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Abstract: Investigation of suitable corrosion 
inhibitor for API 5L X 52 carbon steel in 0.5 M 
HCl, is of significant industrial importance 
because of the role of the metal in several 
sectors. Tartaric acid was tested as a corrosion 
inhibitor for the metals using weight loss, 
potentiodynaic polarization and 
electrochemical impedance methods. The 
tested compound displayed maximum 
inhibition efficiency of 85%, which showed a 
strong dependency on concentration, 
temperature and time. Spontaneous and 
exothermic physical adsorption of the inhibitor 
on the metal surface was ascertained as the 
mechanism of inhibition. Isotherms established 
by the Langmuir and Freundlich assumptions 
fitted the adsorption process Information from 
computational chemistry calculations 
indicated significant roles of the frontier 
molecular orbitals towards the inhibition of the 
metal corrosion. Also, the sites for 
electrophilic, nucleophilic and radical attacks 
were observed to be within the carboxyl 
functional groups.  
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1.0 Introduction 
Despite several published and unpublished 
researches on measures towards the control of 
corrosion, the corrosion industry is still 
experiencing some setbacks especially in the 
development of eco-friendly and efficient 
corrosion inhibitors (Awe et al., 2019; 
Odoemelam et al., 2019; Anand and Chitira, 
2020). However, a consensus on the best option 
has ended on the utilization of green corrosion 
inhibitors, most of which are the product of 
plant and animal (Rosaline et al., 2011; Zeferani 
et al., 2013). . The search for green corrosion 
inhibitors has provoked several materials of 
plants and animal origin to be tested for their 
effectiveness as corrosion inhibitors (El-
Haddad et al.,m 2019). Some of the tested 
materials include plant extracts, extracts of 
plant wastes, plant exudates, etc. (Ameh and 
Eddy, 2014; Ukpe et al., 2014; Ukpe, 2019ab). 
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Advance investigations have also been 
extended to some organic acids such as amino 
acids and their derivatives (Awe and Eddy, 
2012; Eddy, 2010, 2011; Ekwumemgbo et al., 
2013). However, much more interesting is the 
employment of fruits acids as corrosion 
inhibitors because of their nontoxicity, eco-
friendliness, accessibility and unique corrosion 
inhibition properties. Therefore, the present 
study is aimed at utilizing tartaric acid as a 
corrosion inhibitor for API5L X  52 carbon 
steel in a solution of HCl.  
 

2.0 Materials and Methods 
 

Analar grades chemicals and reagents were 
purchased from Finlab stores in Abuja, Nigeria. 
This included tartaric acid, HCl, distilled water, 
zinc dust and acetone.  
2.1 Experimental 
2.1.1 Gravimetric experiment 
Gravimetric experiments were carried out as 
reported elsewhere (Wan et al., 2021; Zhu et 
al., 2022). Based on the values of the estimated 
weight loss of the metal in the blank solution (1 
M HCl) and in the presence of different 
concentrations of the tartaric acid (0.5, 1, 2, 3 
and 4 M) in the acid solution respectively, the 
corrosion rate (CR) and the inhibition 
efficiency (%IE) of the tartaric acid for the 
meatal were evaluated using equations 1 and 2 
respectively (Khattabi et al., 2014; Nwosu and 
Amusat, 2021) 
𝐶𝑅 (𝑚𝑔. 𝑐𝑚ଶ) =  

ି

௧
   (1) 

%𝐼𝐸 =  
ோ್ି ோ

ோ್
 ×

ଵ

ଵ
   (2) 

where mi and mf are the masses of the metal 
before and after immersion in the test solution, 
CRb and CRinh are the corrosion rates of the 
metal in the test solution without and in the 
presence of the tartaric acid (TRA) 
2.1.2 Electrochemical impedance spectroscopy 
(EIS) 
EIS test was performed using a Gamry EIS 300 

potentiostat as shown in appendix 5 at 303 K in the 
three-electrode cell system with the frequency 
range of (10000Hz – 0.05Hz), with a signal 
amplitude of 10 mV rms, DC voltage of 0.05 v, area 
of 1cm^² and estimated z ( ohms) of 100. A 

platinum electrode was used as a counter electrode 
and a saturated calomel electrode (SCE) was used 
as the reference electrode. The working electrode 
used in this study was prepared from cylindrical  
API 5L X -52 pipeline carbon steel with 1cm²  of 
the area exposed to the test solution. Measurements 
were performed in aerated solutions after 30 
minutes of immersion in the test solution.  
All potentials were reported vs. SCE. The charge 
transfer resistance values were obtained from the 
diameter of the semi-circles of the Nyquist plots. 
The inhibition efficiency of the inhibitor and the 
surface coverage were calculated from the charge 
transfer resistance values using equations 3  and 4 
(Berisha et al., 2021), 
%𝐼𝐸 =  

ோ()ିோ(್ೌೖ)

ோ()
×

ଵ

ଵ
   (3) 

𝜃 =   
ோ()ିோ(್ೌೖ)

ோ()
    (4) 

where Rct-inh is the charge transfer resistance of 
the inhibited solution and Rct-blank is the charge 
transfer resistance of the uninhibited solution.  
 

2.1.3 Potentiodynamic polarization 
 

Potentiodynamic polarization studies were carried 
out at a potential range of 0.25 – 0.6 mV for API 5L 
X -52 steel at open current potential with a scan rate 
of 0.5m V/s at 303 K.The sample period of 1 (s), 
sample area of 1 cm^², the density of 7.87 (g/cm^³) 
and an equivalent weight of 27.92 gms were also 
employed. The linear Tafel segments of the 
cathodic and anodic curves were extrapolated to 
obtain the corrosion current densities (Icorr). The 
inhibition efficiency was evaluated by using (Icorr) 
values as given in equation 5 below (Verma et al., 
2021), 

%𝐼𝐸 =  
ೝ(್ೌೖ)ି ೝ()

ೝ(್ೌೖ)
×

ଵ

ଵ
  (5) 

where 𝑖() is the corrosion current without 
and I𝑖() is the corrosion current with inhibitor.  
 

3.0 Results and Discussion 
3.1 Inhibition efficiency 
 

Fig. 1 shows plots, indicating the variation of 
weight loss with time for the corrosion of   API 
5L X 52 carbon steel in 0.5 M HCl. The plot 
reveals a linear pattern for the increase of 
weight loss (of the metal in 0.5 M HCl) with 
time. However, the addition of various 
concentrations of tartaric acid led to an 
observable decrease in weight loss with time, 
which translated to a decrease in the corrosion 
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rate of the metal with the concentration of the 
tartaric acid and with time. Such a trend gives 
evidence of the inhibition capacity of the 
tartaric acid for the corrosion of API 5L X 52 
carbon steel in 0.5 M HCl. In Table 1 average 
corrosion rate of the metal and evaluated 
inhibition efficiencies in the presence of 
various concentrations of the tartaric acid are 
presented. The tartaric acid (TRA) acid is 
evidently behaving as an adsorption inhibitor  

because its inhibition efficiency for the metal 
increases with concentration, even as the 
corrosion rate decreases with an increase in the 
concentration of the TRA  (Eddy et al., 2008, 
2009, 2010a, 2011, 2012). The data in Table 1 
also reveal that the acid forms a protective 
coverage on the surface of the metal through 
adsorption, which also increased with 
increasing TRA concentration. (Haldhar et al., 
2021; Mohd et al., 2021). 

 

Table 1: The corrosion rate, surface coverage and inhibition efficiency of tartaric acid for 
the corrosion of  API 5L X 52 carbon steel in 0.5 M HCl at 303 and 333 K.  
 

C (M) CR Mg/cm2 θ %IE 
 303 K 333 K 303 K 333 K 303 K 333 K 
0.5 M HCl 3.114 20.873 = -   

1 0.976 17.338 0.6866 0.2173 68.66 21.73 
2 0.826 15.955 0.7347 0.2356 73.47 23.56 
3 0.720 13.965 0.7688 0.3310 76.88 33.10 
4 0.628 12.896 0.7983 0.3822 79.83 38.22 
5 0.512 12.029 0.8356 0.4237 83.56 42.37 

 
The characteristics of APl 5L X-52 carbon steel 
corrosion in 2 M HCl solution in the presence of the 
studied inhibitors were also studied by 
electrochemical impedance spectroscopy (EIS) at 
303 K. The Nyquist plots of API 5L X-52 carbon 
steel in 2 M HCl in the 2 M acid concentration and 
in the presence of different concentrations of the 
inhibitor at 303 K is shown in Fig. 2 while 
information evaluated from the plots are in Table 2.  
The Nyquist plots display a depressed semicircle in 
a high frequency region with centre under the real 
axis. The size of the semicircle increases with an 
increase in the concentration of the TRA, indicating 
that the corrosion of API 5L X – 52 carbon steel is 
controlled by a charge transfer process, (Momoh-
Yahaya et al., 2012). The   Nyquist plots were 
appropriately analyzed by fitting the data into the 
electrical equivalent circuit model. The model 
considered the solution resistance (Rs), charge 
transfer resistance of the interfacial corrosion (Rct) 
and constant phase element representing the 
double-layer capacitance (Cdl) (equation 6). 
(Beniken et al., 2018). 

𝐶ௗ =  (𝑄 ×  𝑅௧
ଵିఈ)

భ

ഀ    (6) 
where Q defines a proportionality factor,  𝛼 is a 
phase shift factor that varies between -1 and  +1 and 

is also an index for defining heterogeneity and 
roughness of the surface. The results indicated 
(Table 2) reveal that the solution resistance 
increases with an increase in the concentration of 
the inhibitor which indicates that the tendency 
towards corrosion was retarded by the TRA 
inhibitor. However, the charge transfer resistance 
and the fmax (fmax is the frequency at which the 
imaginary component of the impedance (Zmax) is 
maximum.) decreased with a decrease in the 
concentration of the inhibitor. Based on equation 4, 
an increase in the double layer capacitance should 
correspond to a decrease in charge transfer 
resistance and hence an increase in inhibition 
efficiency as shown in Table 2. Evaluated values of 
the inhibition efficiency of TRA also increased with 
an increase in the TRA concentration and ranged 
from 50.70 to 63.10 % and is in excellent agreement 
with results gotten for the weight loss experiment 
(R2 = 0.9163).  
Experimental information obtained from 
potentiodynamic polarization study is presented in 
Fig. 3 and Table 3. The plots (Fig. 3) reveal shifts 
in the position of the anodic and cathodic arms as 
the concentration of TRA increases which can be 
remarked as equivalent to a reduction in the 
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potential current as the concentration of TRA 
increases. The observed decrease in corrosion 
current manifested in a corresponding increase in 
the inhibition efficiency of TRA as shown in Table 
3. 
The presented inhibition efficiency, which ranged 
(from 46 to 81%), also shows an increase in the 
inhibition efficiency with concentration (as shown 
in Table 3) and correlated excellently with 
gravimetric data (R2 = 0.9859).  The shifts in the 
corrosion potential between that of the blank and 
the inhibited systems ranged from 3.2 to 9.2 mV for 

the various concentrations of the tested inhibitor. 
Since these values are significantly less than 82 
mV, therefore, the mechanism of adsorption of 
TRA on the surface of the metal is physisorption 
(Ikpi and Abeng, 2020). Also, the shift in the anodic 
lobe is more prominent than that of the cathode, 
which suggests that TRA is acting as an anodic 
inhibitor and operates by suppressing the oxidation 
reaction that releases electrons for the facilitation of 
corrosion through an increase in current (Ikpi et al., 
2012; Ikpi and Abeng, 2018) 
 

 
FIG. 29: Impedance spectra of the corrosion of API 5LX-52 carbon steel in 2 M HCl   solution in the 
absence and presence of tartaric at 303 
 

Table 2: Electrochemical and kinetic parameters from EIS technique for the corrosion of API 5L X 
- 52 carbon steel in 2 M HCl for different concentrations of TRA at 303 K 
 
  C (g/L) 𝑹𝒔(𝛀) 𝑹𝒄𝒕(𝛀) 𝒇𝒎𝒂𝒙  Cdl θ IE (%) 

Tartaric 
Acid 

Blank 5.38E-01 64.55 1.56E+01 1.58E+03     

0.5 7.61E-01 130.9 3.16E+02 6.50E+04 0.507 50.70 

1 8.30E-01 144.9 9.93E+00 2.26E+03 0.555 55.50 

2 9.36E-01 159.4 6.32E+00 1.58E+03 0.595 59.50 

3 7.99E-01 166.7 6.32E+00 1.66E+03 0.613 61.30 

5 1.01E+00 175 5.01E+00 1.38E+03 0.631 63.10 

 
3.2 Activation energy and heat of adsorption  
The activation energy for the adsorption of the TRA 
inhibitor on the metal surface was evaluated 

through the application of the Arrhenius equation 
(equation 5)(Essien and Ogoko, 2019) 
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The corrosion rates for the blank (𝐶𝑅()) and 
for the inhibited (𝐶𝑅()) systems at 303 (T1) and 

333 K (T2) were evaluated and the results obtained 
were presented in Table 1. The activation energies 
based on equation 5 are presented in Table 4.  

 
Fig. 3: Potentiodynamic polarization plot for corrosion of API-5L-X-52 Carbon steel inhabited by 
TRA 
 

Table 3:Tafel Polarization Parameters for API-5L-X-52 Carbon in the absence and presence of 
different concentrations of inhibitors at 303K 
 
C (M) βa(V/dec) βc (V/dec) Ecorr (Mv) Icorr (µA) CR (mpy) Rp(Ω/cm²) IE% 
Blank 7.00E-02 1.30E-01 -493.2 97.76 44.67 7.73E-02  

0.1 7.32E-02 1.06E-01 -485 52.8 33.27 3.20E-02 46.00 
0.5 7.84E-02 1.06E-01 -499 46.2 30.25 3.07E-02 52.70 
1.0 7.43E-02 1.16E-01 -490 34.6 24.95 2.46E-02 64.60 
2.0 6.41E-02 9.79E-02 -490 29 22.4 1.28E-02 70.30 
3.0 6.46E-02 9.98E-02 -490 24.3 20.23 1.12E-02 75.10 
5.0 6.43E-02 1.02E-01 -490 19.1 19.67 8.99E-03 81.00 

Table 4: Activation energy and thermodynamic 
parameters for the inhibition of the corrosion of 
API-5L-X-52 Carbon steel by different 
concentrations of TRA 
 

C (g/L) 𝑬𝒂 (𝑱/𝒎𝒐𝒍) 𝑸𝒂(𝑱/𝒎𝒐𝒍) 
0.5 M 
HCl 

53.27 -6.43 

0.1 80.56 -8.28 
0.2 82.90 -9.52 
0.3 83.02 -11.23 
0.4 84.61 -14.62 
0.5 88.38 -6.43 

 

The results for the activation energy (Table 4) 
indicated the lowest Ea value for the blank (0.5 M 
HCl) solution and a progressive increase in the 
activation energy with the increasing concentration 
of the TRA inhibitor. Therefore, the ease of 
corrosion decreases with an increase in TRA 
concentration, hence there is a gradual increase in 
the resistance toward corrosion as TRA 
concentration increases.  
The heat of adsorption of TRA on the metal surface 
can be evaluated from the degree of surface () and 
temperature (T) data using equation 8 (Ikpi et al., 
2012) 

𝑄ௗ௦ = 2.30𝑅 ቀ
ఏమ

ଵି ఏమ
− 

ఏభ

ଵିఏభ
ቁ ×  ቀ భ் మ்

మ்ି భ்
ቁ  (8) 
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Estimated values of Qads are also presented in 
Table 4. Since the Qads values are negative, the 
adsorption of TRA on the metal surface is 
exothermic. (Eddy et al., 2010b) 
 3.3 Application of adsorption isotherms    
The adsorption of TRA inhibitor fitted some 
adsorption isotherms (after some tests of 
fitness) including the Langmuir (equation 9) 
and the Temkin (equation 8) adsorption models 
(Akinbulumo wt al., 2020; Ogunleye  et al., 
2020; Sanaei et al., 2019; Stango and  
Vijayalakshmi, 2018) 
𝑪

𝜽
=   

ଵ

ೌೞ
+ 𝐶     (9) 

𝜃 =  
ି

ଶ
−

ି

ଶ
    (10) 

𝑘ௗ௦ in equation 9 is the Langmuir adsorption-
desorption constant, while ‘a’ and 𝑘் in 
equation 8 are the interaction parameter and the 
Temkin adsorption constant respectively. The 
standard free energy of adsorption (∆𝐺ௗ௦

 ) can 

be evaluated from these constants using the 
following equations ((Eddy, 2010; Eddy and 
Odoemelam, 2008; Odoemelam et al., 2009; 
Ouknin et al., 2020) 
∆𝐺ௗ௦

 =  −𝑅𝑇𝑙𝑛𝑘ௗ௦     (11) 
Figs. 4 and 5 show the adsorption isotherm for 
TRA inhibitor according to  Langmuir and 
Temkin models. The linearity of the plots was 
established by the high values of R2 recorded in 
the chat. The slopes evaluated from the plots 
were significantly less than the unity value 
expected for an ideal Langmuir isotherm, 
which predicts monolayer adsorption with no 
interaction between the adsorbed species. 
Consequently, interaction parameters were 
deduced from the Temkin isotherms (Fig. 5) 
and the values were positive (0.24 and 0.15) at 
both temperatures and signify the attractive 
behaviour of the adsorbed species 

 
Fig. 4: Langmuir isotherm for the adsorption of TRA on the surface of API-5L-X-52 carbon 
steel  
 
The estimated values of the free energy change, 
estimated from the Langmuir parameter at 303 
and 333 K were -12.35 and -13.57 kJ/mol. 
Those evaluated from the Temkin constant 
were -12.17 and -12.87 kJ/mol respectively.  
These values are in agreement with each other 

and generally align with the fact that the 
adsorption of TRA is through the mechanism 
of physical adsorption since the ∆𝐺ௗ௦


 are 

below -20 kJ/mol (Akinbulumo et al., 2020; 
Fouda et al., 2021; Prabhu et al., 2021; Wang 
et al., 2019).  
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Fig. 5: Temkin isotherm for the adsorption of TRA on the surface of API-5L-X-52 carbon 
steel  
 

3.4 Computational chemistry study 
The optimized structure of tartaric acid is 
shown below. The compound contains  
S four carboxylic oxygen atoms and two 
alcohol oxygen atoms. It has two double bonds, 
hence it has some properties that are typical for 
most organic corrosion inhibitors (Ikpi et al., 
2017). The frontier molecular orbital energies 
have widely been used as reactivity indices 
because the energy of the highest occupied 
molecular orbital (EHOM) is an index for the 
donation of the electron, even as that of the 
lowest molecular orbital (ELUMO) signifies the 
tendency towards acceptance of electron and 

the difference (between the later and the 
former),  signifies the tendency towards 
softness or hardness and thus electronic 
transition (Eddy, 2020; Eddy and Awe, 2018).  
The calculated values of the  EHOMO and ELUMO 
for the TRA are -7.06 and -0.590 eV 
respectively. These values are not out of the 
range of values reported for some effective 
corrosion inhibitors (Eddyand Ameh, 2021). 
The dipole moment and the total molecular 
energy were 5.47 Debye and -607.53 a.u 
respectively.  The HOMO,  LUMO and 
electrostatic  molecular surfaces for the TRA 
molecular are also shown in Fig. 6 

 
Fig. 6: Molecular surfaces for TRA inhibitor 

The HOMO and the LUMO orbitals of TRA 
seem to exchange themselves between the two 

carboxylic groups in the molecules while the 
electrostatic potential map reveals that the 
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molecule has different zones of charge 
distribution that may affect the adsorption of 
the inhibitor unto the metal surface.  
The sites for electrophilic, nucleophilic and 
radical attacks in TRA molecule were 
identified using the condensed Fukui functions 
which are represented by equations 12 to 14 

respectively (Ameh and Eddy, 2018a-b, Eddy 
and Ameh, 2011; Eddy et al., 2018) 
,𝑓௫

ି =  𝑞ே − 𝑞ேିଵ   (12) 
𝑓௫

ା =  𝑞ேାଵ − 𝑞ே   (13) 
𝑓௫

 =  
ಿశభି ಿషభ

ଶ
   (14) 

where q is the Hirsfeld or Mullike charge.  
 

 

Table 4: Fukui Indices of TRA for electrophilic, nucleophilic and radical attacks 
 

Atom 
label 

Mulliken Hirshfeld Mulliken Hirshfeld Mulliken Hirshfeld 

 C(1) 0.083 0.076 0.027 0.022 0.055 0.049 
 O(2) 0.031 0.044 0.031 0.039 0.031 0.041 
 O(3) 0.022 0.026 0.033 0.067 0.028 0.046 
 C(4) -0.016 0.022 -0.017 0.009 -0.016 0.016 
 C(5) -0.015 0.015 -0.011 0.041 -0.013 0.028 
 C(6) 0.023 0.028 0.187 0.188 0.105 0.108 
 O(7) 0.281 0.277 0.083 0.074 0.182 0.176 
 O(8) 0.096 0.120 -0.019 0.013 0.039 0.067 
 O(9) 0.130 0.121 0.205 0.198 0.168 0.159 

 O(10) 0.023 0.051 0.100 0.110 0.062 0.081 
 
Based on the Mulliken and Hirsfeld  Fukui 
functions, the possible sites for electrophilic attacks 
is the one with the highest positive value of the 
electrophilic Fukui function, which is the 
carboxyl oxygen atom, O(7),. This site is also 
the preferred site for the radical attack and the  
HOMO centre. On the other hand, the site for 
the nucleophilic attack is also the carboxyl 
carbon that forms a mirror image with the one 
for the electrophilic attack, i.e O(9). Also, this 
site is the centre for the concentration of the 
LUMO.  
4.0 Conclusion 
TRA is an efficient corrosion inhibitor for API-
5L-X-52 carbon steel and tends to inhibit better 
with an increment in concentration but its 
efficiency tends to be reduced as the 
temperature and period of contact increase. The 
mechanism of adsorption of the inhibitor is 
physical adsorption. The adsorption obeys the 
Langmuir and Temkin isotherms and was 
spontaneous and stabilized by the release of 
energy. Computational chemistry calculations 
provided information on the preference of the 

two carboxylic ends to serve as the centres for 
electrophilic and nucleophilic attacks.  
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