Modification of Dual to Separate Product-type Exponential Estimator in Case of Post- Stratification

Abubakar Yahaya and Adam Rabiu
Received: 12 September 2021/Accepted 28 November 2021/Published online:25 December 2021

Abstract

This article proposes a modification of dual to separate product-type exponential estimator in the case of post-stratification. The bias and Mean Square Error (MSE) of the suggested estimator have been studied up to the first degree of approximation. It has been shown that the suggested estimator is more efficient than Lone and Tailor estimators and in the same vein, efficiency conditions of which the proposed estimator would be better are derived. Finally, an empirical study has been carried out to demonstrate the performance of the suggested estimator

Keywords: Post-stratification, Separate estimator, bias, Mean Square Error

Abubakar Yahaya
Department of Statistics
Ahmadu Bello University, Zaria
Kaduna State, Nigeria
Email: adamrabiutk@gmail.com

Adam Rabiu

Department of Statistics
Ahmadu Bello University, Zaria
Kaduna State, Nigeria
Email:

1.0 Introduction

In some literature, it has been shown by various researchers such as Reddy (1974), Srivenkaramana (1978) that the bias and MSE of the ratio and product estimators can be reduced with the applications of transformation on the auxiliary variable. Srivenkaramana (1980) used the transformation to propose a dual ratio estimate of the population mean in simple random sampling sampling.In the same vein, Lone and Tailor (2015) proposed a dual
to separate product type exponential estimator in the post-stratification approach.
Ratio, Product type and linear regression estimator have been extensively used when the auxiliary information is available and it is well established that, there are good examples of estimators that make good use of auxiliary information at the estimation stage. When the study variable and the auxiliary variable are positively correlated and the line passes through the origin, the ratio type estimator is employed to improve the estimation of the population parameters under study provided by Lone and Tailor (2014). However, the product type estimators are used to improve the estimation of parameters when the interesting variable and auxiliary variable are negatively correlated as given by Lone and Tailor (2015). The regression type estimators are for estimation when the line of regression does not pass through the origin. It is observed that, all these methods capitulate biased estimators and of course bias decrease with increasing sample size Okafor (2002). Many researchers have made several efforts to develop more and more ratio-type or product-type estimators with less MSE than the existing estimator.
Recently Gamze (2015) proposed modified exponential type estimators for population mean in stratified sampling and Kadila (2016) proposed a new exponential type estimator for the population mean in simple random sampling. Moreover, Abubakar et al (2019) examined the estimator of Kadilar (2016) for combined ratio estimator in two-phase sampling. However, none of these studies examines these estimators under poststratification sampling.
Many researchers including; Singh and Espeyo (2003), Vishwakarma and Singh (2011), Tailor et al (2011), Lone and Tailor (2015) among
others contribute significantly to this area of research.

2.0 Materials and Methods

Consider a finite population $U=$ $U_{1}, U_{2}, \ldots, U_{N}$ of size N . A sample of size n is drawn from population U using simple random sampling without replacement. After selecting the sample, it is observed that some units belongs to the $h^{\text {th }}$ stratum. Let n_{h} be the size
of the sample falling in $h^{\text {th }}$ stratum such that $\sum_{h=1}^{L} n_{h}=n$. Here it is assumed that n is so large that possibility of n_{h} being zero is very small. Let $x_{h i}$ be the observation on $i^{\text {th }}$ unit that falls in $h^{t h}$ stratum for auxiliary variate x and $y_{h i}$ be the observation on $i^{t h}$ unit that falls in $h^{\text {th }}$ stratum for study variate y, then
$\bar{X}_{h}=\frac{1}{N} \sum_{i=1}^{N h} x_{h i}: h^{t h}$ Stratum mean for auxiliary variate x
$\bar{Y}_{h}=\frac{1}{N} \sum_{i=1}^{N h} y_{h i}: h^{t h}$ Stratum mean for study variate y
$\bar{X}=\frac{1}{N} \sum_{h=1}^{L} \sum_{i=1}^{N h} x_{h i}=\sum_{h=1}^{L} W_{h} \bar{X}_{h}:$ Population mean of auxiliary variate
$\bar{Y}=\frac{1}{N} \sum_{h=1}^{L} \sum_{i=1}^{N h} y_{h i}=\sum_{h=1}^{L} W_{h} \bar{Y}_{h}$: Population mean of interested variate y
In the case of post-stratification, the usual unbiased estimator of population mean \bar{Y} is defined as:
$\bar{y}_{p s}=\sum_{h=1}^{L} W_{h} \bar{y}_{h}$
Where $W_{h}=\frac{N_{h}}{N}$ is called the weight of the $h^{\text {th }}$ stratum
and $\bar{y}_{h}=\frac{1}{n_{h}} \sum_{i=1}^{n_{h}} y_{h i}$ is called sample mean of n_{h} sample unit that falls in the $h^{\text {th }}$ stratum
Using Stepha (1945), the variance of $\bar{y}_{p s}$ to the first degree of approximation is obtained as
$\operatorname{Var}\left(\bar{y}_{p s}\right)=\left(\frac{1}{n}-\frac{1}{N}\right) \sum_{h=1}^{L} W_{h} S_{y h}^{2}+\frac{1}{n^{2}} \sum_{h=1}^{L}\left(1-W_{h}\right) S_{y h}^{2}$
Where $S_{y h}^{2}=\frac{1}{N_{h}-1} \sum_{i=1}^{N_{h}}\left(y_{h i}-\bar{Y}_{h}\right)^{2}$
Lone and Tailor (2015) defined the estimator with their respective MSE as:
$\hat{\bar{Y}}_{p p s}^{*}=\bar{y}_{h} \sum_{h=1}^{L} W_{h} \bar{y}_{h}\left(\frac{\bar{X}_{h}}{\bar{x}_{h}^{*}}\right)$
The MSE of $\hat{Y}_{p p s}^{*}$

$$
\begin{equation*}
\operatorname{MSE}\left(\hat{\bar{Y}}_{p p s}^{*}\right)=\left(\frac{1}{n}-\frac{1}{N}\right)\left[\sum_{h=1}^{L} W_{h} S_{y h}^{2}+\sum_{h=1}^{L} W_{h} R_{h}^{2} a_{h}^{2} S_{x h}^{2}+2 \sum_{h=1}^{L} W_{h} a_{h} R_{h} S_{y x h}\right] \tag{3}
\end{equation*}
$$

where $x_{h}^{*}=\frac{N_{h} \bar{x}_{h}-n_{h} \bar{x}_{h}}{N_{h}-n_{h}}, R_{h}=\frac{\bar{Y}_{h}}{\bar{X}_{h}}$ and $a_{h}=\frac{n_{h}}{N_{h}-n_{h}}$

$$
\begin{equation*}
\hat{\bar{Y}}_{p s}^{s p e}=\sum W_{h} \bar{y}_{h}\left(\frac{\bar{x}_{h}-\bar{X}_{h}}{\bar{x}_{h}+\bar{X}_{h}}\right) \tag{4}
\end{equation*}
$$

The MSE of equation (4) is given as

$$
\begin{equation*}
\operatorname{MSE}\left(\hat{\bar{Y}}_{p s}^{s p e}\right)=\left(\frac{1}{n}-\frac{1}{N}\right) \sum_{h=1}^{L} W_{h}\left(S_{y}^{2}+\frac{1}{4} R_{y}^{2} S_{x y}^{2}+R_{h} S_{y x h}\right) \tag{5}
\end{equation*}
$$

where $S_{x y}^{2}=\frac{1}{N_{h}-1} \sum_{i=1}^{N_{h}}\left(x_{h i}-\bar{X}_{h}\right)^{2}$ and $S_{y x}=\frac{1}{N_{h}-1} \sum_{i=1}^{N_{h}}\left(y_{h i}-\bar{Y}_{h}\right)\left(x_{h i}-\bar{X}_{h}\right)$
$\hat{\bar{Y}}_{p s}^{p e}=\bar{y}_{p s} \exp \left(\frac{\bar{x}_{p s}-\bar{X}}{\bar{x}_{p s}+\bar{X}}\right)$
The MSE of equation (6) up to the first degree of approximation is

$$
\begin{equation*}
\operatorname{MSE}\left(\hat{\bar{Y}}_{p s}^{p e}\right)=\left(\frac{1}{n}-\frac{1}{N}\right) \sum_{h=1}^{L} W_{h}\left(S_{y h}^{2}+\frac{1}{4} R_{y}^{2} S_{x y}^{2}+R S_{y x h}\right) \tag{7}
\end{equation*}
$$

Where $R=\frac{\bar{Y}}{\bar{X}}$

$$
\begin{equation*}
\hat{\bar{Y}}_{p s}^{* p e}=\sum_{h=1}^{L} W_{h} \bar{y}_{h} \exp \left(\frac{\bar{X}_{h}-\bar{x}_{h}^{*}}{\bar{X}_{h}+\bar{x}_{h}^{*}}\right) \tag{8}
\end{equation*}
$$

The MSE of equation (8) up to the first degree of approximation is

$$
\begin{equation*}
\operatorname{MSE}\left(\hat{\bar{Y}}_{p s}^{* p e}\right)=\left(\frac{1}{n}-\frac{1}{N}\right)\left[\sum_{h=1}^{L} W_{h} S_{y h}^{2}+\frac{1}{4} \sum_{h=1}^{L} W_{h} a_{h}^{2} R_{y}^{2} S_{x y}^{2}+\sum_{h=1}^{L} W_{h} a_{h} R_{h} S_{y x h}\right] \tag{9}
\end{equation*}
$$

2.1 Proposed estimator

Motivated by Lone and Tailor (2015) and following the concept of Srivenkataramana (1980) and Bandyopadyhay (1980)

$$
\begin{equation*}
\hat{\bar{Y}}_{p s}^{* * p}=\sum_{h=1}^{L} W_{h} \bar{y}_{h}\left(\frac{\bar{x}_{h}^{*}}{\bar{x}_{h}}\right)^{\lambda} \exp \left(\frac{\bar{x}_{h}-\bar{x}_{h}^{*}}{\bar{x}_{h}+\bar{x}_{h}^{*}}\right) \tag{10}
\end{equation*}
$$

transformations, we proposed modification of dual to separate product type exponential estimator under post-stratification sampling scheme as :
where $\bar{x}_{h}^{*}=\frac{N_{h} \bar{X}_{h}-n_{h} \bar{x}_{h}}{N_{h}-n_{h}}$ and λ is constant
To obtain the bias and MSE of the proposed estimator $\hat{\bar{Y}}_{p s}^{* * p}$, we write

$$
\begin{aligned}
& y_{h}=\bar{Y}_{h}\left(1+e_{o h}\right), \bar{x}_{h}=\bar{X}_{h}\left(1+e_{1 h}\right), \bar{Y}=\sum_{h=1}^{L} W_{h} \bar{Y}_{h}, \bar{X}=\sum_{h=1}^{L} W_{h} \bar{X}_{h}, \text { Such that } \\
& E\left(e_{o h}\right)=E\left(e_{1 h}\right)=0 \\
& E\left(e_{o h}^{2}\right)=\left(\frac{1}{n w h}-\frac{1}{N h}\right) C_{y h}^{2}, E\left(e_{1 h}^{2}\right)=\left(\frac{1}{n w h}-\frac{1}{N h}\right) C_{x}^{2} \text { and } E\left(e_{o h} e_{1 h}\right)=\left(\frac{1}{n w h}-\frac{1}{N h}\right) \rho_{y x h} C_{y h} C_{x b}
\end{aligned}
$$

Where $C_{y}=\frac{S_{y h}}{\bar{Y}}, C_{x}=\frac{S_{x h}}{\bar{X}}$ and $\rho_{y x h}=\frac{S_{y x h}}{S_{y h} S_{x h}}$
$\hat{\bar{Y}}_{p s}^{* * p}=\sum_{h=1}^{L} W_{h} \bar{y}_{h}\left[\frac{N_{h} \bar{X}_{h}-n_{h} \bar{x}_{h}}{\bar{X}_{h}\left(N_{h}-n_{h}\right)}\right]^{\lambda} \exp \left\{\frac{\left[\bar{X}_{h}-\left(\frac{N_{h} \bar{X}_{h}-n_{h} \bar{x}_{h}}{N_{h}-n_{h}}\right)\right]}{\bar{X}_{h}+\left(\frac{N_{h} \bar{X}_{h}-n_{h} \bar{x}_{h}}{N_{h}-n_{h}}\right)}\right\}$
$\hat{\bar{Y}}_{p s}^{* * p}=\sum_{h=1}^{L} W_{h} \bar{y}_{h}\left[\frac{N_{h} \bar{X}_{h}-n_{h} \bar{x}_{h}}{\bar{X}_{h}\left(N_{h}-n_{h}\right)}\right]^{\lambda} \exp \left[\frac{\left[\left(\frac{n_{h} \bar{x}_{h}-n_{h} \bar{X}_{h}}{N_{h}-n_{h}}\right)\right]}{\left(\frac{2 N_{h} \bar{X}_{h}-n_{h} \bar{X}_{h}-n_{h} \bar{x}_{h}}{N_{h}-n_{h}}\right)}\right]$

$$
\begin{aligned}
& \hat{\bar{Y}}_{p s}^{* * *}=\sum_{h=1}^{L} W_{h} \bar{y}_{h}\left[\frac{N_{h} \bar{X}_{h}-n_{h} \bar{x}_{h}}{\bar{X}_{h}\left(N_{h}-n_{h}\right)}\right]^{\lambda} \exp \left[\frac{\left(\frac{n_{h} \bar{x}_{h}}{N_{h}-n_{h}}-\frac{n_{h} \bar{X}_{h}}{N_{h}-n_{h}}\right)}{\left(\frac{2 N_{h} \bar{X}_{h}}{N_{h}-n_{h}}-\frac{n_{h} \bar{X}_{h}}{N_{h}-n_{h}}-\frac{n_{h} \bar{x}_{h}}{N_{h}-n_{h}}\right)}\right] \\
& \hat{\bar{Y}}_{p s}^{* * *}=\sum_{h=1}^{L} W_{h} \bar{y}_{h}\left[\frac{N_{h} \bar{X}_{h}-n_{h} \bar{x}_{h}}{\bar{X}_{h}\left(N_{h}-n_{h}\right)}\right]^{\lambda} \exp \left[\frac{\gamma_{h} \bar{x}_{h}-\gamma_{h} X_{h}}{\left(\frac{2 N_{h} \bar{X}_{h}}{N_{h}-n_{h}}-\gamma_{h} \bar{X}_{h_{h}}-\gamma_{h} \bar{x}_{h}\right)}\right]
\end{aligned}
$$

Where $\gamma_{h}=\frac{n_{h}}{N_{h}-n_{h}}$ and recalling that $\bar{y}_{h}=\bar{Y}_{h}\left(1+e_{o h}\right), \bar{x}_{h}=\bar{X}_{h}\left(1+e_{o h}\right)$ then

$$
\begin{align*}
& \left.\hat{\bar{Y}}_{p s}^{* * * p}=\sum_{h=1}^{L} W_{h} \bar{y}_{h}\left[\frac{N_{h} \bar{X}_{h}-n_{h} \bar{X}_{h}\left(1+e_{o h}\right)}{\bar{X}_{h}\left(N_{h}-n_{h}\right)}\right]^{\lambda} \exp \left[\frac{\gamma_{h} \bar{X}_{h}\left(1+e_{o h}\right)-\gamma_{h} X_{h}}{\left(\frac{2 N_{h} \bar{X}_{h}}{N_{h}-n_{h}}-\gamma_{h} \bar{X}_{h_{h}}-\gamma_{h} \bar{X}_{h}\left(1+e_{o h}\right)\right.}\right]\right] \\
& \hat{\bar{Y}}_{p s}^{* * * p}=\sum_{h=1}^{L} W_{h} \bar{y}_{h}\left(1+e_{o h}\right)\left[1-\gamma_{h} e_{1 h}\right]^{\lambda} \exp \left[\frac{\gamma_{h} \bar{X}_{h} e_{1 h}}{2 \bar{X}_{h}-\gamma_{h} \bar{X}_{h} e_{1 h}}\right] \\
& \hat{\bar{Y}}_{p s}^{* * * p}=\sum_{h=1}^{L} W_{h} \bar{y}_{h}\left(1+e_{o h}\right)\left[1-\gamma_{h} e_{1 h}\right]^{\lambda} \exp \left[\left(\frac{\gamma_{h} e_{1 h}}{2}\right)\left(1-\frac{\gamma_{h} e_{1 h}}{2}\right)^{-1}\right] \\
& \hat{Y}_{p s}^{* * * p}=\sum_{h=1}^{L} W_{h} \bar{y}_{h}\left(1+e_{o h}\right)\left[1-\lambda \gamma_{h} e_{1 h}+\frac{\lambda\left(\gamma_{h}-1\right) \gamma_{h}^{2} e_{1 h}^{2}}{2}\right]\left[1+\frac{\gamma_{h} e_{1 h}}{2}+\frac{3 \gamma_{h}^{2} e_{1 h}^{2}}{8}\right] \tag{12}
\end{align*}
$$

Expanding the right hand side of equation (12) and returning terms up to the second power of e's we have;

$$
\hat{\bar{Y}}_{p s}^{* * p}-\bar{Y}=\bar{Y}\left[\begin{array}{l}
\frac{\gamma_{h} e_{1 h}}{2}+\frac{3 \gamma_{h} e_{i h}^{2}}{8}-\lambda \gamma_{h} e_{1 h}-\frac{\lambda \gamma_{h}^{2} e_{i h}^{2}}{2}+\frac{\lambda(\lambda-1) \gamma_{h}^{2} e_{i h}^{2}}{2}+e_{0 h} \tag{13}\\
+\frac{\gamma_{h} e_{0 h} e_{1 h}}{2}+\frac{3 \gamma_{h}^{2} e_{0 h} e_{i h}^{2}}{8}-\gamma_{h} e_{0 h} e_{1 h}-\lambda \gamma_{h} e_{0 h}+\frac{\lambda(\lambda-1) \gamma_{h} e_{0 h} e_{1 h}}{2}
\end{array}\right]
$$

To obtain bias, we take the expectation of both sides of equation (13)

$$
\begin{aligned}
& E\left[\hat{\bar{Y}}_{p s}^{* * * p}-\bar{Y}\right]=\sum_{h=1}^{L} W_{h} \bar{Y}_{h}\left[\begin{array}{l}
\frac{\gamma_{h} E\left(e_{1 h}\right)}{2}+\frac{3 \gamma_{h} E\left(e_{i h}^{2}\right)}{8}-\lambda \gamma_{h} E\left(e_{1 h}\right)-\frac{\lambda \gamma_{h}^{2} E\left(e_{i h}^{2}\right)}{2}+\frac{\lambda(\lambda-1) \gamma_{h}^{2} E\left(e_{i h}^{2}\right)}{2}+E\left(e_{0 h}\right) \\
+\frac{\gamma_{h} E\left(e_{0 h} e_{1 h}\right)}{2}+\frac{3 \gamma_{h}^{2} E\left(e_{0 h} e_{i h}^{2}\right)}{8}-\gamma_{h} E\left(e_{0 h} e_{1 h}\right)-\lambda \gamma_{h} E\left(e_{0 h}\right)+\frac{\lambda(\lambda-1) \gamma_{h} E\left(e_{0 h} e_{1 h}\right)}{2}
\end{array}\right] \\
& E\left[\hat{\bar{Y}}_{p s}^{* * p}-\bar{Y}\right]=\sum_{h=1}^{L} W_{h} \bar{Y}_{h}\left[\begin{array}{l}
\frac{3 \gamma_{h} E\left(e_{i h}^{2}\right)}{8}-\frac{\lambda \gamma_{h}^{2} E\left(e_{i h}^{2}\right)}{2}+\frac{\lambda(\lambda-1) \gamma_{h}^{2} E\left(e_{i h}^{2}\right)}{2}+\frac{\gamma_{h} E\left(e_{0 h} e_{1 h}\right)}{2} \\
-\gamma_{h} E\left(e_{0 h} e_{1 h}\right)+\frac{\lambda(\lambda-1) \gamma_{h} E\left(e_{0 h} e_{1 h}\right)}{2}
\end{array}\right]
\end{aligned}
$$

By squaring both side of equation (13) and then taking expectation and retaining terms up to the
second power of e's, we get the MSE of the proposed estimator $\hat{\bar{Y}}_{p s}^{* * p}$ up to the first degree of approximation; then we can say that

$$
\begin{aligned}
& E\left[\hat{\bar{Y}}_{p s}^{* * * p}-\bar{Y}\right]^{2}=\bar{Y}^{2} E\left[\frac{\gamma_{h} e_{1 h}}{2}-\lambda \gamma_{h} e_{1 h}+e_{0 h}\right]^{2} \\
& E\left[\hat{\bar{Y}}_{p s}^{* * *} p-\bar{Y}\right]^{2}=\bar{Y}^{2}\left[\frac{\gamma_{h}^{2} E\left(e_{i h}^{2}\right)}{4}-\lambda^{2} \gamma_{h}^{2} E\left(e_{i h}^{2}\right)+E\left(e_{0 h}^{2}\right)-\lambda \gamma_{h}^{2} E\left(e_{1 h}^{2}\right)+\gamma_{h} E\left(e_{0 h} e_{1 h}\right)-2 \lambda \gamma_{h} E\left(e_{0 h} e_{1 h}\right)\right]
\end{aligned}
$$

The mean square error $\hat{Y}_{p s}^{* * p}$ is

$$
\operatorname{MSE}\left(\hat{\bar{Y}}_{p s}^{* * p}\right)=\bar{Y}^{2}\left[\begin{array}{l}
\frac{\gamma_{h}^{2} E\left(e_{i h}^{2}\right)}{4}-\lambda^{2} \gamma_{h}^{2} E\left(e_{i h}^{2}\right)+E\left(e_{0 h}^{2}\right)-\lambda \gamma_{h}^{2} E\left(e_{1 h}^{2}\right) \tag{14}\\
+\gamma_{h} E\left(e_{0 h} e_{1 h}\right)-2 \lambda \gamma_{h} E\left(e_{0 h} e_{1 h}\right)
\end{array}\right]
$$

We obtain the optimum value (λ) to minimize $\operatorname{MSE}\left(\hat{Y}_{p s}^{* *+}\right)$ by differentiating $\operatorname{MSE}\left(\hat{\bar{Y}}_{p s}^{* * p}\right)$ with respect to λ and equating the derivative to zero

$$
\begin{align*}
& \frac{\partial M S E\left(\hat{\bar{Y}}_{p s}^{* * p}\right)}{\partial \lambda}=\bar{Y}^{2}\left[2 \lambda \gamma_{h}^{2} E\left(e_{i h}^{2}\right)-\gamma_{h}^{2} E\left(e_{1 h}^{2}\right)-2 \gamma_{h} E\left(e_{0 h} e_{1 h}\right)\right]=0 \\
& \hat{\lambda}_{\text {opt }}=\frac{2 \bar{Y}_{h}^{2} E\left(e_{0 h} e_{1 h}\right)+\gamma_{h} \bar{Y}_{h}^{2} E\left(e_{1 h}^{2}\right)}{2 \gamma_{h} \overline{\bar{Y}}_{h}^{2} E\left(e_{1 h}^{2}\right)} \tag{15}
\end{align*}
$$

Substitute equation (15) in equation (14), we get the minimum value of $\operatorname{MSE}\left(\hat{\bar{Y}}_{p s}^{* *} p\right)$ by saying that;

$$
\begin{aligned}
& \operatorname{MSE}_{\min }\left(\hat{\bar{Y}}_{p s}^{* * *}\right)=\bar{Y}^{2}\left\{E\left(e_{0}^{2}\right)-\frac{\left[E\left(e_{0 h} e_{1 h}\right)\right]^{2}}{E\left(e_{1}^{2}\right)}\right\} \\
& \operatorname{MSE}_{\min }\left(\hat{\bar{Y}}_{p s}^{* * p}\right)=\left(\frac{1}{n W_{h}}-\frac{1}{N_{h}}\right) \sum_{h=1}^{L} W_{h}^{2} \bar{Y}_{h}^{2}\left[C_{y h}^{2}-\frac{\rho_{y x h}^{2} C_{y h}^{2} C_{x h}^{2}}{C_{X h}^{2}}\right] \\
& \operatorname{MSE}_{\min }\left(\hat{\bar{Y}}_{p s}^{* * p}\right)=\left(\frac{1}{n}-\frac{1}{N}\right) \sum_{h=1}^{L} W_{h}\left(C_{y h}^{2}-\rho_{y x h}^{2} C_{y h}^{2}\right) \\
& \operatorname{MSE}_{\min }\left(\hat{\bar{Y}}_{p s}^{* * *}\right)=\left(\frac{1}{n}-\frac{1}{N}\right) \sum_{h=1}^{L} W_{h} C_{y h}^{2} \bar{Y}_{h}^{2}\left(1-\rho_{y x h}^{2}\right)
\end{aligned}
$$

2.2 Efficiency comparison of the proposed estimator $\hat{\bar{Y}}_{p s}^{* * p}$

A theoretical comparison of the proposed estimator has been made with other competing estimators of the population mean. Therefore, a comparison of (1), (3), (5), (7) and (9) shows that the proposed estimator $\hat{\bar{Y}}_{p s}^{* * p}$ would be more efficient than

$$
\begin{aligned}
& \bar{y}_{p s} \text { if } \beta>-\sum_{h-1}^{L} W_{h} S_{y h}^{2} \\
& \hat{\bar{Y}}_{p s}^{s} \text { if } \beta>\sum_{h-1}^{L} W_{h} R_{h}\left(R_{h} S_{x h}^{2}-S_{y x h}\right) \\
& \hat{Y}_{p s}^{*} \text { if } \beta>\sum_{h-1}^{L} W_{h} a_{h} R_{h}\left(a_{h} R_{h} S_{x h}^{2}+2 S_{y x h}\right) \\
& \hat{Y}_{p s}^{s p e} \text { if } \beta>\sum_{h-1}^{L} W_{h} R_{h}\left(\frac{1}{4} R_{h} S_{x h}^{2}+S_{y x h}\right) \\
& \hat{Y}_{p s}^{p e} \text { if } \beta>\sum_{h-1}^{L} W_{h} R_{h}\left(\frac{1}{4} a_{h} R_{h} S_{x h}^{2}+S_{y x h}\right) \\
& \text { where } \beta=\sum_{h-1}^{L} \frac{S_{y x h}^{2}}{S_{x h}^{2}}
\end{aligned}
$$

3.0 Empirical study

Explicit understanding of the advantages of the proposed estimator was validated by the treatment of some natural population data as shown in Table 1 while the MSE and percentage relative efficiency (PRE) of the proposed estimator and some conventionally related estimators over sample mean is given in Table 2
Table 1: Population data

Constant	Stratum 1	Stratum 2
$\boldsymbol{n}_{\boldsymbol{h}}$	4	4
N_{h}	10	10
$\overline{X_{h}}$	1629.99	2035.96
$\overline{\boldsymbol{Y}_{\boldsymbol{h}}}$	142.8	91.0
$S_{x i}^{2}$	1044.71	1066.63
$S_{y i}^{2}$	37.31	43.16
$p_{\text {yxh }}$	-0.38	-0.35
$S_{y x h}$	-239.25	-240.45
Table 2: MSE and PRE		
Constant	Stratum 1	$\begin{aligned} & \hline \text { Stratum } \\ & 2 \\ & \hline \end{aligned}$
$\overline{\boldsymbol{y}}_{p s}$	2.4141	100.00
$\dot{\overline{\hat{Y}}}_{p s}^{*}$	2.5366	95.17
$\dot{\bar{Y}}_{p s}^{* s p e}$	2.5366	108.58
$\widehat{\bar{Y}}^{*} \boldsymbol{p e}$	2.1178	113.99
$\dot{\overline{\boldsymbol{Y}}}_{p s}^{* * p}$	1.9805	121.8935

$4.0 \quad$ Conclusion

Section 2 provided the conditions under which the proposed estimator is more efficient than conventional estimators. An empirical study reveals that the proposed estimator $\dot{\hat{Y}}_{p s}^{* * p}$ has high percentage relative efficiency in comparison to Lone and Tailor's (2015) estimators for population I where the interested variate Y and the auxiliary X are negatively correlated. From the theoretical discussion and the numerical result from Table 2, we conclude that the proposed estimator is better than the mentioned estimators. Therefore, the proposed estimator is recommended to use in practice for the estimation of the population mean provided conditions given in section 2 are satisfied.

3.0 References

Agrawal, M. \& Panda, K. (1993). An efficient estimator in poststratification. Metron, 51, 3, 4, pp. 179-187.
Bandyopadhyay, S. (1980). Improved ratio and product estimators. Sankhya,42,1,2.pp. 45-49.
Chouhan, S. (2012). Improved estimation of parameters using auxiliary information in sample surveys. Ph.D.Thesis, Vikram University, Ujjain, MP India.
Gamze, Ö. (2015). Modified exponential
type estimator for population mean using auxiliary variables in stratified random sampling. Alphanumeric Journal,3, 2, pp.49-56.
Holt, D.,\& Smith, T. F. (1979). Poststratification. Journal of the Royal Statistical Society: SeriesA(General),142,1, pp. 33-46.
Lone,H.A \& Tailor, R. (2014). Dual to separate ratio type exponential estimator in post stratification. Journal of Statistics Applications\&Probability,3,3, pp. 425432

Lone,H.A.,\&Tailor, R. (2015). Dual to separate product type exponential estimator in post-stratification. Journal of Statistics Applications and Probability,4,3, pp. 429.
Lone, H. A.\& Tailor, R., \&Singh, H.P. (2016). Generalized ratio-cum-product type exponential estimator in stratified random sampling. Communications in Statistics- Theory and Methods,45,11, ,pp.3302-3333
Srivenkataramana,T. (1980). A dual to
ratio estimator in sample surveys. Biometrika,67,1, pp.199-204.
Vishwakarma, G.K.,\& Singh,H.P. (2011). Separate ratio-product estimator for estimating the population mean using auxiliary information. Journal of Statistical Theory and Applications,10,4, pp.653-664.

Conflict of Interest

The authors declared no conflict of interest

