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Abstract: This paper investigates the 

application of various stochastic volatility 

models in determining optimal investment 

strategies in the stock market. The study 

explores the geometric Brownian motion 

(GBM), constant elasticity of variance 

(CEV), modified CEV (M-CEV), and Heston 

volatility models. Each model offers a unique 

perspective on volatility dynamics and option 

pricing. The research formulates the 

Hamilton-Jacobi-Bellman (HJB) equations 

for each model and employs the Legendre 

transformation method to convert them into 

linear partial differential equations (PDEs). 

The quadratic utility function is utilized to 

derive optimal portfolio distributions under 

each model. Numerical simulations are 

conducted to analyze the impact of market 

parameters such as appreciation rate, 

volatility, interest rate, elasticity parameter, 

tax, and investor's wealth on the optimal 

portfolio distribution. The results indicate 

that optimal investment strategies vary 

significantly based on market conditions and 

investor preferences. Overall, this study 

provides valuable insights into the dynamic 

nature of financial markets and offers 

practical guidance for portfolio optimization 

and risk management strategies. 

 

Keywords: Optimal portfolio distribution, 

stochastic volatility, Ito’s lemma, Hamilton 

Jacobi Bellman equation, financial market. 
 

Promise. A. Azor* 

Department of Mathematics and Statistics, 

Federal University Otuoke, P.M.B 126, 

Bayelsa, Nigeria.. 

E-mail: azorpa@fuotuoke.edu.ng 

Orcid id: 0009-0001-6028-7803 

 

 

 

 

Amadi Ugwulo Chinyere 

Department of Mathematics and Statistics, 

Federal University Otuoke, P.M.B 126, 

Bayelsa, Nigeria.. 

E-mail: amadichinyere815@gmail.com 
Orcid id: 0009-0007-0779-9707 

 

1.0 Introduction  
 

The stock market (SM) is an essential part of 

the financial market, which makes it possible 

for the buying and selling of equity 

representing ownership in publicly traded 

companies. SM pricing has to do with 

determining fair values for individual stocks, 

which is often determined by the forces of 

fundamental analysis, demand and supply, 

market sentiment and other factors. Accurate 

pricing is of utmost importance for investors 

seeking to make the right investment 

decisions, and risk management and 

ultimately make optimal returns on 

investment. Stochastic volatility is a model 

that recognizes that the volatility of the 

underlying asset is not constant but rather 

follows a random process over time (Merton, 

1976). Traditional models that assume 

constant volatility may fail to capture the 

dynamic nature of financial markets and lead 

to inaccurate pricing. Stochastic volatility 

models provide a more realistic 

representation of volatility dynamics, 

allowing for time-varying volatility levels 

and capturing empirical observations such as 

volatility clustering, mean reversion, and the 

presence of jumps.Various types of 

stochastic volatility models have been 

developed to better capture the dynamics of 

volatility in financial markets. These models 

include: 

The GBM model, proposed by (Black & 

Scholes, 1973), forms the foundation of 

modern option pricing theory. It assumes that 

stock prices follow a log-normal distribution 
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and that volatility is constant over time. 

While GBM itself is a foundational model for 

understanding asset price dynamics, Merton's 

work laid the groundwork for connecting it 

with the idea of stochastic volatility.(Merton, 

1976) introduced the concept of stochastic 

volatility by incorporating a stochastic 

process for volatility into the framework of 

GBM. He recognized that the constant 

volatility assumption of the Black-Scholes 

model was not fully representative of real-

world market behaviour, leading him to 

explore the idea of allowing volatility to vary 

over time. Merton's incorporation of 

stochastic volatility into the GBM framework 

was a significant step toward modelling more 

realistic price dynamics in financial 

markets.(Agbam & Azubuike, 2021; Hamzah 

et al, 2021) investigated the prediction of 

stock market prices using the GBM Model 

and the results show that in the simulation, 

there are some actual stock prices located 

outside trajectory realization that may be 

from the GBM model. Thus, the model did 

not predict accurately the price behavior of 

some of the listed stocks. (Muhamad & Ani, 

2022) investigated forecasting the crude oil 

price in Malaysia using the GBM model and 

the result shows that the log return of crude 

oil prices is normally distributed, and GBM 

models were suitable to forecast crude oil 

prices but for short-term prediction. 

(Akpanibah& Catherine, 2023) investigated 

the application of the GBM model to FM and 

they showed that the model is appropriate for 

forecasting SM pricing on the floor of 

Nigeria stock exchange at least for one 

month. However, the introduction of other 

stochastic volatility models was driven by the 

limitations of the GBM model and the need 

to better capture the complexities of real-

world financial markets.  

.The introduction of the CEV model to the 

concept of stochastic volatility can be 

attributed to (Cox, 1975). He introduced the 

CEV model as an extension of the GBM 

model. The CEV model addresses one of the 

limitations of the GBM model - the 

assumption of constant volatility. Cox 

recognized that while constant volatility was 

unrealistic, a power-law relationship between 

the asset's volatility and its price level could 

offer a more flexible way to model time-

varying volatility.  

(Adelekeet al, 2019) examine the option 

pricing implications of the CEV model in the 

Nigerian stock market. The authors find 

evidence supporting the applicability of the 

CEV model, suggesting that it can effectively 

capture the dynamics of option prices in this 

market. (Aremoet al, 2019) did an empirical 

study of the CEV model using data from the 

NSE. They studied the relationship between 

stock returns and volatility, as captured by 

the CEV model. Their results show that the 

CEV model gives a reasonable representation 

of stock returns in the SM. Ogunjo & 

Adegbaju (2020) studied SV modelling of 

stock returns under the CEV model in the 

NSE; they investigated the dynamics of stock 

returns and volatility, taking into 

consideration the proposition of the CEV 

model. They showed that the model can 

effectively capture the volatility dynamics in 

the Nigerian SM.  

Many other authors such as (Elliott & 

Wagalath (2018); Wang & Zhu (2018), 

Akpanibah & Oghenero, 2018; Li & Zhou 

(2018); Osu et al (2018); Yang & Zhang 

(2019); Tikhomirov & Nikitina (2019); Cui 

& Xu (2019); (Ballottaet al, 2019); Li & Lee 

(2019); Chan & McAleer (2020)  Wang & 

Meng (2019); Chan & McAleer (2020); Hu 

& Huang (2020); Liu & Liu (2020); 

Akpanibah & Ini, 2020; Akpanibah & Ini, 

2021; Li & Cheng (2020); Song & Liang, 

2021) studied the CEV model under different 

conditions.     

The M-CEV model is an extension of the 

CEV model and is aimed at redefining the 

CEV model by incorporating mean-reverting 

properties into the volatility process. This 

addition allows the model to better capture 

both short-term fluctuations and long-term 

trends in volatility, making it more suitable 

for certain market conditions. Some authors 

have used the M-CEV model to model their 

problem. This includes but is not limited to 

(Madalena et al, 2019) investigated option 

pricing under the M-CEV model with 
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stochastic interest rates. Their study provided 

insights into the impact of interest rate 

fluctuations on option prices, enhancing the 

understanding of pricing dynamics in the 

stock market.(Liu, et al, 2020) extended the 

work of (Madalena et al, 2019) by studying 

options pricing using the M-CEV model with 

stochastic interest rates. Their study further 

explored the implications of interest rate 

uncertainty on option pricing, Olorunfemi & 

Oyewunmi (2018) studied an option pricing 

model under the MCEV process. Adedoyin & 

Babajide (2019) investigated the parameters 

of the MCEV model using implicit and 

explicit methods. Hence addressed the 

challenges of parameter estimation and gave 

possible solutions for accurate modeling. 

(Jianjun et al, 2018) explored option pricing 

and risk measurement under the M-CEV 

model with stochastic interest rates. They 

gave clear insight into the understanding of 

risk management in option pricing. 

Adedoyin & Babajide (2019) extended their 

research to analyze option pricing and Greeks 

under the MCEV model with stochastic 

volatility. (Adedoyin & Babajide (2020), 

Akpanibah & Ini (2021), Amadi et al, 2022) 

further expanded their research by examining 

portfolio optimization under the MCEV 

model with stochastic volatility. Their study 

offered insights into optimal portfolio 

allocation strategies, considering the 

dynamic nature of volatility in the stock 

market. 

The Heston Volatility Model (HVM) was 

introduced by Steven L. Heston. He 

developed this model as an innovative 

solution to address the limitations of previous 

stochastic volatility models and to better 

capture the complex dynamics of option 

prices and volatility observed in financial 

markets.  

Alinaet al, (2018) gave a total review of the 

HVM Model with applications. They 

discussed the mathematical formulation of 

the HVM model and its capability to capture 

the dynamics of asset prices and volatility 

and proceeded to solve the HVM using 

numerical methods and discuss its limitations 

and possible areas for improvement. Aliyu 

(2018) compared the pricing of European 

options using the Heston Model and the 

Black-Scholes Model. Their study highlights 

the advantages of the Heston Model in 

capturing the volatility smile observed in the 

SM. Chen & Zhang (2018) propose a closed-

form solution for the HVM with stochastic 

interest rates. Tiwari et al, (2019) extend the 

HVM by incorporating time-dependent 

parameters. The authors discussed the effect 

of some parameters on option pricing and 

explored the Greeks of European options 

under this extended model. Kim & Lee 

(2019) investigate the impact of transaction 

costs and liquidity on option pricing under 

the Heston Model. They pointed out the 

advantages of introducing transaction costs 

and liquidity effects in option pricing models 

and risk management strategies. 

Also, several other authors such as (Sheng & 

Rong, 2014; Akpanibah & Samaila, 2021; 

Akpanibah et al, 2020) used the HVM to 

model the price of risky assets in portfolio 

optimization and proceed to obtain optimal 

distribution strategies under different 

assumptions. 

Hence in this paper, we investigate different 

volatility models available in the financial 

market such as GBM, CEV, M-CEV and the 

Heston Volatility model as it plays a crucial 

role in determining the fraction of an 

investor’s wealth to be invested in different 

assets at any given time. Also, to determine 

the optimal control problem for a given 

portfolio and also obtain the OPD under 

quadratic utility function and discuss the 

relationships between the OPD and other 

parameters. 
 

2.0 Formulation of Hjb Equations 
 

In this section, we introduce four volatility 

models used in modelling the stock market 

prices of any risky asset. Our interest here is 

to determine the wealth function of an 

investor with a portfolio comprising of one 

risk-free asset and a risky asset whose price 

process follows the geometric Brownian 

motion, Heston volatility, constant elasticity 

of variance and modified constant elasticity 

of variance models. Furthermore, we will 
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obtain an optimization problem in the form 

Hamiton Jacobi Bellman equation which is a 

non-linear PDE  
 

2.1 Geometric Brownian Motion(GBM) 

(0) 1
dA

rdt A
A
= =     

     (1) 

ds
dt dw

s
 = +     

     (2) 

where   is the appreciation rate of the risky 

asset and r is the interest rate of the risk-free 

asset, w(t) is the standard Brownian motion 

defined on a complete probability space 

( ), , .f p  

Let ,l  be the amount an investor is allowed to invest in the risky asset. 

( )1
ds dA

dV lV V l Cdt
s A

= + − +        (3) 

Substituting (1) and (2) into (3) 

( )( )dV V l r r C dt lV dw  = − + + +        (4) 

The value function (Hamilton Jacobi Bellman equation)  

Next, we defined the value function of the investor’s utility at the expiration of his or her 

investment as follows  

( )Q( , ) ,t V Max E u T=            (5) 

From Ito’s lemma Taylor series expansion, and maximum principle can obtain the (HJB) 

equation as follows  

( )
21

2t v VV
dQ dt dV dVQ Q Q= + +

( )( ) 2 2 21

2t V vv
dQ dt V l r r C l VQ Q Q   = + − + + +  

 

According to Ito’s lemma ( )
2

0,dwdt dtdt dw dt= = =  

( )( ) 2 2 21
0

0 2

Q( , ) ( )

t V vv

dQ
V l r r C l V

dt

T V U V

Q Q Q 
   = + − + + + =   →
 =

   (6) 

where ,t V VVQ Q and Q are partial derivatives of the first and second order w.r.t time, and wealth. 

Differentiating (6) with respect to ,l  we have  

( )
2

V

VV

r Q
l

V Q





− 
= − 

 
         (7) 

Substituting (7) into (6) 

( )
( )

( )( )
2

2 2

1

2

v

t V

VV VV

Q rr
Q Q r

Q V Q




 

 −− 
 − − − 
          (8)

 

Hence the investor’s wealth and the Hamilton Jacobi-Bellman Equation under the Geometric 

Brownian Motion are given in (4) and (8). 
 

2.2 Modified Constant Elasticity of Variance (MCEV) 

2 2( )t t

ds
k s dt s dw

s

   = + +         (9) 
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Where   is the appreciation rate of the risky asset and r is the interest rate of the risk-free asset, 

w(t) is the standard Brownian motion defined on a complete probability space ( ), , .f p Let 

,l  be the fraction of an investor’s wealth V(t) allowed to be invested in the risky asset. 

Substituting (1) and (9) into (3), we have 
2 2( ( ) )t tdV V l k S r r C dt lV S dw    = + − + + +       (10) 

The value function (Hamilton Jacobi Bellman equation)  

Next, we defined the value function of the investor’s utility at the expiration of his or her 

investment as follows  

( )Q( , , ) ,t S V Max E u T=            (11) 

From Ito’s lemma Taylor series expansion, and maximum principle can obtain the (HJB) 

equation as follows  

2 21 1
( ) ( ) ( )( )

2 2
t S V SS VV SVdQ Q dt Q dS Q dV Q dS Q dV Q dS dV= + + + + +

  (12) 

Substituting (9) and (10) into (12), we have
 

( )2 2 1

2 2

2 2 1 2 2 2 2 2 2 1

( ( ) ) 0

1 1

2 2

t s

v t

ss vv sv

Q dt Q s K S

Q V l K S r r C

Q S Q l V S Q lV S





  

 

 

  

+

+ +

 
 + +  

 
   + + − + + =  

 
 
+ + +  

    (13) 

Where , , ,,Qt S V SS VV SVQ Q Q Q and Q are partial derivatives of the first and second order 

concerning time (t), risky asset’s price (s), and wealth (V). The boundary condition is given as  
Q( , , ) ( )S T V U V=  

Differentiating (13) with respect to ,l  we have 

( )2 2 2 2 1

2

V SV

VV

Q K S r Q S
l

V Q

   



+ − + − +
 =       (14) 

Substituting (14) into (13), we have 

( )

( ) ( )

2 2 2 2 1

2 1 2 2

2

2
2 2 2 2 1 2 2 2 2 1

2 2 2 2 2 1

2 2

( ) ( ) ) )

1 1
0

2 2

V SV

t s V

VV

V SV V SV

SS

VV VV

Q K S r Q S
Q Q S K S Q K S r r C

Q

Q K S r Q S Q K S r Q S
Q S S

Q Q

 

 



   

 

 

  
   



     
 

 

+

+

+ +

+ +

  + − +
  + + − + − + + +
 
 

       + − + + − +
       − − =

    
     

This is the Hamilton Jacobi-Bellman Equation for the MCEV 

 

2.3 Heston Volatility Model 

{

d𝒮(t)

𝒮(t)
= ((𝓇 + ℌk)dt + √kdW𝓈)

𝒮(0) = 𝓈0
,       (15) 

{
dk(t) = 𝔗(𝔟φ − k)dt + σ√kdW𝒸

k(0) = k0
,      (16) 

where 𝓇 > 0 is the interest rate of the risk-free asset, √k is the volatility of the stock market 

price,𝔟  is the long-term price variance, 𝔗  is the rate of reversion to the long-term price 

variance, σ is the volatility of the volatility and ℌ is the expected appreciation rate of the stock 

market price. 

Let ,l  be the proportion of an investor’s wealth allowed to be invested in the risky asset. 
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Substituting (1), (15) and (16) into (3)    

dV(t) = [
{V(t)( l (t)(ℌ − 𝓇)k + 𝓇) + C}dt + (V(t) l (t)√k)dW𝓈

V(0) = v0
]   (17) 

The value function (Hamilton Jacobi Bellman equation)  

Next, we defined the value function of the investor’s utility at the expiration of his or her 

investment as follows  

( )Q( ,k, ) ,t V Max E u T=            (18) 

From Ito’s lemma Taylor series expansion, and maximum principle can obtain the (HJB) 

equation as follows  

2 21 1
( ) ( ) ( )( )

2 2
t S V SS VV SVdQ Q dt Q dS Q dV Q dS Q dV Q dS dV= + + + + +  

The HJB equation is given thus by the application of Ito’s lemma 

{
 
 

 
 

sup
l
{
 
 

 
 Qt + Qv[v( l k(ℌ − 𝓇) + 𝓇) + C]

+𝔗(𝔟 − k)Qk +
1

2
(v l (t)√k)

2
Qvv

+
1

2
σ2kQkk + (σvk l ρ)Qvk }

 
 

 
 

= 0

Q(k, , ) ( )T V U V=

     (19) 

Differentiating (19) with respect to ,l what we have  

( )( )V SV

VV

Q KL t Q L
l

VLQ

− +  =         (20)  

Substituting (20) into (19), we have 

( )

( ) ( )
2

2

( )
( ( )) ( ( ) ) )

( ) ( )1 1

2 2

V SV

t s V

VV

V SV V SV

SS SV

VV

Q KL t Q L
dQ Q Q rS SKL t Q KL t r C

VLQ

Q KL t Q L Q KL t Q L
Q L Q

L Q

 +  = + + − + + + 
  

    + +        − −  
          (21)

 

 

2.4 Constant Elasticity of Variance (CEV) 
 

ds
dt S dw

s

 = +          (22) 

Where   is the appreciation rate of the risky asset and r is the interest rate of the risk-free 

asset, w(t) is the standard Brownian motion defined on a complete probability space ( ), , .f p  

Let 𝛼 be the tax on the invested fund, then substituting (1) and (22) into (3), we have 

( ) ( )( )dV V l r r C dt lV S dw   = − + − + +       (23)                         

Next, we defined the value function of the investor’s utility at the expiration of his or her 

investment as follows  

( )( , , )H t S V Max E U T=            (24) 

From Ito’s lemma Taylor series expansion, and maximum principle can obtain the (HJB) 

equation as follows  

2 21 1
( ) ( ) ( )( )

2 2
t S V SS VV SVdQ Q dt Q dS Q dV Q dS Q dV Q dS dV= + + + + +

  (25)
 

Substituting (1), (22) and (23) into (25), we have
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( ) ( )( )

2 2 2

2 2 2
2 2 2

1
( )
21

0
2

( )Q

VV

t s V SS
sv

V

l S Q

dQ Q Q S Q V l r r C Q S Sup
S Q

l
r








   




+
+

 
 
 

 = + + − + − + + + =    
 +  
 + −    

(26)

 

Where , , ,,Qt S V SS VV SVQ Q Q Q and Q are partial derivatives of the first and second order 

concerning time (t), risky asset’s price (s), and wealth (V). The boundary condition is given as  
Q( , , ) ( )S T V U V=  

Differentiating (26) with respect to ,l  we have 

( ) 2 2 1

2 2

V SV

VV

Q r S Q
l

V S Q





 



+ − + = −        (27) 

Substituting (27) into (26), we have 

( )
( ) 2 2 1 2

2 2 2

2 2 1

( )1
0

2 2

( , , ) ( )

V SV

t s V SS

VV

r Q S Q
Q sQ r VQ S Q

S Q

V T S V U V







 
  



+

+

+

  − +
+ + − + − =  

  
 

= 

 (28) 

Our interest is to solve for 𝑄  in (28) and 

substitute it in (27) to obtain the optimal 

investment strategy. Since (28) is a non-

linear PDE, we will use the Legendre 

transformation method in (Li et al, 2013, Gao 

2009) to transform it into a linear PDE. 
 

3.0  Methods  
 

The Legendre transform is one of the 

dynamic programming approaches used in 

solving optimization problems in the field of 

mathematical finance. It is used to convert a 

non-linear PDE into a linear PDE. By using 

the Legendre transform, complex equations 

can be reformulated and its solution can be 

determined by solving a system of linear 

equations. The dual theory, on the other hand, 

is based on the idea that the value of the 

system can be expressed as the maximum 

expected reward of a portfolio of non-

anticipative assets. 

Theorem1: Let : nf R R→  be a convex 

function for 0z  ,defined the Legendre 

transform  L( ) max (v)
v

z f zv= −  where 

L( )z is the Legendre dual of (v)f .(Jonson 

and Sircar 2002). 

Since ( )f x is convex, from theorem 1, we 

can define the Legendre transform as follows  

^

v | Q( , v)

g( , ) inf 0
( , v)

t

t z t T
zv tQ

 
 

=   
+  

 (29) 

where 
^

Q is the dual of Q and 0z   is the 

dual variable of Q .The value of Q  where 

this optimum is attained is denoted by g( , )t z

, so that  

The functions 𝑔  and 
^

Q are closely related 

and can be referred to the dual of 𝑄. These 

functions are related as follows  
^

( , ) ( ,g)t z Q t zgQ = −  

Where 
^

g( , ) ,Q ,gv
z

t z v z Q= = = −    

     (30) 

At terminal time, we denote  

 
^

( ) sup (v) | 0z U zx vU = −     

And 
^

( ) sup v | (v) ( )G z U zv zU
 

=  + 
 

 

As a result 

( )
1

1( ) (z)G z U
−

=     

     (31) 

where G is the inverse of the marginal utility

U and note that  

At terminal timeT , we can define  
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^

0

g( , v) v | (v) ( , )inf
v

T U zv t zQ


 
=  + 

 
and  

^

0

( , ) ( )sup
x

t z U x zxV


= −  

So that 

( )
1

1g( , ) (z)T z U
−

=          (32) 

From the definition of Legendre transform, 

VQ z=            (33) 

Q( , , ) ( , , )t s z Q t s g zg= −         (34) 

( , , z)g t s v=           (35) 

Differentiating (34), we have  
^

^

^ ^ ^

^ ^ ^

2
1

,Q ,Q ,Q ,t s ss sv vv
sz szQ Q

t s ss

sz zz zz

Q Q
Q Q Q

Q Q Q

−
= = = − = − =

   

(36) 

 

4.0  Results and Discussion 
 

In this section, we will be solving for the value function ( )t, v,sQ  from the HJB equation in 

(28) and the solution obtained will be used to obtain our investment strategies under 

exponential and logarithmic utility functions. To achieve this, we apply the Legendre 

transformation method to reduce the non-linear PDE in (28) to a linear PDE. 

Substituting (36) into (27) and (28), we have 

 

 

 (37) 

 
^

2 2 1

^

^

( )

( )
1

2 2

szr z s

zz
l t

zz

Q

Q

Q s

 



+



 
 

− + − 
 
 =

−

       (38)

 

Differentiating (37) and (38) with respect to z and using (30), we have 

( )

( )

2
2 2 2 2

2 2

2
2

2 2

1 ( )
( )

2 2

( )
( ) 0

2

t s z ss z

zz s sz

r
g sg r g zg s g z g

s

r
z g s r g zg

s








  








+ −
+ + − + + + +

−
− − + =

   (39) 

2 2 1

2 2

( )
( ) s zs g z r g

l t
s





 



+
 − −

=        (40) 

 

4.1   Optimal Portfolio Distribution under Quadratic Utility Function 
 

In this section, the optimal value function and the optimal portfolio distribution for an investor 

will be solved for under the quadratic utility function by solving (39) for the value function and 

substituting the solution into (40) to obtain the optimal portfolio distribution of the investor. 

From the work of Li et al, (2013), the quadratic utility function is given thus 
2U(v) ( )v c= − ,           (41) 

( )
^ ^ ^ ^^2

2 2 2 2

2 2

1 ( )
0

2 2

r
s rvz s z z r s

t s ss szzzs
Q Q Q QQ




  



+ −
+ + + + − − =
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where is the investor’s wealth and c is a constant coefficient. 

From (32) and (41), we have  

𝑔(𝑇, 𝑠, 𝑧)  =  
1

2
𝑧 + 𝑐         (42) 

Next, we form a solution of the form 

𝑔(𝑡, 𝑠, 𝑧)  =   𝑍ℎ(𝑡, 𝑠)  +  𝑎(𝑡)       (43) 

𝑎(𝑡)  =  𝑐, ℎ(𝑇, 𝑠)  =
1

2
 

Differentiating (43), we have 

, , , , 0,t t t s s ss ss z zz sz sg zh a g zg g zh g h g g h= + = = = = =     (44) 

Substituting (44) into (39), we have 
2

2 2 2

2 2

1 ( )
(2 ) 2( ) ( ) ( ) 0

2
t s t

r
h r sh s h r h a r a t

s






   



+ −
+ − + + − − + − − =

  
(45)  

Splitting (45), we have 

2 2 21
2 2 2

1
2

( )
(2 ) 2( ) 0

( , )

t s

r
h r sh s r h

s

h T s






  



+ −
+ − + + − − =

=

      (46)  

( ) ( ) 0

( )

ta r a t

a t c

− − =

=
         (47)  

Solving (47), we have 

( ) ( )ta r a t= −  

( )

( )
( )

( )

da
r a

dt

da t
r dt

a t





= −

= −

 

1ln ( ) ( ) lna t r t M= − +  

1ln ( ) ln ( )a t M r t− = −   

1

( )
ln ( )

a t
r t

M


 
= − 

 
 

( )

1

( ) r ta t
e

M

−=  

( )

1( ) r ta t M e −=          (48) 

( )

1( ) r ta t M e −= = c 

( )

1 ( )

r T

r T

c
M ce

e





− −

−
= =         (49) 

Substitute (49) in (48), we have 
( ) ( )( ) r T r Ta t ce e − −=  

( )( )( ) r t Ta t ce − −=         (50) 

Next, we apply the power transformation method to (46), and assume a solution of the form 
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2( , ) ( , ),

1
( , )

2

h t s n t x x s

n T x

−= =

=
        (51) 

Differentiating (51), we have 
2 1 2 2 2 4 2, 2 , 2 (2 1) 4t t s x ss x xxh n h S n h S n S n     − − − − − −= = − = + +    (52) 

Substitute (52) into (46), we have 
2

2 2 2

2

( )
2(2 ) (2 1) 2 2( ) 0t x xx

r
n r x n xn xn r n


      



−
 + − − + + + + − − =   (53) 

Lets 
( )

( , ) ( )

1
( ) , ( ) 0

2

L t x
n t x K t e

K T L T

=

= =
         (54) 

Differentiating (54), we have 
( ) ( )

2

( )

,

L t x L t x

t t t

Lx Lx

x xx

n K e K t L xe

n KLe n KL e

= +

= =
        (55) 

Substituting (55) into (53), we have  
2

2 2 2 2

2

( )
(2 1) 2( ) 2 (2 ) 2 0t

t

K r
L r x L r L L

K


       



 −
+ + − − + − − + + = 

 
 (56) 

Splitting (56) into two equations, we have 

( )2

1
2

(2 1) 2 0

( )

tK
L r

K

K T

   + + − − =

=
       

(57) 

2
2 2 2

2

( )
2 (2 ) 2 0

( ) 0

t

r
L r L L

L T


   



−
− + + + =

=       

(58) 

If 
2 22 ,2 (2 ) , ( )A r B r C   − = − = − − =  

then (58) becomes 

2 2

2
0, ( ) 0t

C
L BL A L L T


− − − = =  

2 2

2

2 2

2

t

C
L A L BL

dL C
A L BL

dt







= + +

= + +

 

2 2

2

dL
dt

C
A L BL



=

+ +

        (59) 

If 2 4 0B AC−   

Integrating (59) with respect to t, 
Next, 

2 2

1 22 2

4 4
'

2 2

B B AC B B AC
u u

A A 

− + − − − −
= =  
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Is the solution of 2 2

2
0

C
A L BL


+ + =  

Then we can write (59) as 

1 2

2

1 2

1 1
( )

( ) ( )

( )

L t u L t u
dL dt

A u u

−
− −

=
−

       (60) 

Integrating (60) with respect to  𝑡, we have  

2

1 2 1 2

1

( ) ( ) ( )

dL dL
dt

A u u L t u L t u
− =

− − −   

2

1 2 2

1 2

( )
( ) ( )

dL dL
A u u dt M

L t u L t u
− = − +

− −   

2

1 2 1 2 2ln( ( ) ) ln( ( ) ) ( ) lnL t u L t u A u u t M− − − = − +  

21
1 2 2

2

( ( ) )
ln ( ) ln

( ( ) )

L t u
A u u t M

L t u


−
= − +

−
 

21
2 1 2

2

( )
ln ln ( )

( )

L t u
M A u u t

L t u


 −
− = − 

− 
 

2
2 1 2( )1

2

( )

( )

M A u u tL t u
e

L t u

 −−
=

−
 

2
2 1 2( )

1 2( ) ( ( ) ) M A u u tL t u L t u e e  −− = −  
2

1 2( )

1 2 3( ) ( ( ) ) A u u tL t u L t u M e  −− = −  
2 2

1 2 1 2( ) ( )

1 2 3( ) ( ) A u u t A u u tL t u L t e u M e − −− = −  
2 2

1 2 1 2( ) ( )

1 2 3( ) ( ) A u u t A u u tL t L t e u u M e − −− = −  
2 2

1 2 1 2( ) ( )

1 2 3( )(1 )A u u t A u u tL t e u u M e − −− = −  
2

1 2

2
1 2

( )

1 2 3

( )
( )

1

A u u t

A u u t

u u M e
L t

e





−

−

−
=

−
 

But L(T) = 0 
2

1 2

2
1 2

( )

1 2 3

( )
0

1

A u u t

A u u t

u u M e

e





−

−

−
=

−
 

2
1 2

1
3 ( )

2

A u u t

u
M

u e  −
=  

2
1 2

2
1 2

2
1 2

2
1 2

( )1
1 2 ( )

2

( )1

( )

2

( )

( )

1

A u u t

A u u T

A u u t

A u u T

u
u u e

u e
L t

u
e

u e









−

−

−

−

−

=

−

 

2
1 2

2
1 2

( )( )

1 1

( )( )1

2

( )

1

A u u t T

A u u t T

u u e
L t

u
e

u





− −

− −

−
=

−

        (61) 
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Let 
2 2

1 22 2

4 4
'

2 2

B B AC B B AC
k k

A A 

− + − − − −
= =  and 

2
1 2

2
1 2

2 ( )( )

1 2

2 ( )( )1

2

1

k k t T

t
k k t T

k k e
G

k
e

k





− −

− −

−
=

−

 (62) 

Then (62) becomes 

2

( )
( )

G t
L t


=           (63) 

Substituting (63) into (57), and solving for 𝐾, we have 

( ) 1

2
1 2

(2 1 2( )( ) 2 1

2 ( )( )

2 1

1 2 1
( )

2 2

K r T t

K K t T

K K
K t e

K K e

  







+ − − −

− −

 − + 
=  

−  

 

Hence the optimal strategy for the investor under quadratic utility is given as  

( )
2 2 1 2 1

2 2 1

2 2 2 2 2 2

( ) ( )
( )( 2 ) ( )

( )
x

s

g a t g a t
S s n r hS zh z r h h hl t

s s s

 
    

     



+ − −
+

− − 
− − − −

= = − 
 
 

 

( )
2 2

2 ( )( ) 2 ( )
( ) 1

G t rg a t G t
l t

h s r

  

  

 − − −   − − = = − 
− 

    

(64)

 

Where 

2
1 2

2
1 2

2 ( )( )

1 2

2 ( )( )1

2

1

k k t T

t
k k t T

k k e
G

k
e

k





− −

− −

−
=

−

 

2 2

1 22 2

4 4
'

2 2

B B AC B B AC
k k

A A 

− + − − − −
= =  

2 22 , 2 (2 ), ( )A B r C r   = − = − = − −  
 

4.2  Numerical Simulation and Discussion 
 

In this section, we present some numerical simulations on the effect of some market 

parameters on the optimal portfolio distribution and discuss the graphs presented. 

 
Fig.  1: Evolution of optimal portfolio distribution with appreciation rate of the risky 

asset 
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Fig.  2: Evolution of optimal portfolio distribution with instantaneous volatility of the 

risky asset 

 
Fig.  3: Evolution of optimal portfolio distribution with predetermined interest rate 

 
Fig.  4: Evolution of optimal portfolio distribution with elasticity parameter of the risky 

asset 
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Fig.  5: Evolution of optimal portfolio distribution with tax on the risky asset 

 
Fig.  6: Evolution of optimal portfolio distribution with wealth of the investor 

 

In  Fig.  1, the graph of the optimal portfolio 

distribution against the appreciation rate of 

the risky asset is presented; the graph shows 

that the optimal portfolio distribution is an 

increasing function of the appreciation rate of 

the risky asset. The graph implies that any 

asset with a higher appreciation rate will 

naturally be appealing and attractive to an 

investor; hence the investor may be willing to 

commit more of his resources to such an asset 

with the expectation of more returns and vice 

versa. In Fig. 2, the graph of optimal portfolio 

distribution against the instantaneous 

volatility is presented; the graph shows that 

the optimal portfolio distribution is inversely 

proportional to the instantaneous volatility of 

the risky asset. This implies that the higher 

the instantaneous volatility of the risky asset, 

the higher the risk involved in the investment 

in such asset. Hence this may create more 

fears in the mind of the investor toward 

investing in the risky asset, furthermore, 

reduce the proportion of the investor’s wealth 

in risky asset. In Fig.  3, the graph of the 

optimal portfolio distribution with the 

predetermined interest rate is presented; the 

graph shows that the optimal portfolio 

distribution is a decreasing function of the 

predetermined interest rate. The graph 

implies that a member with large funds 

prefers to invest where there is a lesser risk 

since they may not want to lose what they 

have gathered already. 
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In Fig.  4, the graph of optimal portfolio 

distribution for the risky asset with elasticity 

parameter of the risky asset is presented; the 

graph shows that the proportion of the risky 

asset increases with an increase in the 

elasticity parameters. The implication of this 

graph shows that higher elasticity leads to a 

decrease in the instantaneous volatility of the 

risky asset and from Fig.  2, a decrease in 

instantaneous volatility leads to an increase 

in optimal portfolio distribution. In Fig.  5, 

the graph of optimal portfolio distribution for 

the risky asset with the tax on invested fund 

size is presented; the graph shows that 

optimal portfolio distribution for the risky 

asset decreases with an increase in tax on the 

invested fund. This graph implies that 

members may be discouraged from investing 

in highly taxed investments and vice versa. In 

Fig.  6, the graph of optimal portfolio 

distribution for the risky asset with the 

investor’s wealth is presented. We observed 

that the optimal portfolio distribution is a 

decreasing function of the wealth function. 

This implies that an investor will invest more 

in risky assets if their wealth is small and vice 

versa. 

 

5.0  Conclusion 

 

In this study, we have examined various 

stochastic volatility models, including the 

geometric Brownian motion (GBM), 

constant elasticity of variance (CEV), 

modified CEV (M-CEV), and Heston 

volatility models. Through the formulation of 

Hamilton-Jacobi-Bellman (HJB) equations 

and the application of the Legendre 

transformation method, we have derived 

optimal portfolio distributions under each 

model, considering a quadratic utility 

function. 

Our numerical simulations have provided 

valuable insights into the impact of market 

parameters on optimal portfolio distribution, 

including appreciation rate, volatility, 

interest rate, elasticity parameter, tax, and 

investor's wealth. The results highlight the 

dynamic nature of financial markets and the 

importance of considering various factors in 

portfolio optimization and risk management 

strategies. Based on the results obtained and 

the scope limitation of the study,  the 

recommendation made are diversification, 

continuous monitoring of market conditions, 

utilization of advanced stochastic volatility 

models, and the need for further research to 

enhance investment decision-making 

processes. 
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