou and Sheng (2008) for flat lnAs/Ga-As 

nanostructure dots 
be inversely dependent on the alloy 
composition. A similar characteristic was 
observed for light hole and crystal field hole in 
perpendicular plane. The heavy hole in the 

displayed direct 
dependent on the alloy composition. The 
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effective mass anisotropy of the holes showed 
unique differences in energy for the various 
directions with to the C-axis

Fig.2: Hole effective mass (
 

Fig.3: Hole effective mass 
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s in energy for the various 

xis, that is the  

splitting of the quantum confinement levels of 
the holes. 
 

 
.2: Hole effective mass (ǁ) as a function of composition x

.3: Hole effective mass ⊥ as a function of composition x
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Fig.4: R
We have used Particle in a box model within 
effective mass approximation to calculate the 
ground state confinement energy of 
Ga୶Inଵି୶N spherical QDs as a function of dot 
radius R=1-8nm and varying alloy 
composition x= 0.5, 0.75,1. The results are as 
reported here. The conduction and valence 
band of α − Ga୶Inଵି୶N  quantum dot studied 
is anisotropic. Therefore, effective masses of 
electrons and holes in parallel and 
perpendicular directions towards C
the dot are non-identical as shown in Table 
1.The α − Ga୶Inଵି୶N quantum dot 

Fig.5: Confinement energy at x=0.25 composition as a fu
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.4: Reduced mass as a function of composition x 
We have used Particle in a box model within 
effective mass approximation to calculate the 
ground state confinement energy of α −

spherical QDs as a function of dot 
8nm and varying alloy 

he results are as 
The conduction and valence 

quantum dot studied 
is anisotropic. Therefore, effective masses of 

and holes in parallel and 
perpendicular directions towards C-axis of 

identical as shown in Table 
quantum dot 

confinement energy show clear depend
on dot radius at different alloy composition(x) 
in all the plots for the respective subbands. It 
is clearly observed that the decrease of the dot 
radius shifts the energy levels. These shifts 
are considerably dependent on alloy 
composition(x) and effective masses of the 
carriers. The larger is the composition(x), the 
larger is the shift. Thus revealing the ability 
of  α − Ga୶Inଵି୶N quantum dot to be tuned 
within energies ranging from about 1.5eV to 
5.5eV covering the Infrared to UV spectral 
range (Figs.5 to 7). 

Confinement energy at x=0.25 composition as a function of dot radius
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Fig.6: Confinement energy at x=0.75 composit

Fig.7: Confinement energy at x=1 composition as a 
Quantum dot Emission Intensity
Figs. 8 to 10 are  plots for the emission 
intensity ofα − Ga୶Inଵି୶N  quantum dot at 
different alloy composition(x).  
from the plots that the intensity manifested as 
a broad signal, which may be attributed to 
inhomogeneous broadening due to different 
alloy composition(x).  Calculations of the 
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Quantum dot Emission Intensity 
s for the emission 

quantum dot at 
different alloy composition(x).  It is evident 
from the plots that the intensity manifested as 

, which may be attributed to the 
inhomogeneous broadening due to different 

Calculations of the 

intensity at different composition (x) 
that the observable shift in intensity increase
with alloy composition (x). A 
observation has been for GaN/AlN structures 
(Rami, 2011). Therefore, 
influenced by varying alloy composition. At x 
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=0.75 in Fig. 8, three sharp peaks
observed at around 4.0eV, 4.5eV and 4.8eV 
respectively depicting the emission intensity 
at hh, lh, chsubbands respectively. These
peaks are believed to be emission signal from 

 
Fig.8: Emission intensity of hh, lh, chsubbands at 0.25 composition(x) as 
photon energy in𝛂 − 𝐆𝐚𝐱𝐈𝐧𝟏ି𝐱𝐍

Fig.9: Emission intensity of hh, lh, chsubbands at 0.5 composition(x) as a function of 
photon energy in 𝛂 − 𝐆𝐚𝐱𝐈𝐧𝟏ି𝐱
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three sharp peaks were 
observed at around 4.0eV, 4.5eV and 4.8eV 
respectively depicting the emission intensity 
at hh, lh, chsubbands respectively. These 
peaks are believed to be emission signal from 

the binary structures due to their broad 
spectrum. Thus, the intensity desired f
optical devices can be realized by varying the 
alloy composition(x).   
 

: Emission intensity of hh, lh, chsubbands at 0.25 composition(x) as a function of 
𝐍 𝐐𝐃. 

: Emission intensity of hh, lh, chsubbands at 0.5 composition(x) as a function of 
𝐱𝐍 𝐐𝐃. 
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Fig.10: Emission intensity of hh, lh, chsubbands at 0.75 composition(x) as a function of

 

The most important factor that affects the 
optical properties is the size of the dots. 
Different sized quantum dots change the color 
emitted or absorbed by the crystal, due to the 
energy levels within the crystal.
from the results presented in Table 2 that 
emission spectrum, the color 
differs according to the energy emitted by the 
crystal. Red light is associated with 
energy while blue light is associated 
Table 2: Emission wavelength of
 

 

 
 

Degenerate holes 
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: Emission intensity of hh, lh, chsubbands at 0.75 composition(x) as a function of
energy in 𝛂 − 𝐆𝐚𝐱𝐈𝐧𝟏ି𝐱𝐍 𝐐𝐃 

The most important factor that affects the 
optical properties is the size of the dots. 
Different sized quantum dots change the color 
emitted or absorbed by the crystal, due to the 
energy levels within the crystal.It is evident 
from the results presented in Table 2 that the 
emission spectrum, the color of the light 
differs according to the energy emitted by the 
crystal. Red light is associated with lower 

is associated with a 

higher energy. Also, the size of a quantum dot is 
inversely proportional to the band gap energy 
level, and therefore alters the wavelength of light 
emitted and has an effect on the color it displays. 
Smaller dots emit higher energy light that is bluer 
in color, whereas larger dots emit lower energy red 
light. The size of the dot can be manipulated in 
manufacturing processes by varying the material 
composition as done in this work to create a 
quantum dot suitable for specific optical devices.
 

wavelength of different degenerate bands at different composition

 
 

Composition(x) Emission 
Energy(eV) 

Emission colour

0.25 2.2 Red,orange

0.5 2.8 Green,Blue

0.75 3.9 Blue

0.25 2.1 Red,orange

0.5 3.0 Green,Blue

0.75 4.5 Blue

0.25 2.0 Red,orange

0.5 3.3 Green,Blue

0.75 4.8 Blue
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Green,Blue 

Blue 

Red,orange 

Green,Blue 

Blue 

Red,orange 

Green,Blue 
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4.0 Conclusion 
In conclusion, we have investigated 
theoretically quantum confinement in 
𝛼 − 𝐺𝑎௫𝐼𝑛ଵି௫𝑁 spherical semiconductor 
quantum dot. We showed how different 
valence subbands of 𝛼 − 𝐺𝑎௫𝐼𝑛
change the dynamics of the QD and create 
different responsivity toward alloy 
compositions(x) and dot radius. 
observed that the decrease of the dots shifted 
the energy levels from 1.5eV to 5.5eV. These 
shifts are considerably dependent on alloy 
composition(x) and effective masses of 
carriers. The larger is the composition(x), the 
larger is the shift. Besides, the degeneracies of
the holes confinement energies 
observed at some values of R 
different valence subbands. Further
emission intensity spectrum of the quantum 
dot material studied shifted towards higher 
energies byincreasing alloy composition(x). 
The QD material studied exhibited 
confinement at around the orange/red domain, 
mainly due to the Indium composition, the 
confinement spectrum also shifted towards the 
blue domain by incorporating Gallium. This 
would make it possible to create efficient solid 
state white light. 
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