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Abstract: In this work, a new extension of the 

Inverse Lomax family of distribution called 

Inverse Lomax Lindley (IL-L) distribution is 

proposed. Different properties of the new 

distribution are derived including moments, 

moment generating function, Renyi entropy, 

Shanon entropy, and order statistics. The 

performances of the maximum likelihood 

estimates of the parameters of the Inverse 

Lomax-Lindley distribution were evaluated 

through a simulation study. Application of the 

IL-L distribution to two real-life data sets has 

proved its flexibility.  
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1.0 Introduction 

Nowadays, modeling real data by generalized 

distributions remains consistent. Many 

generalized distributions were developed and 

applied in several areas. Nevertheless, many 

important issues still exist concerning real data 

which are not solved by existing methods. 

Lindley has proposed an alternative data model 

which is a mixture of exponential and gamma 

distributions with forms of non-monotonic 

hazard intensity. The Lindley distribution is 

one of the most important ones to study Stress-

strength reliability Modeling. Ghitany et al. 

(2008) documented some of its structural 

properties and proved to be better suited for 

other types of data than for the exponential 

distribution.  

There are many extended forms of the Lindley 

distribution in the statistical literature. For 

instance, Zero-Truncated Poisson–Lindley by 

Ghitany et. al. (2018), Generalized Lindley by 

Zakerzadeh and Dolati (2009), Negative 

Binomial Lindley by Zamani and Ismail 

(2010), Generalized Poisson Lindley 

Mahmoudi and Zakerzadeh (2010), Weighted 

Lindley by Ghitany et. al. (2011), Generalized 

Lindley Nadarajah et. al (2011), Marshall-

Olkin extended Lindley by Ghitany et. al. 

(2012), Extended Lindley by Bakouch et. al. 

(2012), Power Lindley by Ghitany et. al. (2013) 

, Transmuted Quasi Lindley by Elbatal and  

Elgarhy (2013), Quasi-Lindley by Shanker and  

Mishra (2013), New Weighted Lindley by 

Asgharzadeh (2016), Transmuted two-

parameter Lindley by Al-khazaleh et. al. 

(2016), New Lindley by Abd El-Monsef 
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mailto:jamiluyf@gmail.com
https://orcid.org/0000-0003-4762-1560


 

Communication in Physical Sciences, 2021, 7(4): 398-410 399 

 

 

(2016), Gamma Lindley by Nedjar and 

Zeghdoudi (2016), Inverse Power Lindley by 

Barco et. al. (2017), Truncated two-parameter 

Lindley by Aryuyuen (2018), Weibull Lindley 

by Asgharzadeh et. al. (2018), Alpha Power 

Transformed Power Lindley by Hassan et. al. 

(2019), and Weibull Marshall–Olkin Lindley 

by Afify et. al. (2020), among others.  

Falgore and Doguwa (2020) proposed the 

Inverse Lomax-G (IL-G) family based on the 

T-X generator by Alzaatreh et. al. (2013) for 

any baseline G distribution with parameter 

vector  . The cumulative density function 

(cdf) and probability density function (pdf) of 

IL-G based on Falgore and Doguwa (2020) are 

given as  
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where = ( , , )T    , ( ; ) = 1 ( ; )G x G x −  

and also   and   are the two additional 

parameters that are added to make the baseline 

distribution much more flexible. Moreover, 

Falgore et. al. (2021) has extended this family 

with Rayleigh distribution. 

In this paper, we propose a new model 

called the Inverse Lomax-Lindley (IL-L) 

distribution. The cdf and pdf of Lindley 

distribution are  
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The objective of this paper is to propose a new 

distribution called the Inverse Lomax-Lindley 

distribution which has the capacity of 

providing a more robust compound probability 

distribution when modeling real-life data set. 

This new distribution adds two additional 

parameters to the baseline (Lindley) 

distribution. 

This article is structured as follows: The 

definition of IL-L was presented in Sec. 2. In 

Sec 3, some of the properties of the IL-L model 

were presented. A Monte Carlo simulation 

study was presented in Sec. 4. A maximum 

likelihood method of estimation of the IL-L 

distribution is presented in Sec. 5. In Sec. 6, the 

application of the Inverse Lomax Lindley (IL-

L) distribution and its competitors are 

discussed. While Sec. 7 concludes the paper. 

2.0 The Inverse Lomax Lindley (IL-L) 

distribution 

By setting the Lindley cdf given in equation 

(3) back in the equation (1), we have the cdf of 

IL-L distribution as  
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and the corresponding pdf, hazard function, 

and survival function given in equations (6), 

(7), and (8) respectively as  
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 where   is a scale,while   and   are shape parameters, respectively. 
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Fig.  1: pdf and hazard Plots of IL-L distribution with various parameter values 

.    
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Fig.  2: cdf and survival functions Plots of IL-L distribution with various parameter values 

2.1 Validity of the cdf and pdf of the IL-L 

distribution 

 The cdf in the equation (5) is valid. 

 

3.0 Properties of IL-L distribution 

   

3.1 Quantile Function 

 Theorem If 0 < <1u  and a random 

variable X follows the ( , , )IL L   − , then 

the quantile function can be given as  
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Let the cdf in the equation (5) be equal to u, (0,1)u . Then,  
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, by rearranging we have  
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 Multiply both sides of the equation (10) by 
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 The Lambert W function implies that if 

=XXe Y   = ( )X W Y  i.e X is the Lambert 

W function of the real argument Y. In the same 

manner, we can say that (1 )x − + +  is the 
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 Since (1 ) > 0x + +  then, the W function 

specified above is the negative branch. 

Therefore, we may write the equation (11) as  
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Table  1: A sample values for the quantile function of IL-L distribution for , ,   and  . 

 

u 0.5,0.5,0.5 0.5,1,2 1,0.5,3 0.5,0.5,2.5 

.1 0.0299 1.6267 0.6359 1.2839 

.2 0.1191 2.3381 0.9072 1.8355 

.3 0.2671 2.9598 1.1554 2.3367 

.4 0.4771 3.5695 1.4085 2.846 

.5 0.7598 4.2095 1.6836 3.3989 

.6 1.1397 4.9217 1.9996 4.0341 

.7 1.6695 5.7691 2.3869 4.8132 

.8 2.4752 6.8806 2.9097 5.8658 

.9 3.9687 8.6535 3.7661 7.5931 

Table 1 provides the various sample quantiles 

for the IL-L distribution at various parameter 

values for four different combinations.  

3.2  Moments 

Suppose a random variable X  follows 

 ( , , )IL L   − , then the ( )th

rr   raw 

moments for the IL-L distribution are 

computed from the following:  
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 after some simplifications and algebra, we 

have  
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Based on the thr  moments given in equation 

(14), some statistical measures can be obtained 

by setting = 1, 2,3, 4r  as presented in Table 

2. The moment generating function (mgf) of 

the IL-L distribution can be presented using 

Taylor’s series expansion as  

 

=0

( ) = .
!

n
'

x r
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t
M t

n

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  (15) 

 

  

Table 2: Moments of IL-L ( , ,   ) distribution 
 

'

r  0.5,0.5,0.5 0.5,1,2 1,0.5,3 

1

'  1.5012 4.7778 1.9961 

2

'  6.2256 31.3333 5.7669 

3

'  41.6637 262 22.1944 

4

'  379.572 2674.667 107.4806 

sd 1.9929 2.9165 1.3351 

cv 1.3275 0.6104 0.6689 

cs 6.6359 1.5632 2.2467 

ck 13.5355 26.1309 17.6834 

 

Table 2 shows the sample moments for the IL-L distribution at different parameter values. The 

standard deviation (sd), coefficient of variation (cv), coefficient of skewness (cs), and coefficient 

of kurtosis (ck) are given by:  

 
2

2= ,'sd  −  
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3.3  Entropy 

Entropy measures the average volume of information received by identifying the effect of a 

random trial. The Rényi entropy for the IL-L distribution is given as  

 , , , 1

( 1)
=

( )
i j k m k m

k m
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 + +

+ + 
 (16) 

3.4  Order Statistics 

The distribution of order statistics for the IL-L distribution is given as  
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4.0 Monte Carlo Simulation Studies 

Monte Carlo simulation is used to check the 

performance of the MLEs of the parameters for 

the IL-L distribution. The results of all 

simulations are obtained from 1000 

replications using R-Project. In each 

replication, a random sample of size n is 

obtained from X follows ( , , )IL L   − . The 

random number generation for the IL-L 

distribution is performed by the inversion 

method using the quantile function defined 

earlier. Three different combinations of true 

parameter values in the first row of Table 3 are 

used for the data generating processes. Table 3 

lists the MSEs with their corresponding biases 

(in parentheses) obtained from five different 

sample sizes. Three cases were considered. 

These are; case1 ( = = = 0.5)   , case2 

( = 0.5, = 1.5, = 0.5)   , and case3 

( = 2.5, = 0.5, = 0.5).    

  

Table 3: Simulation Results for the three cases 
Parameters Case1 Case2 Case3 

n=100 

̂  0.5523 0.5207 2.6413 

̂  0.7286 1.9951 0.6519 

 0.5107 0.5127 0.5139 

ˆ ( )MSE Bias  0.0332 (0.0523) 0.0156 (0.0207) 1.1146 (0.1413) 

ˆ ( )MSE Bias


 0.3999 (0.2286) 2.5601 (0.4951) 0.2919 (0.1519) 
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ˆ ( )MSE Bias


 0.0072 (0.0107) 0.0077 (0.0127) 0.0076 (0.0139) 

n=200 

̂  0.5251 0.5054 2.5173 

̂  0.6092 1.7222 0.5575 

̂  0.5043 0.5058 0.5065 

ˆ ( )MSE Bias  0.0168 (0.0251) 0.0101 (0.0054) 0.6617 (0.0173) 

ˆ ( )MSE Bias


 0.1333 (0.1092) 0.8921 (0.2222) 0.0998 (0.0575) 

ˆ ( )MSE Bias


 0.0034 (0.0043) 0.0037 (0.0058) 0.0038 (0.0065) 

n=500 

̂  0.5114 0.4974 2.4343 

̂  0.5517 1.5689 0.5161 

̂  0.5011 0.5026 0.5031 

ˆ ( )MSE Bias  0.0064 (0.0114) 0.0059(-0.0025) 0.4527(-0.0656) 

ˆ ( )MSE Bias


 0.0609 (0.0517) 0.2769 (0.0689) 0.0569 (0.0161) 

ˆ ( )MSE Bias


 0.0013 (0.0011) 0.0014 (0.0026) 0.0016 (0.0031) 

n=1000 

̂  0.5051 0.4976 2.4061 

̂  0.5244 1.5348 0.498 

̂  0.5007 0.5014 0.5023 

ˆ ( )MSE Bias  0.0036 (0.0051) 0.0036(-0.0023) 0.3786(-0.0938) 

ˆ ( )MSE Bias


 0.0214 (0.0244) 0.1330 (0.0348) 0.0347(-0.0019) 

ˆ ( )MSE Bias


 0.0006 (0.0007) 0.0006 (0.0014) 0.0007 (0.0023) 

 

5.0 Estimation 

Here, the maximum likelihood method for 

estimating the parameters of the IL-L is 

considered. The log-likelihood for the IL-L 

distribution is given as:  
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  (18) 

To get the estimates of the parameters, we 

differentiate the equation (18) partially  

concerning each parameter and equate to zero 

as follows:  
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6.0   Applications 

To investigate the advantage of the proposed 

distribution, we consider two real data sets. The 

first dataset represents uncensored data 

corresponding to remission times (in months) 

of a sample of bladder cancer patients studied 

in Falgore et. al. (2019) and Merovci (2013). 

The second data set is on the failure times of 

aircraft windshields studied Kharazmi et al. 

(2020). The parameter estimates are obtained 

using the maximum likelihood method. Then, 

we present comparison criteria values: Akaike 

Information Criterion (AIC) and Bayesian 

Information Criterion (BIC). The smaller are 

the values of these statistics, the better is the fit  
 

to the data. Table 4 shows that IL-L distribution 

is a good fit and can be the considered best 

model for this data set. The estimates for 

Lindley and Transmuted Lindley distributions 

are as reported in Merovci (2013). . We provide 

more information from a histogram of the data 

given in Figure 3 with fitted lines which are the 

best three models: IL-L, exponential and 

gamma. Table 5 also shows that IL-L 

distribution is a good fit, barely better than the 

Weibull model for this data set. We provide a 

graphic visualization using a histogram of the 

data in Figure 3 with fitted lines based on the 

best three models: IL-L, Weibull, and gamma. 

  

Table 4: The MLEâ€™s, AIC, and BIC of parameters for the first data set 
 

Distribution Estimated parameter -LL AIC BIC 

IL-L 0.07368 0.09458 1.10115 409.447 824.895 833.451 

Trans. Lindley 0.156 0.617 - 415.15 834.31 840.01 

Lindley 0.196 - - 419.52 841.06 843.91 

Weibull 1.04773 9.56 - 414.087 832.174 837.878 

Gamma 1.17253 0.12521 - 413.368 830.736 836.44 

Lognormal 1.75345 1.07308 - 415.094 834.189 839.893 

Exponential 0.10677 - - 414.342 830.684 833.536 
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Table 5: The MLEâ€™s, AIC, and BIC of parameters for the second data set 

 

Distribution Estimated parameter -LL AIC BIC 

IL-L 1.67955 28.0723 0.94983 129.311 264.623 271.95 

Weibull 2.39321 2.86813 - 31.288 266.577 271.462 

Gamma 3.52837 1.37691 - 38.395 280.791 285.676 

Lognormal 0.79269 0.68363 - \55.659 315.318 320.204 

Exponential 0.39023 - - 64.988 331.975 334.418 
 

  

    
Figure 3: Fitted densities of IL-L, Gamma and Exponential distributions by the left based 

on the first data set and with Weibull and Gamma distributions-by the right based on the 

second data. 

 

7.0 Conclusion 

A new extension of Lindley distribution is 

proposed. The flexibility of the proposed 

distribution was demonstrated as follows: by 

varying the shape parameter  , the 

distribution takes many shapes as shown in 

Figures 1 and 2, the estimates of the parameters 

exhibit good properties as shown in the 

simulation table, and finally, the applicability 

of the proposed distribution as shown in the last 

two Tables, has shown the superiority of the IL-

L distribution. However, Figure 3 

demonstrated the fitness of the IL-L 

distribution as it fits the two data sets well.  
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