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Abstract. Strong convergence of an iteration scheme for approximat-
ing the common elements of the set of solutions EP(F) of an equilib-
rium problem for a bifunction F and the set of fixed points F(T ) of a
multi-valued (or single-valued) hemicontractive mapping T is estab-
lished in a real Hilbert space H. This work contributes to the study on
the applicability and computability of iteration schemes for approxi-
mating the solutions of equilibrium problems for bifunctions involving
the construction of the sequence {Kn}∞

n=1 of closed convex subsets of
H from an arbitrary x0 ∈ H and the sequence {xn}∞

n=1 of the metric
projections of x0 into Kn. The results obtained extend and improve
many results in this direction in the contemporary literature.
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ping.
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1. INTRODUCTION

Let H be a real Hilbert space with an inner product 〈., .〉
and a norm ‖.‖, respectively and let K be a nonempty
closed convex subset of H. Let A : H→ H be an opera-
tor on H and F : K×K→R be a bifunction on K, where
R is the set of real numbers. The variational inequality
problem of A in K denoted by V IP(A,K) is to find an
x∗ ∈ K such that

〈x− x∗,A(x∗)〉 ≥ 0, ∀x ∈ K, (1)

while the equilibrium problem for F is to find x∗ ∈ K
such that

F(x∗,x)≥ 0, ∀x ∈ K. (2)

The set of solutions of (2) is denoted by EP(F).
Suppose F(x,y) = 〈y − x,Ax〉 for all x,y ∈ K, then

w ∈ EP(F) if and only if w is a solution of (1). Many
problems in optimization, economics and physics re-
duce to finding a solution of (1), (see for examples, [1],
[2] [4]) and the references therein. The following condi-
tions are assumed for solving the equilibrium problems
for a bifunction F : K×K→ R,
(A1) F(x,x) = 0 for all x ∈ K.
(A2) F is monotone, that is , F(x,y)+F(y,x) ≤ 0, for
all x,y ∈ K.

(A3) For each x,y,z ∈ K, lim
t↓0

F(tz + (1 − t)x,y) ≤

F(x,y).
(A4) For each x ∈ K, y 7→ F(x,y) is convex and lower
semicontinuous.

Let X be a nonempty set and let T : X → X be a map.
A point x ∈ X is called a fixed point of T if x = T x. If
T : X → 2X is a multi-valued map from X into the fam-
ily of nonempty subsets of X , then x is a fixed point of
T if x ∈ T x. If T x = {x}, x is called a strict fixed point
of T . The set F(T ) = {x ∈ D(T ) : x ∈ T x}(respectively
F(T ) = {x ∈ D(T ) : x = T x} ) is called the fixed point
set of multi-valued(respectively single-valued) map T
while the set Fs(T ) = {x ∈ D(T ) : T x = {x}} is called
the strict fixed point set of T .

Let X be a normed space. A subset K of X is called
proximinal if for each x ∈ X there exists k ∈ K such that

||x− k||= inf{||x− y|| : y ∈ K}= d(x,K). (3)

It is known that every closed convex subset of a uni-
formly convex Banach space is proximinal. We shall
denote the family of all nonempty closed and bounded
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subsets of X by CB(X), the family of all nonempty sub-
sets of X by 2X , the family of all nonempty closed and
convex subsets of X by CC(X) and the family of all
proximinal subsets of X by P(X), for a nonempty set X .

Let H denote the Hausdorff metric induced by the met-
ric d on X , that is, for every A,B ∈CB(X),

H(A,B) = max{sup
a∈A

d(a,B),sup
b∈B

d(b,A)}.

Let X be a normed space. Let T : D(T ) ⊆ X → 2X be
a multi-valued mapping on X . A multi-valued mapping
T : D(T ) ⊆ X → 2X is called L− Lipschitzian if there
exists L≥ 0 such that for all x,y ∈ D(T )

H(T x,Ty)≤ L||x− y||. (4)

In (4), if L ∈ [0,1) T is said to be a contraction while T
is nonexpansive if L = 1.

Definitions 2.1 ([11]). T is said to be k-strictly
pseudocontractive-type of Isiogugu [11] if there exists
k ∈ (0,1) such that given any pair x,y ∈ D(T ) and u ∈
T x, there exists v ∈ Ty satisfying ||u− v|| ≤ H(T x,Ty)
and

H2(T x,Ty)≤ ||x− y||2 + k||x−u− (y− v)||2. (5)

If k = 1 in (5), T is called pseudocontractive-type.

T is said to be hemicontractive of Isiogugu and Osi-
like [14] if F(T ) 6= /0 and

H2(T x,T p)≤ ||x− p||2 +d2(x,T x). (6)

for all x ∈ D(T ), p ∈ F(T )

Many authors have approximated the common ele-
ments of the set of fixed points F(T ) of a multi-valued
(or single-valued) mapping T and the set of solu-
tions EP(F) of an equilibrium problem for a bifunc-
tion F (or the common elements of the sets of fixed
points of a finite family of multi-valued (or single-
valued) mappings and the sets of solutions of equi-
librium problems for a finite family of bifunctons)

(see for examples [5], [6], [7], [8], [9], [10] and ref-
erences therein). In a real Hilbert space, several authors
have studied the algorithms involving the construc-
tion of the sequences of sets {Kn}∞

n=1 and the metric
projections {xn}∞

n=1, from an arbitrary x0 ∈ H, where
Kn+1 = {z∈Kn : ‖z−un‖2≤‖z−xn‖2}, xn+1 =PKn+1x0,
while PKn is the projection map and {un}∞

n=1 is the se-
quence of the resolvent of the bifunctions, (see for ex-
amples [3], [5], [6], [7], [9], [10] and references therein).

Two of the iteration schemes studied by authors are the
modified Reich-Sabach-type Algorithm 1.1 and mod-
ified Mann-Reich-Sabach-type Algorithm 1.2 below
defined for the approximation of (i) the solutions of an
equilibrium problem for a bifunction; (ii) the common
elements of the set of fixed points F(T ) of a multi-
valued (or single-valued) k− strictly Pseudocontractive-
type mapping T and the set of solutions EP(F) of an
equilibrium problem for a bifunction F , respectively.

(i). Let H be a real Hilbert space, K a closed and
convex subset of H. Let F : K×K→ R be a bifunction
and r ∈ [a,∞) for some a > 0. Then from an arbitrary
x0 ∈ H the algorithm is generated as follows.

Algorithm 1.1.



x0 ∈ H,

yn = xn,

un ∈ K such that F(un,y)
+ 1

r 〈y−un,un− yn〉 ≥ 0, ∀y ∈ K,

Kn+1 = {z ∈ Kn : ‖z−un‖2 ≤ ‖z− xn‖2}
xn+1 = PKn+1 x0.

(ii). Let H be a real Hilbert space, K a closed and
convex subset of H, F : K×K→R a bifunction and T :
K → P(K) multivalued k−strictly pseudocontractive-
type mapping. Let {αn}∞

n=1 ⊂ [0,1] and r ∈ [a,∞) for
some a > 0. Then from an arbitrary x0 ∈ H the algo-
rithm is generated as follows,
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Algorithm 1.2.

x0 ∈ H,

yn = αnxn +(1−αn)vn,

un ∈ K such that F(un,y)
+ 1

r 〈y−un,un− yn〉 ≥ 0, ∀y ∈ K,

Kn+1 = {z ∈ Kn : ‖z−un‖2 ≤ ‖z− xn‖2}
xn+1 = PKn+1 x0,

where vn ∈ T xn for multi-valued mapping T .

It has been noted by authors that, despite the fact that
most of these algorithms yield strong convergence the-
oretically, the difficulty encountered by computer in the
construction of the sequence of the metric projection
{xn}∞

n=1 and the sequence of sets {Kn}∞
n=1 has made

such algorithms almost impossible for real life appli-
cations. Consequently, this non-computability and non-
applicability of such algorithms has lead to the introduc-
tion of other iteration schemes which do not include the
construction of these two sequences but require stronger
conditions and many parameters.

Let H be a real Hilbert space and K a nonempty closed
convex subset of H. Let F be a bifunction and T an
L-Lipschitzian pseudocontractive-type mapping such
that F : K×K → R and T : K → CC(K) respectively.
Let {αn}∞

n=1 and {βn}∞
n=1be sequences in [0,1] and

{rn}∞
n=1 ⊂ [a,∞) for some a > 0, then from an arbitrary

x0 ∈ H, Isiogugu et al. [15] generated the sequence
{xn}∞

n=1 as follows.

Algorithm 1.3.

x0 ∈ H,

zn = (1−βn)xn +βnvn,

yn = (1−αn)xn +αnwn,

un ∈ K such that F(un,y)
+ 1

rn
〈y−un,un− yn〉 ≥ 0, ∀y ∈ K,

xn+1 =
1
2 (un + xn),

where wn ∈ T (zn) = T ((1−βn)xn +βnvn) with d((1−
βn)xn + βnvn,T [(1 − βn)xn + βnvn]) = ||(1 − βn)xn +

βnvn−wn|| , vn ∈ T xn with ||xn− vn|| = d(xn,T xn) and
||wn− vn|| ≤ H(T zn,T xn).

They proved the following theorem.

Theorem 1.4. Let H, K, T , F , {αn}∞
n=1, {βn}∞

n=1

and {rn}∞
n=1 be as in Algorithm 1.3. Suppose F sat-

isfying (A1)-(A4), T satisfies condition 1 and F =

Fs(T )
⋂

EP(F) 6= /0, then {xn} converges strongly to
p ∈ F also, if H has order inclusion transitive property,
{xn} converges strongly to p ∈ PFx0 if for all n≥ 1,
{αn} and {βn} are real sequences satisfying (i) 0 ≤
αn ≤ βn < 1; (ii) liminf

n→∞
αn = α > 0; (iii) sup

n≥1
βn ≤ β ≤

1√
1+(L)2+1

.

The aim of this research is to extend the results of
Isiogugu et al. [15] above to the class of hemicon-
tractive mappings. The results obtained are contribu-
tions towards the resolution of the controversy over the
applicability and computability of iteration schemes for
approximating the solutions of equilibrium problems for
bifunctions involving the construction of the sequences
{Kn}∞

n=1 and {xn}∞
n=1 as in algorithms 1 and 2 above.

They also generalize, extend, complement and improve
many corresponding results in the contemporary litera-
ture.

2. PRELIMINARIES

Lemma 2.2: Let H be a real Hilbert space and let K be
a nonempty closed convex subset of H. Let PK be the
convex projection onto K. Then, convex projection is
characterized by the following relations;
(i) x∗ = PK(x)⇔ 〈x− x∗,y− x∗〉 ≤ 0, for all y ∈ K.

(ii) ||x−PKx||2 ≤ ||x− y||2−||y−PKx||2.
(iii)||x−PKy||2 ≤ ||x− y||2−||PKy− y||2.

Lemma 2.3 ([1]). Let K be a nonempty closed con-
vex subset of a real Hilbert space H and F : K×K→ R
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a bifunction satisfying (A1)-(A4). Let r > 0 and x ∈ H.
Then, there exists z ∈ K such that

F(z,y)+
1
r
〈y− z,z− x〉 ≥ 0, ∀y ∈ K.

Lemma 2.4 ([2]). Let K be a nonempty closed con-
vex subset of a real Hilbert space H. Assume that
F : K×K → R that satisfies (A1)-(A4). Let r > 0 and
x ∈ H, define Tr : H→ 2K by

Tr(x) = {z ∈ K : F(z,y)+
1
r
〈y− z,z−x〉 ≥ 0}, ∀y ∈ K.

Then the following conditions hold:
(1) Tr is single valued.
(2) Tr is firmly nonexpansive, that is for any x,y ∈ H,
‖Trx−Try‖2 ≤ 〈Trx−Try,x− y〉.
(3) F(Tr) = EP(F).
(4) EP(F) is closed and convex.

Lemma 2.5 ([3]). Let K be a nonempty closed con-
vex subset of a real Hilbert space H and F : K×K→ R
a bifunction satisfying (A1)-(A4). Let r > 0 and x ∈ H.
Then for all x ∈ H and p ∈ F(Tr)

‖p−Trx‖2 +‖Trx− x‖2 ≤ ‖p− x‖2.

Definition 2.6 ([12]). Let {Kn}∞
n=1 be sequence of sets,

a sequence {zn}∞
n=1 is called a selection of {Kn}∞

n=1 if
zn ∈ Kn for each n.

Definition 2.7 ([12]). A norm ‖.‖ on a Hilbert space
H is order inclusion transitive on CC(H) if given any
A,B ∈ CC(H) with A ⊆ B and arbitrary x ∈ H, then
d(x,B) = inf

b∈B
‖b− x‖ = ||b− x|| and d(b,A) = inf

a∈A
‖a−

b‖= ||a−b|| imply that d(x,A) = inf
a∈A
‖a−x‖= ||a−x||

Definition 2.8 ([12]). A Hilbert H is said to have order
inclusion transitive property on CC(H) if its norm is or-
der inclusion transitive on CC(H). It is easy to see that
the set of real numbers with the usual norm has order
inclusion transitive property.

Lemma 2.9 ([12]). Let H be a real Hilbert space
and K = K0 be a closed and convex subset of H. Let

x0 ∈ H be arbitrary and {un}∞
n=1 a sequence in K. De-

fine Kn+1 := {z ∈ Kn : ‖z− un‖2 ≤ ‖z− xn‖2}, if we
define xn+1 =

1
2 (un + xn), then the following conditions

are true.
(C1). {xn}∞

n=1 is a selection of {Kn}∞
n=1.

(C2). xn+1 = PKn+1xn.
C3). If H has order inclusion transitive property on
CC(H) then, xn+1 = PKn+1x0.

Definition 2.10 ([13]). A multi-valued mapping
T : K → P(K) is said to satisfy condition 1 if there
exists a nondecreasing function f : [0,∞)→ [0,∞) with
f (0) = 0 and f (r)> 0 for all r ∈ (0,∞) such that

d(x,T x)≥ f (d(x,F(T )), ∀x ∈ K.

3. MAIN RESULTS

Proposition 3.1. Let H be a real Hilbert space and
T : D(T ) ⊆ H → P(H) be a multi-valued L− Lip-
schtizian hemicontractive mapping, then, fixed point
set of T is closed.

Proof. let {gn}∞
n=1 ⊆ F(T ) such gn→ x∗. Then,

d2(x∗,T x∗) ≤ d(x∗,gn)+d(gn,T gn)+H(T gn,T x∗)

= ‖x∗−gn‖+H(T gn,T x∗)

≤ (1+L)‖gn− x∗‖→ 0 as n→ ∞.

Therefore, d(x∗,T x∗) = 0. Since T is proximinal, there
exist v ∈ T x∗ such that ‖x∗− v‖= d(x∗,T x∗) = 0. Con-
sequently, x∗ ∈ T x∗. �

We now consider the following algorithm.

Let H be a real Hilbert space and K a nonempty
closed convex subset of H. Let F be a bifunction
and T an L-Lipschitzian hemicontractive mapping such
that F : K×K → R and T : K → CC(K) respectively.
Let {αn}∞

n=1 and {βn}∞
n=1be sequences in [0,1] and

{rn}∞
n=1 ⊂ [a,∞) for some a > 0, then from an arbitrary

x0 ∈ H we generate the sequence {gn}∞
n=1 as follows.
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Algorithm 3.4.

x0 ∈ H,

zn = (1−βn)gn +βnvn,

yn = (1−αn)gn +αnwn,

un ∈ K such that F(un,y)
+ 1

rn
〈y−un,un− yn〉 ≥ 0, ∀y ∈ K,

gn+1 =
1
2 (un +gn),

where wn ∈ T (zn) = T ((1−βn)gn +βnvn) with d((1−
βn)gn + βnvn,T [(1− βn)gn + βnvn]) = ||(1− βn)gn +

βnvn−wn|| , vn ∈ T gn with ||gn− vn||= d(gn,T gn) and
||wn− vn|| ≤ H(T zn,T gn).

Theorem 3.5. Let H, K, T , F , {αn}∞
n=1, {βn}∞

n=1

and {rn}∞
n=1 be as in Algorithm 3.4. Suppose F sat-

isfying (A1)-(A4), T satisfies condition 1 and F =

Fs(T )
⋂

EP(F) 6= /0, then {gn} converges strongly to
p ∈ F also, if H has order inclusion transitive property,
{gn} converges strongly to p ∈ PFx0 if for all n≥ 1,
{αn} and {βn} are real sequences satisfying (i) 0 ≤
αn ≤ βn < 1; (ii) liminf

n→∞
αn = α > 0; (iii) sup

n≥1
βn ≤ β ≤

1√
1+(L)2+1

.

Proof. Using Lemma 2.4, for all p ∈ F we have

‖gn+1− p‖2 = ‖1
2
(gn−un)− p‖2

=
1
2
‖gn− p‖2 +

1
2
‖un− p‖2

−1
4
‖gn−un‖2

≤ 1
2
‖gn− p‖2− 1

4
‖gn−un‖2

+
1
2
‖p−Trnyn‖2

≤ 1
2
‖gn− p‖2− 1

4
‖gn−un‖2

+
1
2
‖p− yn‖2

=
1
2
‖gn− p‖2− 1

4
‖gn−un‖2

+
1
2
||(1−αn)gn +αnwn− p||2

=
1
2
‖gn− p‖2− 1

4
‖gn−un‖2

+
1
2
||(1−αn)(gn− p)+αn(wn− p)||2

=
1
2
‖gn− p‖2− 1

4
‖gn−un‖2

+
1
2

[
(1−αn)||gn− p||2

+αn||wn− p||2

−αn(1−αn)||gn−wn||2
]

≤ 1
2
‖gn− p‖2− 1

4
‖gn−un‖2

+
1
2

[
(1−αn)||gn− p||2

+αnH2(T zn,T p)

−αn(1−αn)||gn−wn||2
]

≤ 1
2
‖gn− p‖2− 1

4
‖gn−un‖2

+
1
2

[
(1−αn)||gn− p||2

+αn

[
||zn− p||2 + ||zn−wn||2

]
−αn(1−αn)||gn−wn||2

]
=

1
2
‖gn− p‖2− 1

4
‖gn−un‖2

+
1
2

[
(1−αn)||gn− p||2 +αn||zn− p||2

+αnd2(zn,T zn)

−αn(1−αn)||gn−wn||2
]
. (7)

||zn−wn||2 = ||(1−βn)gn +βnvn−wn||2

= ||(1−βn)(gn−wn)+βn(vn−wn)||2

= (1−βn)||gn−wn||2 +βn||vn−wn||2

−βn(1−βn)||gn− vn||2. (8)

(7) and (8) imply that

‖p− yn‖2 = (1−αn)||gn− p||2

+αn||wn− p||2
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−αn(1−αn)||gn−wn||2

≤ (1−αn)||gn− p||2 +αnH2(T zn,T p)

−αn(1−αn)||gn−wn||2

≤ (1−αn)||gn− p||2 +αn||zn− p||2

+αn

[
(1−βn)||gn−wn||2 +βn||vn−wn||2

−βn(1−βn)||gn− vn||2
]

−αn(1−αn)||gn−wn||2. (9)

Also,

||zn− p||2 = ||(1−βn)gn +βnvn− p||2

= ||(1−βn)(gn− p)+βn(vn− p)||2

= (1−βn)||gn− p||2 +βn||vn− p||2

−βn(1−βn)||gn− vn||2

≤ (1−βn)||gn− p||2 +βnH2(T gn,T p)

−βn(1−βn)||gn− vn||2

≤ (1−βn)||gn− p||2 +βn

[
||gn− p||2

+||gn− vn||2
]
−βn(1−βn)||gn− vn||2

= ||gn− p||2 +βn
2||gn− vn||2. (10)

(9) and (10) imply that

‖p− yn‖2 ≤ (1−αn)||gn− p||2

+αn

[
||gn− p||2 +βn

2||gn− vn||2
]

+αn

[
(1−βn)||gn−wn||2

+βn||vn−wn||2

−βn(1−βn)||gn− vn||2
]

−αn(1−αn)||gn−wn||2

= (1−αn)||gn− p||2 +αn||gn− p||2

+αnβn
2||gn− vn||2

+αn(1−βn)||gn−wn||2

+αnβn||vn−wn||2

−αnβn(1−βn)||gn− vn||2

−αn(1−αn)||gn−wn||2

≤ ||gn− p||2 +αnβn
2||gn− vn||2

+αnβnH2(T gn,T zn)

−αn(βn−αn)||gn−wn||2

−αnβn(1−βn)||gn− vn||2

≤ ||gn− p||2 +αnβn
2||gn− vn||2

+αnβn
3L2‖gn− vn‖2

−αnβn(1−βn)||gn− vn||2

−αn(βn−αn)||gn−wn||2

= ||gn− p||2−αnβn[1−2βn

−L2
βn

2]||gn− vn||2

−αn(βn−αn)||gn−wn||2

≤ ||gn− p||2−αnβn[1−2βn

−L2
βn

2]||gn− vn||2 (11)

‖gn+1− p‖2 ≤ 1
2
‖gn− p‖2− 1

4
‖gn−un‖2

+
1
2

[
||gn− p||2−αnβn[1−2βn

−L2
βn

2]||gn− vn||2
]

≤ ‖gn− p‖2− 1
4
‖gn−un‖2

−1
2

αnβn[1−2βn−L2
βn

2]||gn− vn||2

It then follows that lim
n→∞
‖gn− p‖ exists hence {gn} is

bounded. Also, from (11), we obtain
∞

∑
n=0

α
2[1−2β −L2

β
2]||gn− vn||2 ≤

∞

∑
n=0

αnβn[1−2βn

−L2
βn

2]||gn− vn||2
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≤
∞

∑
n=0

[||gn− p||2

−||gn+1− p||2]

≤ ||x0− p||2

+D < ∞.

It then follows that

lim
n→∞
||gn− vn||= 0. (12)

Since d(gn,T gn) = ||gn − vn||, we have that
d(gn,T gn)→ 0 as n→ ∞. Furtheremore,

lim
n→∞
||gn−un||= 0. (13)

Consequently,

lim
n→∞
||gn+1−gn||= lim

n→∞
‖1

2
(gn−un)‖= 0 (14)

which implies that {gn} is a Cauchy sequence in K.
Also, since K is closed and convex, {gn} converges
strongly to some p∗ ∈ K. Since T satisfies condition
(1), lim

n→∞
d(gn,F(T )) = 0. Thus, there exists a subse-

quence {xnk} of {gn} such that ‖xnk − pk‖ ≤ 1
2k for

some {pk}∞
k=1 ⊆ F(T ). We now show that {pk}∞

n=1 is
a Cauchy sequence in F(T ). Observe that from (14),
lim
n→∞
‖xnk+1 − xnk‖ = 0 for all subsequences {xnk} of

{gn}. It then follows that,

‖pk+1− pk‖ ≤ ‖pk+1− xnk+1‖+‖xnk+1 − xnk‖+‖xnk − pk‖

≤ 1
2k+1 +

1
2k +‖xnk+1 − xnk‖

≤ 1
2k−1 +‖xnk+1 − xnk‖.

Therefore {pk} is a Cauchy sequence and converges to
some q ∈ F(T ) because F(T ) is closed. Now,

‖xnk −q‖ ≤ ‖xnk − pk‖+‖pk−q‖.

Hence xnk → q as k→ ∞.

d(q,T q) ≤ ‖q− pk‖+‖pk− xnk‖+d(xnk ,T xnk)

+H(T xnk ,T q)

≤ ‖q− pk‖+‖pk− xnk‖+d(xnk ,T xnk)

+L‖xnk −q‖.

Hence, q ∈ T q and {xnk} converges strongly to q. Since
gn converges strongly to p∗, uniqueness of limit of a
convergent sequence guarantees that p∗ = q . Hence
p∗ ∈ F(T ).

It remains to show that p∗ is in EP(F). Using (13)
and (14),

lim
n→∞
‖gn+1−un‖= 0. (15)

Hence from lim
n→∞
‖gn− p∗‖= 0 and (13) we have that

lim
n→∞
‖un− p∗‖= 0. (16)

Also, from (11),

‖yn− p∗‖2 ≤ ||gn− p∗||2−αnβn[1−2βn

−L2
βn

2]||gn− vn||2 (17)

Observe that

‖p∗−gn‖2−‖p∗−un‖2 = ‖gn‖2−‖un‖2

−2〈p∗,gn−un〉

≤ ‖gn−un‖(‖gn‖+‖un‖)

+2‖p∗‖‖gn−un‖.

It follows from (13)and (16 ) that

lim
n→∞
‖p∗−gn‖−‖p∗−un‖= 0. (18)

Now from (17 )

‖p∗− yn‖ ≤ ‖p∗−gn‖. (19)

Also, using un = Trnyn, Lemma 2.3 and (19 ) we have

‖un− yn‖2 = ‖Trnyn− yn‖2

≤ ‖p∗− yn‖2−‖p∗−Trnyn‖2

≤ ‖p∗−gn‖2−‖p∗−Trnyn‖2

= ‖p∗−gn‖2−‖p∗−un‖2. (20)

Therefore, from (18 ) and (20 )

lim
n→∞
‖un− yn‖= 0. (21)

Consequently, from (16 ) and (21 )

lim
n→∞
‖yn− p∗‖= 0. (22)



8

From the assumption that rn ≥ a > 0,

lim
n→∞

‖un− yn‖
rn

= 0. (23)

Since un = Trnyn implies

F(un,y)+
1
rn
〈y−un,un− yn〉 ≥ 0,

we deduce from (A2) that

‖un− yn‖2

rn
≥ 1

rn
〈y−un,un− yn〉

≥ −F(un,y)≥ F(y,un). ∀y ∈ K

By taking limit as n→ ∞ of the above inequality and
from (A4), (16) and (22), F(y, p∗) ≤ 0, for all y ∈ K.

Let t ∈ (0,1) and for all y ∈ K, since p∗ ∈ K, yt =

ty+(1−t)p∗ ∈K. Hence F(yt , p∗)≤ 0. Therefore, from
(A1),

0 = F(yt ,yt)≤ tF(yt ,y)+(1− t)F(yt , p∗)≤ tF(yt ,y),

that is, F(yt ,y) ≥ 0. Letting t ↓ 0, from (A3) we obtain
F(p∗,y) ≥ 0 for all y ∈ K so that p∗ ∈ EP(F). Finally,
if H has order inclusion transitive property, gn = PKnx0

consequently, from Lemma 2.2(i)

〈gn− y,x0−gn〉 ≥ 0, ∀ y ∈ Kn. (24)

Since EP(F)⊆ Kn for all n≥ 1, we have that

〈gn−q,x0−gn〉 ≥ 0, ∀ q ∈ EP(F). (25)

Taking the limits as n→ ∞ in (25 ) we obtain

〈p∗−q,x0− p∗〉 ≥ 0, ∀q ∈ EP(F).

Thus, from Lemma 2.2(i) p∗ = PEP(F)x0. This com-
pletes the proof. �
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