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Abstract: In this paper, we report on the 

theoretical and experimental investigation of 

chaotic synchronization using  of a single 

variable linear feedback and adaptive 

controllers. Based on the Lyapunov stability 

theory, theoretical approaches to the design of 

controls are presented, and the results are 

validated numerically and by employing 

electronic circuit experiments. We used two 

typical oscillators, namely, the Lorenz and 

Sprott chaotic systems to demonstrate our 

results; while off-the-shelf components on 

breadboard were used to experimentally 

implement the proposed single variable 

controllers. We specifically show that 

synchronization of two chaotic systems can be 

experimentally realized when the strength of the 

feedback exceeds a theoretically determined 

threshold. 
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1.0 Introduction 

Synchronization is a form of collective 

behaviour that occur due to specific coupling or 

by deliberate introduction of forcing on two or 

more oscillators whose dynamics can be 

periodic or chaotic, such that their dynamics can 

complimentarily be adjusted,  and in the course 

of time a common dynamics is achieved. The 

occurrence of chaos synchronization proposed 

by Pecora and Carroll in (1990) is in particular 

very fascinating and with wide applications in 

nearly all disciplines ranging from chemical 

reactions to biological systems; as well as in 

power converters, communication and 

networking systems, surveillance and control 

systems, secured at a processing (Aguilar-Lpez  

et al., 2014; Filali  et al., 2014; Bhatnagar and 

Wu, 2015; Choi  et al, 2017 ; Ren et al., 2013)  

to name but a few. These wide varieties of 

applications have triggered enormous research 

advances on various effective synchronization 

approaches-which can be broadly classified as 

linear and non linear feedback controls proposed 

during the last three decades (Niu et. al., 2014; 

Ping  and  Fei, 2011; Hu and Xu, 2008; Hua and 

Xua, 2008; Salarieh and Alasty, 2009; Guo et 

al., 2009; Vincent and Guo, 2009; Onma et al., 

2016; Almatroud  et al., 2016; Liu et al., 2010; 

Ricardo and Rafael, 2008; Yao et al., 2014; 

Siddique and Rehan, 2016; Hua et al., 2016; 

Abd et al., 2017; Liu et al., 2010; Ojo et al., 

2014). Prominent among these, we make 

mention of the linear state feedback method 

(Niu et. al., 2014; Ping  and  Fei 2011; Hamed 

et al., 2018), adaptive control method (Hu and 

Xu, 2008; Hua and Xua, 2008; Salarieh and 

Alasty 2009; Guo et al., 2009; Vincent and Guo, 

2009; Onma et al., 2016; Almatroud  et al., 

2016; Mahmoud and Abood, 2017; Liu et al., 

2018), observer control method (Ricardo and 

Rafael, 2008; Yao et al., 2014; Siddique and 

Rehan, 2016; Hua et al., 2016; Abd et al., 2017), 

fuzzy control method (Liu et al., 2010; Liu and 

Zheng, 2009; Hanene et al., 2020), backstepping 

method (Ojo et al., 2014; Shaohua et al., 2020). 

Among the aforementioned control strategies 

and many more available today for stabilization 

and synchronization of chaotic systems, 

theoretical analysis have shown that the linear 

state feedback (Niu et. al., 2014; Ping  and  Fei, 

2011; Hamed et al., 2018; Wang and Wang, 

2011) and adaptive control (Hu and Xu, 2008; 

Salarieh and Alasty, 2009; Guo et al., 2009; 

Vincent and Guo, 2009; Onma et al., 2016; 

Wang and Wang, 2011; Pallov and Sharma, 

2020) are highly promising in terms of 

realization of simple control inputs with 

potential experimental applications as well as 

low energy cost requirement. Consequently, 

they have recently received renewed interest, for 

instance in the synchronization of Lorenz-

Stenflo systems (Wang and Wang, 2011; Pallov 

and Sharma, 2020; Yang, 2014), Chen-Lee 

system (Liu and Gua, 2017; Yaping et al., 2020) 

and a four-dimensional power system model 

(Shaohua et al., 2020). Since the beginning of 

the studies on chaos synchronization, the design 

of coupling scheme that will ensure stable 

synchronization was considered as a crucial 

research question which to-date has remained 

fundamentally relevant (Wang and Wang, 2011; 

Yang, 2014; Stefanski et al., 2009; Olusola et 

al., 2010). In one of our previous papers, we 

employed a combination of Lyapunov direct and 

Linear Matrix Inequality (LMI) methods to 

determine the threshold coupling for the onset of 

stable synchronous behaviour of 

unidirectionally and linearly coupled 

parametrically excited pendula (Olusola et al., 

2010). More importantly, many existing reports 

on non linear controls and in particular adaptive 

control techniques have been purely focused on 

theoretical analysis, without recourse to 

experimental implementation, to the best of our  

https://www.researchgate.net/scientific-contributions/Pallov-Anand-2173890586?_sg%5B0%5D=sWkyTL7I6v4aFEOtSF7J50jr9CnN5x3rI52RLTcRAbyT1bD1ECdvUsTTQZ4tjWZkjxqF1m0.Qk82wHJXuPLISeOAx_guWIR4YV--K8Wp0InYm21ZboRJ7pxTsNekyHL-tQJqdtazrSVySWmi7WEKPJaBgGxSLA&_sg%5B1%5D=GUQWvYUQQDjsAdOWhvpNNnt3ThlNkAckrkdz5z77qjU0xahTvesz-ckkdCP8yHpa9grXWac.fF9z17dpkSptRRvheSIAdbmDsWYX_ISqCooUN075d761-HaN1MCDE_JriUaQQYfh4M0vGwomgJiSvn7bkVt_2g
https://www.researchgate.net/scientific-contributions/B-B-Sharma-2173910348?_sg%5B0%5D=sWkyTL7I6v4aFEOtSF7J50jr9CnN5x3rI52RLTcRAbyT1bD1ECdvUsTTQZ4tjWZkjxqF1m0.Qk82wHJXuPLISeOAx_guWIR4YV--K8Wp0InYm21ZboRJ7pxTsNekyHL-tQJqdtazrSVySWmi7WEKPJaBgGxSLA&_sg%5B1%5D=GUQWvYUQQDjsAdOWhvpNNnt3ThlNkAckrkdz5z77qjU0xahTvesz-ckkdCP8yHpa9grXWac.fF9z17dpkSptRRvheSIAdbmDsWYX_ISqCooUN075d761-HaN1MCDE_JriUaQQYfh4M0vGwomgJiSvn7bkVt_2g
https://www.researchgate.net/scientific-contributions/Pallov-Anand-2173890586?_sg%5B0%5D=sWkyTL7I6v4aFEOtSF7J50jr9CnN5x3rI52RLTcRAbyT1bD1ECdvUsTTQZ4tjWZkjxqF1m0.Qk82wHJXuPLISeOAx_guWIR4YV--K8Wp0InYm21ZboRJ7pxTsNekyHL-tQJqdtazrSVySWmi7WEKPJaBgGxSLA&_sg%5B1%5D=GUQWvYUQQDjsAdOWhvpNNnt3ThlNkAckrkdz5z77qjU0xahTvesz-ckkdCP8yHpa9grXWac.fF9z17dpkSptRRvheSIAdbmDsWYX_ISqCooUN075d761-HaN1MCDE_JriUaQQYfh4M0vGwomgJiSvn7bkVt_2g
https://www.researchgate.net/scientific-contributions/Pallov-Anand-2173890586?_sg%5B0%5D=sWkyTL7I6v4aFEOtSF7J50jr9CnN5x3rI52RLTcRAbyT1bD1ECdvUsTTQZ4tjWZkjxqF1m0.Qk82wHJXuPLISeOAx_guWIR4YV--K8Wp0InYm21ZboRJ7pxTsNekyHL-tQJqdtazrSVySWmi7WEKPJaBgGxSLA&_sg%5B1%5D=GUQWvYUQQDjsAdOWhvpNNnt3ThlNkAckrkdz5z77qjU0xahTvesz-ckkdCP8yHpa9grXWac.fF9z17dpkSptRRvheSIAdbmDsWYX_ISqCooUN075d761-HaN1MCDE_JriUaQQYfh4M0vGwomgJiSvn7bkVt_2g
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Fig. 1. (Colour online) Phase portrait of the chaotic attractor of Lorenz system with 

parameters a = 28, b =
𝟖

𝟑
 and c = 10 

knowledge (Wang and Wang, 2011; Yang, 

2014; Liu and Gua, 2017; Ni et al., 2017; 

Chunhua et al., 2020). Emphasis have been 

placed on experimental realizations of chaos 

synchronization schemes as being key to 

many real life chaos synchronization-based 

applications and concerted research efforts 

have been devoted to implementing various 

chaos synchronization schemes (Hua et al., 

2016; Perlikowski et al., 2008; Arellano et 

al., 2013; Mart’inez et al., 2014; Ahmed et 

al., 2017; Egunjobi et al., 2018).Recently, 

we reported experimental evidence for 

synchronization via cyclic coupling 

(Egunjobi et al., 2018). In the present paper, 

we provide experimental evidence for 

chaotic synchronization from the 

perspective of single variable linear state 

feedback control and adaptive control. 

We first employ the linear state feedback 

approach and adaptive control technique 

respectively to design simple, efficient, and 

experimentally realizable controllers for 

synchronization of nonlinear oscillators 

using Lorenz and Sprott systems as classical 

oscillators. Then, the effectiveness and 

feasibility of the designed controllers are 

demonstrated numerically and validated 

with an electronic experiment using off-the-

shelve components on the breadboard. To 

the best of our knowledge, synchronization 

of chaotic oscillators via a single variable 

approach has not been experimentally 

implemented and reported in the literature. 

The rest of the paper is organized as follows: 

In sections 2 and 3, we present analytic and 

numerical evidences of synchronization in 

identical Lorenz and Sprott oscillators 

respectively based on single variable 

adaptive, while section 4 is focused on 

experimental implementation. The paper is 

concluded in section 5.   
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2. 0  Synchronization of Lorenz System 

2.1 Design of linear feedback controller 

Based on the linear state error feedback approach, we consider the drive Lorenz system 

(Lorenz, 1964) as: 

𝑥̇1 = 𝑎(𝑥2 − 𝑥1) 
𝑥̇2 = 𝑏𝑥1 − 𝑥2 − 𝑥1𝑥3        (1) 

𝑥̇3 = 𝑥1𝑥2 − 𝑐𝑥3 

where a = 28, b = 
8

3
 and c = 10 are control parameters that make the system exhibits chaotic 

behaviour as depicted in Fig. 1. 

The controlled slave system is given as: 

𝑦̇1 = 𝑎(𝑦2 − 𝑦1) + 𝑢1 

𝑦̇2 = 𝑏𝑦1 − 𝑦2 − 𝑦1𝑦3 + 𝑢2        (2) 

𝑦̇3 = 𝑦1𝑦2 − 𝑐𝑦3 + 𝑢3where 𝑢1, 𝑢2𝑎𝑛𝑑 𝑢3are control functions to be designed. The 

system error function is defined as; 

𝑒1 = 𝑦1 − 𝑥1,   𝑒2 = 𝑦2 − 𝑥2,   𝑒3 = 𝑦3 − 𝑥3     (3) 

Differentiating equation (3) with respect t time, the error dynamics is 

𝑒̇1 = 𝑦̇1 − 𝑥̇1,   𝑒̇2 = 𝑦̇2 − 𝑥̇2,   𝑒̇3 = 𝑦̇3 − 𝑥̇3     (4) 

Using equation (1) and equation (2) in equation (4), we obtain: 

𝑒̇1 = 𝑎(𝑒2 − 𝑒1) + 𝑢1 

𝑒̇2 = 𝑏𝑒1 − 𝑒2 + 𝑥1𝑥3 − 𝑦1𝑦3 + 𝑢2       (5) 

𝑒̇3 = −𝑐𝑒3 + 𝑦1𝑦2 − 𝑥1𝑥2 + 𝑢3 
 

Theorem 1 

For drive system (1) and response system (2), if we choose the controller as: 

𝑢1 = −𝑘𝑒1, 𝑢2 = 0, 𝑢3 = 0        (6) 

where k is a feedback plus satisfying the condition 

𝑘 >
(𝑎+𝑏−𝑥3)

2𝑐+𝑥2
2−4𝑎𝑐

4𝑐
        (7) 

then, the response (2) and drive (1) systems can be fully synchronized withthe proposed 

controller (6). 

Proof 

Suppose the Lyapunov function for system (5) is given as: 

𝑉1 =
1

2
(𝑥1
2 + 𝑒2

2 + 𝑒3
2)         (8) 

We can express the time derivative of 𝑉1 along the trajectories of systemgiven by equation 

(5) as: 

𝑉̇1 = 𝑒1𝑒̇1 + 𝑒2𝑒̇2 + 𝑒3𝑒̇3     

= −(𝑎 + 𝑘)𝑒1
2 − 𝑒2

2 − 𝑐𝑒3
2 + (𝑎 + 𝑏 − 𝑥3)𝑒1𝑒2 + 𝑒1𝑒3𝑥2    (9) 

= −𝑒𝑇𝑃𝑒            

where [𝑒1, 𝑒2, 𝑒3]
𝑇 and 
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𝑃 =

(

 
 
𝑎 + 𝑘

−(𝑎+𝑏−𝑥3)

2
−
𝑥2

2
−(𝑎+𝑏−𝑥3)

2
1 0

−
𝑥2

2
0 𝑐

)

 
 

       (10) 

If the feedback and the update k satisfies the following conditions; 

𝑛1 > 0, 𝑛2 > 0 𝑎𝑛𝑑 𝑛3 > 0        (11) 

where 

𝑛1 = 𝑎 + 𝑘     

𝑛2=𝑛1 −
(𝑎+𝑏−𝑥3)

2

4
         (12) 

𝑛3 = −
𝑥2
2

4
+ 𝑐(𝑎 + 𝑘) −

𝑐(𝑎+𝑏−𝑥3)
2

4
         

then, ˙𝑉̇1 ≤ 0 can be obtained. Substituting 

equation (12) into Equation (11) and after 

some algebraic manipulations, we obtain 

that there must be a constant k that satisfies 

equation (7) and ˙𝑉̇1 ≥ 0  such that >
𝑐(𝑎+𝑏−𝑥3)

2+𝑥2
2−4𝑎𝑐

4𝑐
 . From Lyapunov 

stability theory, it is clear that the error 

dynamical system (4) is stable at the origin 

(0, 0, 0) asymptotically. This implies that 

the drive-response system (1) and (2) with 

linear feedback control (6) can be 

synchronized. The proof is thus completed. 

2.2  Adaptive control design 

Theorem 2 

Considering the drive system (1) and response system (2), if the adaptive controller 

function is chosen such that: 

𝑢1 = −𝑘𝑒1, 𝑢2 = −(𝑎 + 𝑐)𝑒1,   𝑢3 = 0      (13) 

and the feedback gain k is updated by the following law; 

𝑘̇ = 𝛼𝑒1
2          (14) 

where 𝛼is a positive constant, then the systems, equations 1 and 2 with the controller (13) 

and equation (14) are in synchronized state. 

Proof 

The error dynamics of the drive-response and adaptive controlled Lorenz systems can be 

written as; 

𝑒̇1 = 𝑎(𝑒2 − 𝑒1) − 𝑘𝑒1 
𝑒̇2 = (𝑏 − 𝑎 − 𝑐)𝑒1 − 𝑒2 + 𝑥1𝑥3 − 𝑦1𝑦3      (15) 

𝑒̇3 = −𝑐𝑒3 + (𝑦1𝑒2 − 𝑥2𝑒1). 
By choosing a Lyapunov function (V) for equation (15) as: 

𝑉 =
1

2
(𝑒1
2+𝑒2

2+𝑒3
2) +

1

2𝛼
(𝑘 − 𝑘̅)2,       (16) 

where 𝑘̅ 𝑖𝑠 𝑡ℎ𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑜𝑓 𝑘; 

the time derivative of V along the solution of (15) is given as: 

˙𝑉̇1 = 𝑒1𝑒̇1 + 𝑒2𝑒̇2 + 𝑒3𝑒̇3 − (𝑘 − 𝑘̅)𝑒1
2, ≤ −(𝑎 + 𝑘̅)𝑒1

2 − 𝑒2
2 − 𝑐𝑒3

2 + (𝑎 − 𝑏 −

𝑥3)𝑒1𝑒2 + 𝑒1𝑒3𝑥2   = −𝑒𝑇𝑃𝑒     (17) 
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where [|𝑒1|, |𝑒2|, |𝑒3|]
𝑇and  

𝑃 =

(

 
 
𝑎 + 𝑘

(𝑥3−𝑏+𝑐)

2
−
𝑥2

2
(𝑥3−𝑏+𝑐)

2
1 0

−
𝑥2

2
0 𝑐

)

 
 

       (18)  

If the feedback plus k satisfies the condition: 

𝑛1 > 0, 𝑛2 > 0 𝑎𝑛𝑑 𝑛3 > 0        (19) 

where 

𝑛1 = 𝑎 + 𝑘,̅  

𝑛2 = 𝑛1 −
(𝑥3−𝑏+𝑐)

2

4
         (20) 

𝑛3 =
𝑥2
2

4
+ 𝑐 [(𝑎 + 𝑘̅) −

(𝑥3−𝑏+𝑐)
2

4
],  

then we can show that ˙𝑉̇1 ≤ 0  is negative 

definite. Substituting equation (20) into 

Equation (19) and after some algebraic 

manipulations, one readily obtains 𝑘̅ >
𝑐(𝑥3−𝑏+𝑐)

2+𝑥2
2−4𝑎𝑐

4𝑐
 . Implying that there must be 

a constant 𝑘̅ that satisfies equation (14) and 

𝑉̇1 ≤ 0and according to Lyapunov stability 

theory, the errordynamical system (15) is 

asymptotically stable at the origin (0, 0, 0). 

That is,the drive system (1) and response 

system (2) with the linear feedback control 

Equation 13 can be synchronized. The proof is 

thus completed. 

2.3 Numerical simulation 

In order to verify the effectiveness and 

feasibility of the single variable nonlinear 

controller (6) and adaptive controller (13) for 

the Lorenz system, the fourth-order Runge 

Kutta (ode45) routine was employed with 

initial conditions [𝑥1(0) = 0.3, 𝑥2(0) = 0.2, 

𝑥3(0) = −0.2] for drive system and [𝑦1(0) = 

0.03, 𝑦2(0) = 0.02, 𝑦3(0) = −0.02] for response 

system. The parameters were fixed as follows: 

a = 10, b = 28 and c = 8/3 to ensure that the 

system is in a chaotic dynamics state. We 

numerically solved drive system (1) and 

response system (2) with controllers 𝑢𝑖(𝑡), as 

defined in equation (6) and equation (13), 

respectively. The error dynamics variables are 

chaotic before   controller activation. However, 

on the activation of linear state feedback 

controller (6) coupled with adaptive controller 

(13) as shown in Figs. 2 and 3, respectively, the 

error dynamics converge to the stable 

equilibrium point (0, 0, 0) as time 𝑡 → ∞, 
implying that system (1) and system (2) are in 

the state of synchronization. 

3.0 Synchronization of Identical Sprott 

Systems 

In this section, we propose simple nonlinear 

controllers for synchronizing identical Sprott 

systems [Sprott, 2000] We take the drive 

system as 

𝑥̇1 = 𝑎𝑥2 

𝑥̇2 = 𝑥1 + 𝑥3          (21) 

𝑥̇3 = 𝑥1 + 𝑥2
2 − 𝑥3 
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Fig. 2. (Colour online) Time response curve for synchronization errors of two 

identical Lorenz systems with the linear state feedback controller in (6) activated att 

≥ 20s 

 

 
Fig. 3. (Colour online) Time response curve for synchronization errors of two 

identical Lorenz systems with the adaptive controller in (13) activated at t ≥20s 

 

where a is the control parameter and when a = 0.2, the system exhibits chaotic behaviour 

as shown in Fig. 4. 

The controlled slave system is given as: 

𝑦̇1 = 𝑎𝑦2 + 𝑢1 

𝑦̇2 = 𝑦1 + 𝑦3 + 𝑢2         (22) 

𝑦̇3 = 𝑦1 + 𝑦2
2−𝑦3 + 𝑢3  

where 𝑢1, 𝑢2𝑎𝑛𝑑 𝑢3 are control functions to be designed. The system error function is 

defined as; 
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Fig. 4. (Colour online) Phase portrait of the chaotic attractor of Sprott system 

withparameter a = 0.2. 
 

𝑒1 = 𝑦1 − 𝑥1,   𝑒2 = 𝑦2 − 𝑥2,   𝑒3 = 𝑦3 − 𝑥3     (23) 

The time derivatives of the error functions which is the error dynamical system is obtained 

using equation (21) and equation (22) in equation (23); and is given as 

𝑒̇1 = 𝑎𝑒2 + 𝑢1 

𝑒̇2 = 𝑒1 + 𝑒3 + 𝑢2         (24) 

𝑒̇3 = 𝑒1 + 𝑥2𝑒2 − 𝑦2𝑒2 − 𝑒3 + 𝑢3  

 

3.1 Linear state feedback control for 

synchronization of sprott system 

Theorem 3 

For drive system (21) and response system (22), 

if we choose the controllers 𝑢𝑖(𝑡) as follows: 

𝑢1 = −𝑘𝑒1, 𝑢2 = 0, 𝑢3 = 0,  (25) 

where k is the feedback plus, satisfying the 

condition; k > 0, then the response system (22) 

associated with the proposed controller (25) and 

the drive system(21) can be synchronized. 

Proof 

Let the Lyapunov function for the error system 

(24) be given as: 

𝑉1 =
1

2
(𝑥1
2 + 𝑒2

2 + 𝑒3
2)   (26) 

The time derivative of V1 along the trajectories of error dynamics is given as; 

𝑉̇1 = 𝑒1𝑒̇1 + 𝑒2𝑒̇2 + 𝑒3𝑒̇3     

= −(𝑎 + 𝑘)𝑒1
2 − 𝑒2

2 − 𝑐𝑒3
2 + (𝑎 + 𝑏 − 𝑥3)𝑒1𝑒2 + 𝑒1𝑒3𝑥2     (27) 

= −𝑒𝑇𝑃𝑒            

where 𝑒 = [𝑒1, 𝑒2, 𝑒3]
𝑇and  
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𝑃 =

(

 
 
𝑘 −

(𝑎+1)

2
−
1

2
(𝑎+1)

2
1 −

(1+𝑥2+𝑦2)

2

−
1

2
−
(1+𝑥2+𝑦2)

2
1

)

 
 

       (28) 

If the feedback plus ksatisfies the condition; 

𝑛1 > 0, 𝑛2 > 0 𝑎𝑛𝑑 𝑛3 > 0         (29) 

where 

𝑛1 = 𝑘,  

𝑛2 = −(𝑎 + 1)
2          (30) 

𝑛3 = [−
𝑘(𝑥2+𝑦2+1)

2
+𝑘(𝑎+1)2+(𝑎+1)(𝑥2+𝑦2+1)

4
]  

then ˙𝑉̇1 ≤ 0  is negative definite can be 

obtained. According to the theory of 

Lyapunov stability, the error dynamical 

system (24) is asymptotically stable. That is, 

the drive system (21) and response system 

(22) with the feedback control (25) can be 

synchronized. The proof is completed. 
 

3.2 Adaptive control for synchronization of 

Sprott system 

Theorem 4 

For drive system (21) and response system 

(22), if we choose the adaptive controller as; 

𝑢1 = −𝑘𝑒1, 𝑢2 = −𝑎𝑒1, 𝑢3 = 0 (31) 

and the feedback plus k is updated by the law: 

𝑘̇ = 𝛽𝑒1
2    (32) 

where 𝛽 is a positive constant, then the two 

Sprott systems of (21) and (22) satisfying 

equation (31) and equation (32) are in a state 

of synchronization. 

Proof 

The error system of the two Sprott systems 

under adaptive control is as follows; 

𝑒̇1 = 𝑎𝑒2 − 𝑘𝑒1 

𝑒̇2 = (1 − 𝑎)𝑒1 + 𝑒3,   (33) 

𝑒̇3 = 𝑒1 + 𝑥2𝑒2 + 𝑦2𝑒2 − 𝑒3). 
We choose a Lyapunov function (V) as: 

𝑉 =
1

2
(𝑒1
2+𝑒2

2+𝑒3
2) +

1

2𝛽
(𝑘 − 𝑘̅)2, (34) 

where 𝑘̅ 𝑖𝑠 𝑡ℎ𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑜𝑓 𝑘; The time 

derivative of V along the solution of (33) is 

given as: 

𝑉̇1 = 𝑒1𝑒̇1 + 𝑒2𝑒̇2 + 𝑒3𝑒̇3 − (𝑘 − 𝑘̅)𝑒1
2,  

≤ −𝑘̅𝑒1
2 − 𝑒3

2 + 𝑒1𝑒2 + 𝑒1𝑒3 + (1 + 𝑥2 + 𝑦2)𝑒2𝑒3      (35) 

= −𝑒𝑇𝑃𝑒  

where [|𝑒1|, |𝑒2|, |𝑒3|]
𝑇and  

𝑃 =

(

 
 
𝑘̅ −

1

2
−
1

2

−
1

2
1 −

(𝑥2+𝑦2+1)

2

−
1

2
−
(𝑥2+𝑦2+1)

2
1

)

 
 

       (36)  

If the feedback plus k satisfies the condition: 

𝑛1 > 0, 𝑛2 > 0 𝑎𝑛𝑑 𝑛3 > 0         (37) 

where 

𝑛1 = 𝑘,̅  

𝑛2 = −
1

4
           (38) 
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𝑛3 = −𝑘̅
(𝑥2+𝑦2+1)

2

4
−
1

4
(1 + (𝑥2 + 𝑦2 + 1))   

then ˙𝑉̇1 ≤ 0  can be obtained. Substituting (38) into (37) and computing the inequalities, there 

must be a constant 𝑘,̅ that satisfies (32) and ˙𝑉̇1 ≤ 0. 

 
Fig. 5: (Colour online) Time response curve for synchronization errors of two identical 

Sprott systems with the linear state feedback controllers activated at t ≥ 20s. 

 

According to the theory of Lyapunov stability, 

the error dynamical system (33) is 

asymptotically stable. i.e., the drive (21) and 

response (22) systems with the adaptive 

controller (31) can be synchronized. The proof 

is thus completed.   

3.3 Numerical simulation 

Following the numerical procedure in section 

3, we simulated the Sprott system [Sprott] 

using the parameter, a = 0.2 and the initial 

conditions of the drive system (21) and 

response system (22) chosen as [𝑥1 (0) = 

0.0001, 𝑥2(0) = 0.0001, 𝑥3 (0) = 0.0001], and 

[𝑦1 (0) = 0.001, 𝑦2 (0) = 0.001, 𝑦3 (0) = 0.001], 

respectively. The synchronization errors 

between systems (21) and (22) are shown in 

Figs. 5 and 6. From Fig. 5, we can see that the 

errors 𝑒1(𝑡), 𝑒2(𝑡)and 𝑒3(𝑡) have been 

stabilized to the equilibrium point (0, 0, 0) after 

the linear state feedback controller (25) is 

activated. Thus, system (21) and system (22) 

are in a state of synchronization. Furthermore, 

the initial conditions are taken as [𝑥1 (0) = 

0.0001, 𝑥2 (0) = 0.0002, 𝑥3 (0) = −0.0001], and 

[𝑦1(0) = −0.001, 𝑦2 (0) = 0.002, 𝑒1(0) = 0.003]; 

and by switching on the adaptive control given 

by Eq (31) with 𝛽 = 1, we show in Fig. 6 the 

global asymptotic convergence of the error 

dynamics 𝑒1(𝑡), 𝑒2(𝑡) and 𝑒3(𝑡) as 𝑡 →
∞implying that system (21) and system (22) 

achieve global synchronization. 
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Fig. 6. (Colour online) Time response curve for synchronization errors of two identical 

S p r o t t  s y s t e m s  w i t h  t h e  a d a p t i v e  c o n t r o l l e r s  a c t i v a t e d  a t  𝒕 ≥ 𝟐𝟎𝒔 . 

 

4.0 Synchronization: Electronic 

Implementation 

In this section, we present the experimental 

evidence of synchronization in the Lorenz 

system and Sprott systems based on linear state 

feedback controllers and adaptive controllers 

(6), (31), (13) and (21) respectively. The 

electronic circuit realization of the coupled 

systems was done using microcontroller-based 

rogramming as illustrated in Fig. 7. The 

exadecimal form of the system code was saved 

in the AVR micro-controller (ATMEGA 328P-

PU)EPROM memory using a micro-controller 

programmer (Arduino). The generated pulse 

width modulated (PWM) output is fed into a 

low pass filter to obtain continuous output 

waveform observed in a digital oscilloscope 

(Yokogawa DL9140, 5GS/s, 1GHz). The 

frequency of the PWM output may be varied to 

ensure its compatibility with the bandwidth of 

the oscilloscope. The timer of the 

microcontroller is used to vary the frequency. 

In Fig. 8, we display the oscilloscope traces of 

the phase portrait showing the chaotic 

attractors for = 60.3k and R = 49.9k of the (a) 

Sprott oscillator and (b) Lorenzsystem 

respectively. Notice that Figs. 8(a & b) 

reproduces the exact chaotic structures 

obtained from numerical simulations as shown 

in Figs. 1 and 4, respectively. 

We begin the experimental verification of the 

single variable scheme using off-the-shelve 

components on a breadboard by implementing 

drive-response Lorenzsystems as paradigmatic 

oscillators, connected through a coupling 

resistance,𝑅𝑘.We first identified the critical 

coupling 𝑅𝑘𝑐 = 0.05k.When Rkis below the 

critical value (say 𝑅𝑘 = 0.01k <𝑅𝑘𝑐 = 0.05k) as 
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displayed in Fig. 9(a), complete 

synchronization could not be achieved between 

the two Lorenz systems.  

 

 

 

 

 

 

(a)                                                                                   

(b) 

 

 

 

 

Fig. 7: (a)Schematic diagram for experimental implementation using Adruino UNO 

hardware (microcontroller), and (b) Experimental setup using the Adruino UNO hardware 

(microcontroller) to implement the differential equations. 

 

   
Fig. 8. (Color online) Oscilloscope traces of chaotic attractor of a: (a) single Sprott system 

for R = 60.3k, and; (b) single Lorenz system for R = 49.9k. 

 

In Fig. 9(b) however, we show the result of 

oscilloscope traces for 𝑥1𝑣𝑠 𝑥2 for 𝑅𝑘 =
0.10𝑘 > 𝑅𝑘𝑐 = 0.05𝑘, in which the two nearly 

identical Lorenz systems evolve into the 

synchronous state at coupling resistance. 

Remarkably, our result provides experimental 

validation for the synchronization of chaotic 

systems based on a single variable 

controller.Remarkably, previous reports on the 

application of single variable controllers (Wang 

and Wang, 2011) focused on the theoretical 

derivation and numerical simulation. We have, 

in the present study showed that by using off-

the-shelve components a breadboard, 

synchronization via a single variable controller 

of two nearly identical Lorenz systems can 

evolve into synchronization at a coupling above 

the threshold value. 
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Fig. 9. Oscilloscope traces for two Lorenz systems interacting via a single variable controller 

𝒙𝟏𝒗𝒔 𝒙𝟐 plots for (a) 𝑹𝒌 = 𝟎. 𝟎𝟏𝒌 > 𝑹𝒌𝒄 = 𝟎. 𝟎𝟓𝒌 - no synchronization, (b) 𝑹𝒌 = 𝟎. 𝟏𝟎𝒌 >
𝑹𝒌𝒄 = 𝟎. 𝟎𝟓𝒌 - synchronization. 

Furthermore, experimental verification of the 

feasibility and effectiveness of the adaptive 

control approach is provided. Here, we found a 

threshold resistance value 𝑅𝑘 as 𝑅𝑘𝑐 = 0.68k 

below which synchronization would not be 

attained. In Fig. 10(a), the result of oscilloscope 

traces for𝑥1𝑣𝑒𝑟𝑠𝑒 𝑥2 are shown for 𝑅𝑘= 0.50k 

<𝑅𝑘𝑐 = 0.68k. Clearly, the two nearly identical 

Lorenz systems could not attain a synchronous 

state at coupling resistance below the threshold 

value. Under adaptive controls (13) however, 

the two Lorenz systems achieve complete 

synchronization as the resistance, 

𝑅𝑘progressively take on values greater than the 

critical value 𝑅𝑘𝑐 = 0.68k as displayed in Fig. 

10. Notably, the present results also show that 

a drive-response chaotic oscillator interacting 

via adaptive controller (13) can evolve into 

complete synchronization when the strength of 

interaction is above the critical value. Thus, 

this experimental result validates the feasibility 

of the adaptive control scheme presented. 

As a second example, we used two Sprott 

circuits for our experiment and apply a single 

variable controller given by Equation (25) by 

connecting a coupling resistance 𝑅𝑘 between 

two nodes of the Sprott circuits that establish a 

connection via 𝑥1 → 𝑥2and then varying the 

coupling parameter, 𝑅𝑘, to verify the 

synchronization of two nearly identical Sprott 

systems.  

The values of the components were chosen as 

close as possible since, in practice, two 

oscillators cannot be strictly identical. In this 

case, the critical resistance is 𝑅𝑘𝑐 = 0.10. An 

almost complete synchronization was achieved 

for 𝑅𝑘 = 0.15𝑘 > 𝑅𝑘𝑐 as depicted in Fig. 

11(b), where we show the oscilloscope traces 

of 𝑥1𝑣𝑠 𝑥2 evolving into a synchronous state as 

the coupling strength exceeds a critical value. 

In Fig. 11(a),𝑅𝑘 = 0.07𝑘 < 𝑅𝑘𝑐, and the drive-

response Sprott system could not attain a 

synchronous state. Thus, validating the 

theoretical results in the case of the single 

variable feedback approach for 

synchronization of two Sprott systems 
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Fig. 10: Oscilloscope traces for two Sprott systems interacting via adaptive controller 

𝒙𝟏𝒗𝒔 𝒙𝟐 plots for (a) 𝑹𝒌 = 𝟎. 𝟎𝟓𝒌 < 𝑹𝒌𝒄 = 𝟎. 𝟔𝟖𝒌 - no synchronization, (b)𝑹𝒌 = 𝟎. 𝟖𝟓𝒌 >
𝑹𝒌𝒄 = 𝟎. 𝟔𝟖𝒌  - synchronization. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11: Oscilloscope pictures for two Sprott systems interacting via single variable controller 

𝒙𝟏𝒗𝒔 𝒙𝟐 plots for (a)𝑹𝒌 < 𝑹𝒌𝒄 (b) 𝑹𝒌 > 𝑹𝒌𝒄. 
 

Finally, we give experimental results for two 

Sprott circuits using an adaptive controller in 

equation 31. This was achieved by connecting 

resistance𝑅𝑘 between two nodes of the Sprott 

circuits connection via 𝑥1 → 𝑥2 and then 

varying the coupling parameter,𝑅𝑘 to examine 

synchronization behaviour. Similar to the 

drive-response Lorenz system, an almost 

complete synchronization was achieved when 

the strength of the interaction is greater than a 

threshold value,𝑅𝑘𝑐 = 2.5k, as depicted in Fig. 

12(b) for 𝑅𝑘 = 2.96k, where we display the 

oscilloscope traces of 𝑥1𝑣𝑠 𝑥2evolving into the 

synchronous state as the coupling strength 

exceeds a critical value. Below threshold 

coupling resistance values, for instance)𝑅𝑘 = 

2.20k, the coupled system could not attain a 

synchronization state as shown in Fig. 12(a). 

Thus, this second experimental result on 

adaptive control for two Sprott systems gives 

further experimental validation of the 

feasibility of adaptive control schemes. 
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Fig. 12. Oscilloscope pictures for two Sprott systems interacting via adaptive controller 

𝒙𝟏𝒗𝒔 𝒙𝟐 plots for (a)𝑹𝒌 = 2.20k <𝑹𝒌𝒄, (b) 𝑹𝒌 = 2.96k >𝑹𝒌𝒄. 
 

5.0 Conclusion 

Synchronization of nonlinear oscillators using 

single variable linear feedback and adaptive 

control techniques were examined in this 

paper. Using Lorenz and Sprott systems as 

typical chaotic oscillators, simple and efficient 

controllers were designed based on Lyapunov 

stability theory. First, the performance and 

feasibility of the designed controllers were 

verified by means of numerical simulation and 

we showed that the two systems studied 

attained synchronization state asymptotically 

as the controllers were activated. Furthermore, 

by using off-the-shelve components on the 

breadboard, we identified the critical/threshold 

coupling resistances for each scheme and 

illustrated the transition from asynchronous 

behaviour to stable synchronization as the 

coupling is varied beyond the critical value. We 

remark that previous results on single variable 

nonlinear and adaptive controls were more 

concerned with theoretical designs as well as 

numerical simulations (See for instance Refs. 

[[Stefanski et al, 2004; Olusola et al. 2010]). 

Consequently, the present study has advanced 

the existing results by providing experimental 

validation of theoretical results. The derived 

results can be generalized to all chaotic and 

hyperchaotic systems which exhibit more 

complex dynamics and therefore ensure 

security in information transmission. 
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