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Abstract: This study compares the 

performance of various calibration ratio 

estimators in estimating the mean weight of 

newborn babies at the maternity ward of 

Federal Medical Centre (FMC), Umuahia, 

Abia State Nigeria, under stratified random 

sampling. Data were collected on maternal 

age, height, weight, and baby-related variables 

such as weight, gestational age and height. The 

maternal body mass index (BMI) was utilized 

as the stratification variable. The aim is to 

improve the accuracy of estimating mean 

weight of babies by incorporating gestational 

age as an auxiliary variable. An empirical 

study was carried out through population data 

sets obtained as to ascertain the efficiency and 

performance of various calibration ratio 

estimators considered in the study, and the 

results revealed that the estimator of Audu et 

al. (2020) outperformed the other estimators, 

and has proven to be consistent in all cases of 

sample size selection and the tuning parameter.  
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1.0 Introduction 
 

Birth weight is a vital indicator of an infant’s 

chances of survival, healthy growth and 

development. Good maternal health and 

nutrition, among other factors, significantly 

influence birth weight and subsequently impact 

child survival (Fall, 2009). A healthy and well-

nourished mother is essential for a baby’s 

optimal growth and development, whereas 

maternal malnutrition can lead to low birth 

weight and other complications. However, 

precise estimation of mean weight of babies is 

important for healthcare planning, policy-

making and research (Kramer and Kakumar, 

2001). Baby’s birth weight is an essential 

indicator of neonatal health, and its estimation 

aids in revealing high risk groups (Alexander et 

al., 1996). Gestational age is an important 

determinant of birth weight, as premature 

babies tend to weigh less than full-term babies. 

Also, other factors such as maternal body mass 

index (BMI) can influence birth weight 

(Catalano et al., 2007). Body mass index is 

widely used to stratify individuals into weight 

strata or status categories (World Health 

Organization, 2016). Studies have shown that 

maternal body mass index have significant 

effect on birth weight (O’ Tierney-Ginn and 

Loftin, 2017). Women with higher body mass 

index tend to have heavier babies, thereby 

increasing the risk of gestational diabetes, 

hypertension and cesarean delivery (Catalano 

and Shankar, 2012). Stratification is used to 

improve precision in estimation. By stratifying 

the population based on relevant variables, 

such as body mass index, estimators can 

account for differences within strata. 

https://dx.doi.org/10.4314/cps.v12i1.5
mailto:nelson.theophilus@mouau.edu.ng
mailto:ej.ekpenyong@mouau.edu.ng


Communication in Physical Sciences, 2024, 12(1): 038-051 39 
 

 

Calibration estimation, introduced by Deville 

and Särndal (1992) incorporates auxiliary 

information to improve the precision of the 

population estimates. It is a general technique 

of adjusting the original weights with the 

minimization of a given distance function 

based on a set of constraints under auxiliary 

information. Singh et al. (1998), extended the 

higher-level calibration approach in stratified 

random sampling, which is used to obtain 

optimum strata weights for improving the 

precision of the survey estimates of population 

mean. Singh (2003), Tracy et al. (2003), Rao et 

al. (2016), Nidhi et al. (2017), Sisodia et al. 

(2017), Ozgul (2018), Garg and Pachori (2019) 

and Alam et al. (2019) suggested calibration 

estimators for estimating the population mean 

in stratified sampling using different 

calibration constraints based on single 

auxiliary information. Clement (2015, 2017), 

Nidhi et al. (2018), Audu et al. (2020), Khare 

et al. (2022), and Muilli et al. (2022), among 

many others, have applied calibration 

estimation to ratio-type estimators in stratified 

sampling. 

However, this paper seeks to compare the 

efficiency and performance of some calibration 

ratio estimators in estimating the mean weights 

of babies using gestational age as an auxiliary 

variable in stratified random sampling.  
 

2. 0  Sampling procedure, Notations 

and Review of Existing Estimators  
 

Consider the problem of estimating the 

population meanY for a finite population of 

size N. Let a finite population 

( )1 2, ,..., N =   
, consist of N units. Let 

( )1 2, ,..., n =   
 be the set of sampled units 

under simple random sampling without 

replacement (SRSWOR). Let 1,2,...,y N= , be 

the study variable (Baby weight) and let 

1,2,...,x N= , be the auxiliary variable 

(Gestational age) linearly related to y. Let the 

population be divided into   nonoverlapping 

homogeneous strata (stratified based maternal 

body mass index) and dn  be the number of 

units drawn by simple random sampling 

without replacement (SRSWOR) from the 
thd

stratum consisting of dN  units, 

1

d

d

n n


=

=
, 1

d

d

N N


=

=
 give the total sample size and the population size. For the 

thd  strata, let 
1

d dN N −=  be the strata weights. Let the estimation of unknown population mean Y  be of interest 

using the information from an auxiliary variable X and ( ),di diy x
 be the 

thi unit of the study variable 

and auxiliary variable respectively in the 
th  strata, where 1,2,.., di n= and 1,2,..,d =  .

1

1

dn

d d di

i

y n y−

=

= 
, 

1

1

dn

d d di

i

x n x−

=

= 
, 

1

1

dN

d d di

i

Y N Y−

=

= 
, 

1

1

dN

d d di

i

X N X−

=

= 
 are the sample and population 

means for the study variable and the auxiliary variable, respectively. However, it is assumed that 

the population mean 1

d d

d

X X


=

=
 is completely known (Ozgul, 2018). 

The mean weight of babies is given as 

 1

d d

d

Y Y


=

=
       (1)                                                                                                             

By using the gestational age ( X ) as auxiliary variable, which improves the estimate. Let  
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 1

ST

d d

d

t y


=

=
       (2)  

 be the stratified random sampling estimator of the mean weight of babies in (1), according to 

Cochran (1977).  

The estimated variance of the estimator of the mean weight of babies is given by 

 
( ) 2 2

1

ˆ ST

d d yd

d

Var t s 


=

=
       (3) 

The weights d  are modified or adjusted to obtain new calibration weights through minimization 

of the distance measure subject to some calibration constraints to enhance or improve the 

efficiency or precision of the estimator in (2) by applying a calibration approach. 

The following notations and terminologies are defined below. 
1

d d dn N −= : Sampling fraction,  

( ) ( )
212

1

1
dN

yd d di d

i

S N Y Y
−

=

= − −
: Population variance for the

thd stratum of the study variable, 

( ) ( )
212

1

1
dN

xd d di d

i

S N X X
−

=

= − −
:  Population variance for the

thd stratum of the auxiliary variable, 

( ) ( )
1 22

1

1
dn

yd d di d

i

s n y y
−

=

= − −
:  sample variance for the

thd stratum of the study variable, 

( ) ( )
1 22

1

1
dn

xd d di d

i

s n x x
−

=

= − −
:  sample variance for the

thd stratum of the auxiliary variable,  

ydS
: Population standard deviation for the

thd stratum of the of the study variable,  

xdS : Population standard deviation for the
thd stratum of the auxiliary variable,  

yds
: sample standard deviation for the

thd stratum of the of the study variable,  

xds : sample standard deviation for the
thd stratum of the auxiliary variable,  

1

yd yd dC S Y −=
: Population coefficient variation for the

thd  stratum of the study variable, 
1

xd xd dC S X −= : Population coefficient variation for the 
thd  stratum of auxiliary variable,  

1

yd yd dc s y −=
: Sample coefficient variation for the

thd stratum of the study variable, 
1

xd xd dc s x −= :   sample coefficient variation for the 
thd  stratum of auxiliary variable,

( ) ( )( )
1

1

1
dN

xyd d di h di d

i

S N X X Y Y
−

=

= − − −
: Population covariance between auxiliary and study 

variables for the 
thd  stratum,  

( ) ( )( )
1

1

1
dn

xyd d di h di d

i

s n x x y y
−

=

= − − −
:  Sample covariance between auxiliary and study variables 

for the 
thd  stratum,  
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( )
1

xyd xyd xd ydS S S
−

=
: Population correlation coefficient between auxiliary and study variables for 

the 
thd  stratum,  

( )
1

xyd xyd xd ydr s s s
−

=
: Sample correlation coefficient between auxiliary and study variables for the 

thd  stratum,  
1

d d dR Y X −= :  Population ratio of the auxiliary variable to the study variable for the 
thd  stratum, 

1ˆ
d d dR y x −= :  sample ratio of the auxiliary variable to the study variable for the 

thd  stratum and 

( ) 11d d dn  −= −
: Correction factor. 

Under stratified random sampling using a single auxiliary variable, different calibration ratio 

estimators have been proposed. Some of the existing calibration ratio estimators are reviewed 

below. 

Clement (2015) introduced calibration estimation to separate the ratio estimator for the 

population mean of the study variable Y using the auxiliary variable X  in stratified sampling. 

The proposed estimator is defined as 

 1

ˆC C

d d d

d

t R x


=

=
        (4) 

where, 
C

 are the new calibrated weights obtained by minimizing (5) for (6) and  
1

d d dN n −=  

  
( ) ( )

2 11

1

1C

c d d d

d

G  


−−

=

= − 
       (5)                                                                                                                      

1 1

C

d d d d

d d

x X 
 

= =

= 
        (6) 

The calibration weights 
C

d  was obtained as 

 
( )

1

2

1 1

C C

d d d d d d d d d d

d d

X x x x    

−
 

= =

   
= + −     

   
 

                                                (7)                                    

Thus, the proposed calibration approach separate ratio type estimator in stratified sampling is given 

as  

 

1

2 2

1 1 1 1

ˆ ˆC

d d d d d d d d d d d d

d d d

t R x x R X x x


   

−
   

= = = =

   
= +  −    

   
   

   (8)                                

Clement (2017) introduced a new improved separate ratio estimator for population mean in 

stratified random sampling using a calibration estimation approach. The proposed estimator is 

defined as 

1

CP CP

d d

d

t y


=

= 
              (9) 

where
( )1 11d d d d d dX x x X − −  = + −   and 

CP

d  are the new calibrated weights obtained by 

minimizing (10) for equation 11, . 

( ) ( )
2 1

1

CP

cp d d d d

d

G   


−

=

= − 
                                                                              (10)                                       
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( )2

1

CP

d xd st

d

s V x


=

=
          (11) 

The calibration weights 
CP

d  was obtained as 

( ) ( ) ( )
1

2
2 2 2

1 1

CP

d d st d xd d d xd d d xd

d d

V x s s s    

−
 

= =

   
= + −     

   
 

                            (12)                               

Thus, the proposed calibration estimator by Clement (2017) is given as 

( ) ( ) ( )
1

2
2 2 2

1 1 1

CP

d st d xd d d xd d d xd d

d d d

t V x s s s y   

−
  

= = =

    
= + −       

     
  

                 (13) 

where 
( ) 2 2

1

st d d xd

d

V x S 


=

=
  and 

( ) 2

1

ˆ
st d xd

d

V x S


=

=
 

Nidhi et al. (2018) proposed a calibration-based ratio-type estimation of the mean in stratified 

sampling. The proposed estimator is given as 

 1

ND ND

d ds

d

t y


=

=
                                                                                                (14)   

where

d xd
ds d

d xd

X C
y y

x c

 +
=  

+   and 
ND

d  are the new calibrated weights obtained by minimizing (15) 

concerning (16)  

( ) ( )
2 1

1

ND

nd d d d d

d

G   


−

=

= − 
                                                                           (15)                                                                                                                     

            
( ) ( )

1 1

ND

d d xd d d xd

d d

x c X C 
 

= =

+ = + 
,  1

1ND

d

d




=

=
                                                            (16)                              

The new calibration weights 
ND

d  was obtained as 

     

( ) ( ) ( )

( ) ( )

( ) ( )1 1

2
1 12

1 1 1

d d d xd d d d d d d d xd

d dND

d d d d xd d d xd

d d

d d d xd d d d d d xd

d d d

x c x c

X c x c

x c x c

   

   

  

 

 
= =

  
= =

= = =

    
  +  −   +              = + + − +                 +  −  +    
      

 
 

  
      (17)                                    

Hence, the proposed calibrated estimator is given as 

            
( ) ( )

1 1 1

ˆND

d ds nd d d xd d d xd

d d d

t y X C x c   
  

= = =

 
= + + − + 

 
  

                                           (18)                             

where, 

( ) ( )

( ) ( )

1 1 1 1

2

2

1 1 1

ˆ
d d d d ds d xd d d ds d d d xd

d h d d

nd

d d d xd d d d d d xd

d d d

y x c y x c

x c x c

   



  

   

= = = =

  

= = =

     
  + −   +     

     =
    

 +  −  +    
    

   

  
 

Audu et al. (2020) developed a calibration ratio estimator expressed in (19) using the calibration 

constraints in (20)  

 1

AU AU

d d

d

t y


=

=
                                                                                            (19)                                 

              1 1

AU

d d d d

d d

x X 
 



= =

= 
,      1 1

AU

d d

d d

 
 



= =

= 
                                                       (20)                            
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where, 
1

d d d dX x  −=  and 
AU

d are the new weights obtained by minimizing (21) with respect to 

(20). 

              
( ) ( )

2 1

1

AU

auG    


  


−
 

=

= − 
                                                                       (21)      

The new calibration weights 
AU

d  was obtained as 

              

( ) ( )
( )

2

1 1

2
12 2

1 1 1

d d d d d d d d d d

d dOA

d d d d d

d

d d d d d d d d

d d d

x x

X x

x x

   

  

  

 
   


= = 

  
=  

= = =

   
  −     

    = + − 
     

  −     
    

 


  
               (22)                                                                                                                                                                                        

Thus, the proposed calibration estimator by Audu et al. (2020) is given as 

            
( )1

1

ˆAU

d d d d au d d

d

t X x y X x 


−

=

 = + − 
                                                       (23)                                                                                             

 where, 

1 1

1 1 1 1

2

1

1 1 1

ˆ
d d d d d d d d d d d d d d d d

d d d d

au

d d d d d d d d

d d

X x X y X X x y

X x X x X x   


   



  

   
− −

= = = =

  
−

= = =

     
  −       

     =
    

  −     
    

   

  
 

Khare et al. (2022) proposed a separate ratio estimator using a calibration approach for the 

population mean using stratified random sampling which is given by 

            

1

1

KH KH

d d d d

d

t X x y


−

=

=
                                                                                (24)                     

where 
KH

d  are the new calibrated weights obtained by minimizing (25) concerning (26)  

           
( ) ( )

2 1

1

KH

kh d d d d

d

G   


−

=

= − 
                                                                          (25)                                                                                                                                            

           1 1

KH

d d d d

d d

x X 
 

= =

= 
,  1

1KH

d

d




=

=
                                                                   (26)                                                                                                                                                             

The new calibration weights 
KH

d  was obtained as 

          

( ) ( )
1 1

2
12

1 1 1

d d d d d d d d d d

d dKH

d d d d

d

d d d d d d d d

d d d

x x

X x

x x

   

  

  

 


= =

  
=

= = =

   
  −     

    = + − 
     

  −     
    

 


  
            (27)                                                                                                                                                                                                                                    

Thus, the proposed calibration estimator is given as 

          

1

1 1

ˆKH

d d d d kh d d

d d

t X x y X x  
 

−

= =

 
= + − 

 
 

                                                    (28)    where                                                                                 

1

1 1 1 1

2

2

1 1 1

ˆ
kh

y X X x y x

x x

             
   

       
  

   



  

   
−

= = = =

  

= = =

     
  −       

     =
    

  −     
    

   

  
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3. 0 Results and Discussion 

3.1 Empirical Study 
 

To compare the performance and efficiency of 

the calibration ratio estimators, real data on 

weights (kilogram), heights (metre) and ages 

(year or week) of mothers and babies from the 

maternity ward of Federal Medical Centre 

(FMC), Umuahia consisting of (N=430) 

individuals from February 2019 to August 

2024 are considered. This dataset is further 

divided into four (4) categories (Strata) using 

the World Health Organization standard on 

body mass index (BMI) classification. The 

BIM of the mothers were used to stratify the 

data into underweight (BMI<18.5), normal 

(BMI=18.5-24.9), overweight (BMI=25-29.9) 

and Obese (BMI 30). Thus, the stratum sizes 

for these 4 strata are  1 19N =  , 2 314N = , 

3 87N =  and 4 10N = . In this study, the weight 

of babies is considered as a variable of interest 

(Y) utilizing gestational age as the auxiliary 

variable(X), having correlation ( xy
) 0.5121 

between them. The true mean weight of babies 

is 3.093488Y = . Further, samples of sizes n = 

100 and 200 units are selected 50,000 times by 

simple random sampling without replacement 

(SRSWOR) from each stratum respectively 

using proportional allocation, that is, 
1

d d dn nN N n−= = , 1,..., 4d =
 (30)                                                       

With known stratum means dX , the value of 

Y (assuming unknown) has been calculated 

using, a simple stratified estimator defined in 

Equation (2) and calibrated ratio estimators of 

Clement (2015), Clement (2017), Nidhi et al. 

(2018), Audu et al. (2020) and Khare et al. 

(2022) defined in Equations (8), (13), (18), (23) 

and (28) respectively.  Thus, the performance 

of the estimators has been assessed using mean 

square error (MSE) defined in Equations (31) 

and (32) and percent relative efficiency (PRE) 

defined in  Equation (33). An estimator 

with the least MSE and highest PRE is judged 

to have higher efficiency over other estimators. 

( ) ( )
250000

1

1
ˆ ˆ

50000
j j

j

MSE Y 
=

= −
                                                                   (31)                                                                                                                                                        

( ) ( )
50000

2

1

1

50000

ST ST

j

j

MSE t t Y
=

= −
                                                                (32) 

( )
( )
( )

ˆ 100
ˆ

ST

j

j

MSE t
PRE

MSE



= 

                                                                         (33) 

where 
ˆ , , , ,ST C CP ND AU KH

j t t t t t and t =
are the estimators of Sample mean, Clement (2015), 

Clement (2017), Nidhi et al. (2018), Audu et al. (2020) and Khare et al. (2022) defined in 

Equations (7), (12), (17), (22) and (27) respectively. 
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The description of the population datasets is displayed on the various graphs below. 

Fig. 1: Scatterplot for the entire population 

 
Fig. 2: Scatterplot showing the population by BMI category 

 
Fig. 3: Bar plot showing the population distribution 
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Fig. 4: Baby’s weight population size in each BMI category 

 
Fig. 5: Gestational age population size in each BMI category 

 
Fig. 6: 3D scatterplot showing weight of babies, gestational age and age of mothers 
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The original and calibrated weights of the estimators are presented in Table 1  below. 

 

Table 1: Adjusted and original (actual) calibrated weights of the calibrated ratio estimators 

with different d
 

 

1d =  
S/N 

d  
C

d  
CP

d  
ND

d  
AU

d  
KH

d  
1. 0.0442  0.1787  0.0385 0.1047     0.0398 0.0394  

2. 0.7302 0.2633 0.2950 0.8928 0.7150 0.7178 

3. 0.2023 0.3983 0.0759 0.2481 0.2240 0.2227 

4. 0.0233 0.1575 0.0216 0.0620 0.0205 0.0202 

Sum 1.0000 0.9978 0.4310 1.3076 0.9993 1.0000 
1

dd x
 =

 
1. 0.0442  0.2548   0.0387  0.0442  0.0399 0.1983 

2. 0.7302 0.2307 0.2983 0.7302 0.7146 3.3420 

3. 0.2023 0.2333 0.0726 0.2023 0.2242 0.9501 

4. 0.0233 0.2682 0.0217 0.0233 0.0206 0.1039 

Sum 1.0000 0.9871 0.4314 1.0000 0.9993 4.5943 

 

 

The true mean weight of babies is 3.093488Y = . Thus, the estimates of the mean weight of babies 

are presented in the table below. 
 

Table 2: Estimates of the mean weight of babies 

 

 n=100  n=200  

 Estimates  Estimates  

Estimators 1d =  
1

dd x
 =

 
1d =  

1

dd x
 =

 

Sample mean 
STt   3.134940 3.134940 3.107407 3.107407 

Clement (2015) 
Ct  3.166629 3.193889 3.103378 3.102655 

Clement (2017) 
CPt  1.360358 1.361930 1.494110 1.494530 

Nidhi et al. (2018) 
NDt  4.120742 3.134940 3.440735 3.107407 

Audu et al. (2020)
AUt  3.128341 3.128368 3.093877 3.093963 

Khare et al. (2022)
KHt  3.130485 14.39853 3.099879 289.3698 

 

The calculated mean square errors (MSEs) and percent relative efficiencies (PREs) of the various 

estimators are presented in the Table 3 below.  
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Table 3: MSE and PRE  of calibration ratio estimators with different sample sizes 

 

 

3.2 Discussion of Results 
 

Fig. 1 shows the relationship between the 

weight of babies and the gestational age of the 

entire population. The points indicate 

individual data points.  Fig. 2 shows the 

relationship between the weight of babies and 

gestational age by body mass index categories. 

Fig. 3 compares the weight of babies across 

different gestational ages of the entire 

population. Higher bars indicate a higher 

baby’s weight. The chart helps to identify 

gestational age associated with higher or lower 

birth weights. Figs. 4 and 5 compare the weight 

of babies and gestational age across different 

categories respectively. Fig. 6 shows 

relationships between weight of babies, 

gestational age and age of mothers. 

Table 1 presents the original weights and 

calibrated weights of the existing estimators 

considered with different d . The results 

revealed that some calibrated weights did not 

satisfy the desired adjustments to approximate 

the original weights. The average sum of 

adjusted calibrated weights of  Clement (2017) 

for both values of d
, Nidhi et al. (2018) for 

1d = and Khare et al. (2022) for 
1

dd x
 =

 did 

not approximate to the average sum of the 

actual calibrated weights. Thus, this could be 

the reason for the estimators’ poor performance 

in terms of efficiency and inconsistency. 

However, calibrated weights of the Clement 

(2015) and Audu et al. (2020) estimators have 

satisfied the condition of adjusting for the 

actual or original weights. 

Table 2 shows the mean weight of babies 

estimates of various estimators. The results 

revealed that the estimator of Clement (2017), 
CPt  underestimated the mean weight of babies, 

Nidhi et al. (2018), 
NDt  estimator also 

n=100 

Estimators  1d =  
1

dd x
 =

 
 

 MSE PRE MSE PRE 

Sample mean 
STt   0.0017182 100.00000 0.0017182 100.00000 

Clement (2015) 
Ct  0.0053495 32.119660 0.0100803 17.045640 

Clement (2017) 
CPt  3.0037410 0.0572040 2.9982930 0.0573080 

Nidhi et al. (2018) 
NDt  1.0552510 0.1628280 0.0017182 100.00080 

Audu et al. (2020)
AUt  0.0012147 141.45390 0.0012166 141.23290 

Khare et al. (2022)
KHt  0.0013688 125.53260 127.80390 0.0013440 

n=200 

Sample mean 
STt   0.0001937 100.00000 0.0001937 100.00000 

Clement (2015) 
Ct  0.0000978 198.08890 0.0000840 230.54550 

Clement (2017) 
CPt  2.5580110 0.0075730 2.5566670 0.0075770 

Nidhi et al. (2018) 
NDt  0.1205805 0.1606570 0.0001937 100.00010 

Audu et al. (2020)
AUt  0.0000002 128405.30 0.0000002 86144.800 

Khare et al. (2022)
KHt  0.0000408 474.29800 81954.140 0.0000002 



Communication in Physical Sciences, 2024, 12(1): 038-051 49 
 

 

underestimated the mean weight of babies at 

1d =
 and Khare et al. (2022), 

KHt  

overestimated the mean weight of babies at 
1

dd x
 =

. The stratified sample mean,  

(
STt ) and Clement (2015), 

Ct  estimators 

estimated the mean weight of babies very close 

the true mean value, though the estimator of  

Audu et al. (2020), 
AUt  gave the results that are 

much closer to the actual mean weight of 

babies.   

Table 3 shows the mean squared errors (MSEs) 

and percent relative efficiencies (PREs) of the 

various calibration ratio estimators considered 

in this work. The results revealed that Audu et 

al. (2020), 
AUt   estimator have lesser MSEs 

and higher PREs than the stratified sample 

mean, 
STt , Clement (2015), 

Ct ,   

Clement(2017), 
CPt , Nidhi et al. (2018), 

NDt , 

and Khare et al. (2022), 
KHt  estimators for all 

cases of d  and sample sizes. However, from 

the results discussed, it can be deduced that 

Audu et al. (2020), 
AUt  estimator has 

demonstrated consistency in all the tuning 

parameter ( d ) values and in all sample sizes. 

The estimator  
AUt has the least MSE and the 

highest PRE for all values of the tuning 

parameter, indicating its highest performance 

in terms of efficiency.                              

 

4. Conclusion and Recommendation 

In the present study, we have compared the 

performance of various calibration ratio 

estimators. An empirical study has been carried 

out through population data sets obtained as to 

ascertain the efficiency and performance of 

various calibration ratio estimators considered 

in the study, and the results reveals that Audu 

et al. (2020), (
AUt )has the least MSE and the 

highest PRE for all values of the tuning 

parameter and sample sizes, indicating its 

highest performance in terms of efficiency and 

has proven to be consistent as the sample size 

increases. However, the findings offer valuable 

insights on the practical suitability of these 

estimators for accurately estimating the mean 

weight of babies. Thus, it is recommended that 
AUt an estimator should be adopted by 

healthcare practitioners for the baby’s mean 

weight estimation. 
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