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Abstract: Sickle Cell Disease (SCD) is a 
disorder of red blood cells (RBC). The 
number of SCD patients is rising daily. The 
lifespan of people is reduced by this deadly 
disease. Statistics show that over twenty five 
percent of people living in the Central and 
West Africa region are suffering from this 
malady. Many of the nations in this part of 
the world are deficient in the essential means 
of detecting and treating several illnesses of 
which SCD is one of them. Infant mortality 
rates are considerably greater in these 
countries. The conventional techniques for 
SCD diagnosis are expensive, error-prone, 
time consuming, and require the services of 
medical experts. As a result, there is a 
pressing need to develop cost-effective and 
controllable approaches for the early 
detection and diagnosis of SCD. This paper 
presents novel techniques that use Plain 
Convolution Neural Networks (PCNN) with 
15 layers and 48 layers, data augmentation 
of Plain Convolution Network with 48 layers 
(DAPN-48), Very Deep Convolutional 
Networks for Large Scale Image Recognition 
with 19 layers (VGG19), and Residual 
Networks with 50 layers (RESNET-50) for 
detecting SCD from peripheral blood image 
samples. Results obtained from our 
experiments indicated that PCNN-15 and 
DAPN-48 outperform PCNN-48 with 
sensitivity and balanced Accuracy between 
99-100%. A  comparison was made between 
the performance of PCNN-15, PCNN-48, 
DAPN-48, VGG19 and RESNET-50. The 
results attained by the proposed approaches 
demonstrated that our techniques are 
appropriate for the diagnosis of SCD, and 
thereby recommended for application to 
sickle cell image detection. 
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1.0  Introduction 
Sickle cell disease (SCD) is a blood disorder 
that runs in families. Defective hemoglobin, 
an oxygen-carrying pigment and the most 
abundant protein in the body red blood cells 
(RBC) provide proof of it. Sickle cell illness 
reduces the amount of oxygen delivered to 
the body tissues (Sahu et al., 2015). The most 
common form of SCD is sickle cell anemia 
(SCA). This illness can be caused by a lack 
of hemoglobin in the RBCs. RBCs are made 
in the body's soft marrow, which is found in 
the larger bones. The RBCs that have perfect 
hemoglobin are usually uniform, cylindrical, 
and elastic, similar to doughnuts that are not 
perforated. They can comfortably navigate 
the arteries and veins (Stuart and Nagel, 
2004). Cells that have been infected with 
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sickle cell hemoglobin are usually rigid and 
gummy. When the oxygen in them is 
exhausted, they take the shape of a sickle or 
hemispherical, similar to alphabet C (Sickle 
Cell Disease, 2020). These hematopoietic 
cells stay close to one other and therefore find 
it very difficult to travel through the network 
of arteries, arterioles, capillaries, venules, 
and veins. The resultant effect of this is the 
obstruction of tiny blood vessels and the 
mobility of disease-free, sane oxygen-
carrying blood. The impediment of these 
blood vessels can trigger discomfort, organ 
failure occurring in main organs nourished by 
the circulatory system, incidents of 
neurophysiological maladies, and eventual 
death of the victim. Overtiredness, abnormal 
heartbeat, difficulty in breathing are all 
symptoms of SCA. People suffering from 
sickle cell anemic usually have hands and 
foot diseases, trouble inhaling or exhaling 
enough oxygen, persistent pain, and visual 
impairment. It also can increase the danger of 
the victim being attacked by aspergillosis or 
pathogenic agent from internal or external 
sources (Chy and  Rahaman, 2019). 
According to the World Health Organization 
(WHO), around 5% of the world population 
has genes linked to hemoglobin disorders, the 
most common of which are sickle cell disease 
and Mediterranean anemia. In certain 
geographical areas of the world, as high as 
25% of the populace are carriers of these 
genes. People having sickle cell disease are 
greater in number in the continent of Africa. 
Children born with acute hemoglobin 
syndromes every year are above 300,000 
(WHO, 2005). The SCD is a very important 
public health interest. An average of 75,000 
cases of admission to hospital for treatment 
owing to SCD happened in the US between 
1989 and 1993. This attracted an economic 
cost of around 475 million dollars. In 2005, 
medical expenditures for children with sickle 
cell disease cost the public health insurance 
program for low-income families or 
individuals an average of 11,702 dollars. 
Also, 14,772 US dollars was spent for 
children that are subscribed under group 

health insurance. Nearly 40% of these two 
categories had spent a minimum of one night 
in the hospital (SCD, 2020). 
It is highly necessary to keep an eye on sickle 
cell patients. This entails the examination of 
peripheral blood smear using an optical 
microscope which is a timewasting method. 
Moreover, it is a necessity that this process is 
carried out by an expert due to the 
personalised characteristic of the 
examination. The setback of this approach is 
its astronomical percentage of error. These 
predicaments become worsened when there 
is a huge number of patients. An approach to 
assess the direct observation and treatment of 
patients is to itemize the different kinds of 
RBCs using their structure. These cells can 
be classified as normal (discocyte), neonate 
or abnormal elongated (sickle cells). It can 
also have some other kinds of defects. There 
are many disadvantages associated with these 
evaluation measures. It varies from 
specialists’ divergences of view which 
resulted in the problem of the inability to 
form a benchmark evaluation. 
There are many approaches for identifying, 
structuring and investigating digital image 
frameworks for successive use in suitable 
classification algorithms. The procedure for 
removing the important attributes from the 
explored edge is very vital. To investigate the 
flaws that the erythrocytes contained in a 
sample of blood viewed under a microscope 
have, a variety of approaches have been 
developed.  
The existing techniques used for detecting 
SCA are characterised by several drawbacks. 
It is very difficult to get the accurate 
classification of SCA in erythrocytes for 
reasons which include imbrication cells, 
unavailability of training data, blending of 
light and dark areas between cells and 
backdrop. Other reasons are the 
inhomogeneous and multifaceted structures 
and dimensions of cells (Alzubaidi et al., 
2020). Every one of them has its attributes, 
strengths and weaknesses.  
The following are the key contributions of 
this work: 
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i. A concise explanation of the state-of-
the-art approaches for detecting and 
diagnosing SCA was done 

ii. Deep convolutional neural network 
models for the classification of 
erythrocytes into three groups: 
discocyte (normal), elongated (sickle 
cells) and neonate (Oval) was 
developed. 

iii. Experimental analysis on the 
erythrocytesIDB dataset shows that 
the proposed models had an average 
accuracy of 89.33-99.92%. 

Several techniques for detecting SCA in red 
blood smears have been proposed in the 
literature. Barpanda (2013) proposed novel 
image processing methods that can 
automatically detect sickle cells anemia that 
exists in RBCs samples. The image dataset 
used was obtained from camera attached 
microscope. The erythrocytes and sickle cells 
in the microscopic smear are detected using 
image segmentation and clustering. Many of 
the state-of-the-art performance measures 
were not employed, therefore the 
effectiveness of the suggested approach was 
not assessed. The k-means and fuzzy c-means 
clustering methods were also not compared 
to high-performance clustering algorithms. 
Ademola et al. (2018) created an ensemble 
machine learning (ML) model for assessing 
the severity of sickle cell disease among 
children with SCA. The ensemble model was 
built using Nave Bayes, Decision trees, and 
Support Vector Machines (SVM). The 
suggested ensemble approach performance is 
relatively low, according to simulation 
findings. As a result, there is a pressing need 
to design more effective and high-performing 
methods. For the categorization of RBCs in 
sickle cell disease patients, Xu et al. (2017) 
developed deep convolutional neural 
networks. The paper presented a faster 
technique that permits a larger number of 
samples to be processed in the same, or less, 
time compared to other existing methods. 
Experiments were carried out by applying 
CNN on 7000 single RBC of sickle cell 
patients' images using 5 fold cross-validation. 
Simulation results demonstrated that the 

model has high performance in predicting 
eight types of sickle cell disease. There is 
however need to improve on the 
classification accuracy of the method. 
Idowu et al.(2015) applied a fuzzy logic-
based predictive model to detect and 
determine the probability that a patient has 
been infected with SCA. The degree of fetus 
hemoglobin, the amount of anemia, and the 
patient's genotype are the three input factors 
utilized in the prediction. Their technique's 
effectiveness was not assessed. Chy and 
Rahaman (2019) conducted a comparison 
study utilizing pictures of blood samples 
taken from patients to identify SCA using 
different machine learning (ML) models. To 
filter out the noise and convert a gray image 
to a high-quality image format, pre-
processing activities were performed. To 
categorize the image into normal and sickle 
cells, three machine learning models were 
utilized. The performance of the ML models 
understudy is very low. It, therefore, means 
that develop more high performing models. 
For the categorization of RBCs into sickle 
cells and normal blood cells, Uike and Thorat 
(2020) examined several automated image 
processing and multiclass classifier methods. 
The authors opined that the approaches 
reviewed have demonstrated good results 
concerning accuracy, sensitivity and 
execution time. It is however observed that 
there is still room for progressing on the 
effectiveness and classification accuracy of 
abnormal blood cells in a diverse group by 
classifier having more than one class. They 
encouraged the development of high 
performance image processing algorithms 
with enhanced execution speed and 
classification accuracy. 
An image processing approach for automated 
detection of SCA was presented by Chy and 
Rahaman (2019). Experiments were 
performed on RBCs of images of blood. This 
is followed by the conversion of grayscale 
image to high quality image to enhance it. 
The median filter is applied to remove noise 
from the image. The RBCs are segmented 
using the threshold segmentation technique 
and image processing operations performed 
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on the image. The necessary features are 
extracted, and SVM is used for image 
classification. Statistical findings showed 
that the performance of the technique is 
satisfactory but needs to be improved upon. 
Moreover, only 80 images were used for the 
experiment. This is too small to authenticate 
the effectiveness of the technique. Also, the 
authors did not compare the performance of 
their system with other high performing ML 
algorithms. 
Sharma, Rathore and Vyas (2016) applied the 
k-nearest neighbour algorithm to classify 
blood smear microscopic images into sickle 
cells, dacryocyte and ovalocytes.  The image 
was segmented after several preparation 
procedures such as noise reduction using a 
median filter. Though the suggested approach 
performed admirably on the images, its 
usefulness remains in question because just 
100 images were utilized for both training 
and testing. Also, the performance of their 
technique in terms of classification accuracy 
and sensitivity is very low. Khizra (2018) 
applied natural language processing and ML 
to investigate clinical notes in SCD patients. 
The authors in their work concentrated on 
information about the patient, pain, pain 
sentiment and scores of the pain using the 
sickle cell disease data. To extract key 
characteristics from the dataset, six machine 
learning methods were utilized. The 
performance of their system is good as it 
provides an approach to gain insight into the 
suffering of sickle cell patients. However, 
there is a need for further improvement.  
Moreover, Elsalamony (2015) proposed a 
novel algorithm for detecting SCA. The 
proposed system can identify and compute 
the number of deformed RBCs in a blood 
smeared image, irrespective of whether the 
cells are obscure or overlapped. The images 
were trained and tested using artificial neural 
networks (ANN) and decision tree 
algorithms. Experimental results showed that 
the proposed method performed 
satisfactorily, though there is still room for 
improvement. However, the number of 
images used for the experiment is small and 
it will be difficult to ascertain that the 

proposed method will perform effectively 
with a large dataset. From the literature that 
has been reviewed, it is evident that much 
research has been conducted in the field of 
sickle anemia detection using different 
approaches. However, each work has its own 
set of restrictions. These flaws prompted the 
creation of this deep convolutional deep 
learning model for SCA detection in this 
work. The system has the ability to overcome 
the problems that exist in current systems. 
 
 
 

2.0 Materials and Methods 
 

The dataset utilized in this study is described 
in detail in this section. The training and 
testing techniques for the model were also 
discussed. This part also included a flowchart 
illustrating our innovative method. There was 
a discussion about the parameter settings and 
the values utilized in our tests. Figure 1 
depicts the suggested process for this 
approach. 
2.1 Dataset 
The erythrocytesIDB dataset was used for all 
the experiments conducted for this work.  
Blood samples with RBC pictures were 
obtained from individuals with SCD at the 
General Hospital in Santiago de Cuba 
(Erythrocytesidb, 2020). There are 196 
images with 626 images of different cells 
categorised as circular (202), elongated 
(211), or other deformation (213). Each cell 
is 80 × 80 pixels in size. The doctor standards 
were utilized as a specialist approach for 
validating the findings produced by the 
algorithms used to classify the cells 
contained in the RBC images. The samples of 
individual cells in the dataset are shown in 
Fig. 1. 
 

3.0  Proposed Method 
 

Convolutional neural networks are bio-
inspired networks that can categorize images 
and detect objects in computers. Every layer 
in a convolutional network is a three-
dimensional grid with height, breadth, and 
depth. The term "depth" refers to the number 
of channels in each layer in the input image, 
such as primary color channels like blue, 
green, and red, or the number of hidden layers 
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in feature maps. The network operates 
similarly to a feed forward neural network, 
with the exception that the convolutional 

layers are spatially organized (Krizhevsky et 
al., 2017). Presented in Fig. 2 is the flowchart 
of the PCNN and DAPN. 

 
Fig. 1: Images of healthy and Unhealthy erythrocytesIDB I 

  

 
 
Fig. 2: Flowchart of the proposed PCNN, DAPN, VGG19, and RESNET-50 Sickle Cell 
Anemia   classification  
 

Depicted in Fig. 3 is the proposed techniques 
for image classification of SCA. 
Convolution, pooling, and rectified linear 
units are the three types of layers most 
commonly seen in convolutional neural 

networks. Filters or kernels are three-
dimensional structural components that 
organize the parameters. Normally, the filters 
are square.  
 

 
(A) Plain Convolution Neural Networks with 15 layers (PCNN-15) 

The filter's usual application dimensions are 
much smaller than the filters themselves. The 

objective, methodology, and model 
architecture were all taken into account when 
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creating the model utilized in this study. In 
this study, we considered three different 
models for categorizing SCA. The models are 
Plain Convolution Neural Networks (PCNN-
15),  

Plain Convolution Neural Networks (PCNN-
48) and data augmentation of Plain 
Convolution Network (DAPN-48). 
 

 

 
 
(B) Plain Convolution Neural Networks with 48 layers (PCNN-48) 
 
3.1 Plain convolution neural networks 
(PCNN-15) 
 

Normal, neonatal, and sickle cell anemia are 
the three types of sickle cell images utilized 
in this research. The image input layer, three 
convolution layers, three batch normalization 
layers, three rectified linear units (ReLU), 
two max-pooling layers, one fully connected 
layer, one softmax layer, and one 
classification layer are all included in Plain 
Convolution Neural Networks with 15 layers 
(PCNN-15). All of the layers of Plain 

Convolutional Neural Networks (PCNN-15) 
are linked sequentially (Yao, Xu and Zhao, 
2020). In this study, the image input size was 
30 heights, 30 weights, and 3 channels. Filter 
size, number of filters, and padding are all 
varied in the three convolutional layers 
utilized. The three convolutional layers use a 
3 by 3 filter size with filter numbers ranging 
from 15 to 30. The spatial output size is the 
same as the input size with a padding of 1. 
Batch normalization layers equalize 
activation and gradients propagating 
throughout the network, allowing for 
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network training optimization (Zhang et al., 
2018). On the other hand, ReLU layers 
increase network training and minimize 
network sensitivity. The size of max  pooling 
layer utilized in research is 1 this enables us 
to down-sampling the operation (Zhang and  
Wallace, 2015).  
Down-examining permits the quantity of 
estimation required per layer to be increased 
without expanding the number of filters. The 
convolutional layer and batch normalization 
layers are trailed by completely associated, 
softmax and classification layers (Chang et 
al., 2020). As the name infers, a completely 

associated layer fuses every one of the past 
layers and recognizes the bigger patterns. The 
completely linked layer is five which 
corresponds to the five classes. The softmax 
activation function normalizes the fully 
connected layer performance while the 
classification layer is utilized to assigns the 
input to a class that is unique to each of these 
classes based on the probabilities provided by 
the softmax activation function (Kanai et al., 
2018). Presented in table 1 is the parameter 
settings for PCNN-15 used in our 
experiment: 
 

 
 

(C) Data Augmentation of Plain Convolution Networks with 48 layers (DAPN-48) 
Fig. 3: Proposed Techniques for Image Classification of SCA 
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3.2 Plain convolution neural networks 
(PCNN-48) 
 

In the classification of sickle cell images 
which are normal, neonate and sickle cell  
anemia. The image input layer, eleven 
convolution layers, eleven batch 
normalization layers, eleven rectified linear 
units (ReLU), eleven max pooling levels, one 
fully connected layer, one softmax layer, and 
one classification layer are all included in this 
research as PCNN-48. In Plain Convolutional 
Neural Networks (PCNN-48) every one of 
the layers is linked consecutively. In this 
study, image input sizes of 30 heights, 30 
weights, and 3 channels were employed. The 
three convolutional layers utilized comprises 
of the various filter size, several filters and 
padding. The three convolutional layer uses 
the filter size of 3 by 3 while the filter 
numbers increment from 15 to 30. Padding of 
one guarantees that the spatial yield size 
matches the input size. Batch normalization 
layers normalize the activation and gradients 
propagating across the network, allowing 
network training to be optimized (Ioffe and 
Szegedy, 2015). ReLU layers then again 
further develop network training and 
decrease network affectability. The size of 
max pooling layer used in research is one, 
this empowers us to down-sample the activity 
(Saeedan et al., 2018). The parameter settings 
and values for PCNN-48 used in our 
experiments are depicted in Table 2.  

 

Table 1: PCNN-15 parameter setting 

Parameter Value 
Layers 15 
Image Input Layer 1 
Convolution Layer 3 
Batch Normalization 
Layer  

3 

ReLU Layer 3 
Max Pooling Layer 2 
Fully connected layer 1 
Soft max layer 1 
Classification layer 1 

 

(a)  Translation 
Shifting images to the left, right, and down 
may be useful to prevent positional bias in the 

images. It is translated between 3 pixels and 
-3 pixels in the original image. Each 
augmented image is chosen at random from a 
uniform distribution throughout the range, 
translated by a pixel distance. 

 

Table 2: PCNN-48 parameter setting 
 

Parameter Value 
Layers 48 
Image Input Layer 1 
Convolution Layer 11 
Batch Normalization 
Layer  

11 

ReLU Layer 11 
Max Pooling Layer 11 
Fully connected layer 1 
 Softmax layer 1 
Classification layer 1 

(b) Reflection 
As a logical scalar, random reflection in the 
left-right direction is defined. Each Sickle 
cell image has a 50% chance of being 
reflected horizontally. The parameter settings 
and values for the DAPN-48 utilized in this 
experiment are shown in Table 3. 
 

Table 3: DAPN-48 parameter setting 
 

Parameter Value 
Layers 48 
Image Input Layer 1 
Convolution Layer 11 
Batch Normalization 
Layer  

11 

ReLU Layer 11 
Max Pooling Layer 11 
Fully connected layer 11 
Softmax layer 1 
Classification layer 1 

 

3.4  Very Deep convolutional networks 
for large scale image recognition (VGG19) 
 

VGG19 is a 19-layer variant of the VGGNet 
network (16 convolution layers, 3 fully 
connected layers, 5 MaxPool layers and 1 
Softmax layer). In both variants, VGGNet 
contains two completely connected layers 
with 4096 channels each, followed by 
another fully connected layer with 1000 
channels to predict 1000 labels. In the final 
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fully linked layer, the Softmax layer is 
utilized for categorizing. The parameter 
settings and values for VGG19 utilized in this 
experiment are shown in Table 4. 
 

Table 4: VGG19 parameter setting 
 

Parameter Value 
Layers 47 
Image Input Layer 1 
Convolution Layer 16 
Batch Normalization 
Layer  

0 

Dropout Layer 2 
ReLU Layer 18 
Max Pooling Layer 5 
Fully connected layer 3 
Softmax layer 1 
Classification layer 1 

 
3.5 Residual networks (RESNET-50) 
ResNet-50 is a deep convolutional neural 
network with 50 layers. The network can 
categorize images into over 1000 distinct 
item types. As a result, the network has 
learned a wide range of rich feature 
representations for a wide range of image. 
The network can handle images up to 224 × 
224 pixels in size. Table 5 shows the 
parameter settings and values for our 
experiment. 

 

Table 5: RESNET-50 parameter setting 
 

Parameter Value 
Layers 50 
Image Input Layer 1 
Convolution Layer 46 
Batch Normalization 
Layer  

0 

ReLU Layer 0 
Max Pooling Layer 0 
Fully connected layer 1 
Softmax layer 1 
Classification layer 1 

 

4.0 Results and Discussion 
 

In this paper, we compared Plain 
Convolution Neural Network with 15 layers 
(PCNN-15), Plain Convolution Neural 
Network with 48 layers (PCNN-48) and Data 

Augmentation of PCNN-48 (DAPN-48). The 
overall performance of PCNN-15, PCNN-48, 
DAPN-48, and VGG19 and RESNET-50 
classification model was evaluated using 
eight different assessment measures: Mean 
Absolute Error (MAE), Root Mean Square 
Error (RMSE), Mean Absolute Scaled Error 
(MASE), Specificity, Sensitivity and 
Balanced Accuracy.  
The comparison of sensitivity, specificity, 
and balancing accuracy is shown in Table 4. 
According to Table 4, PCNN-15 produced 
the greatest results when classifying RBC 
images as normal, neonatal, or sickle cell 
anemia. PCNN-15 has a sensitivity and 
balanced accuracy of 99-100 percent. This 
demonstrates that the use of 15 layers on 
PCNN-15 has a significant influence on 
getting improved results. 
Table 5 shows the performance metrics of 
PCNN-48 model. PCNN-48 failed to classify 
RBC images as shown in the performance 
metrics such as sensitivity and balanced 
accuracy. This shows that increasing the 
number of layers of PCNN from 15 to 48 
layers does have any positive influence on the 
classification accuracy of SCA images. In 
Table 6, DAPN-48 performed better than 
PCNN-48. This demonstrates that the 
combination of PCNN-48 and data 
augmentation has the potential to increase 
SCA image classification efficiency. The 
performance evaluation categorization of the 
VGG19 model is shown in table 7. VGG19 
has a sensitivity and balanced accuracy range 
of 95-100 percent. This demonstrates that 
VGG19 is a promising Deep Learning 
method for sickle cell image classification. 
The results of the experiment with RESNET-
50 are shown in table 9. VGG19 has a 
sensitivity and balanced accuracy range of 
97-100 percent. This indicates that the 
performance of RESNET-50 is superior to 
that of VGG19. Table 9 depicts the 
performance metrics for each criterion 
utilized in this paper. As shown in Table 9, 
PCNN-15 and DAPN-48 have the lowest 
error when compared to the other model. An 
analysis of the results of the PCNN-15 and 
DAPN-48 model's performance, as shown in 
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tables 4 and 6, revealed that the generated 
models properly classified SCA images in 
99.92 percent of actual cases, with a 
misclassification rate of 0.8 percent of actual 
cases. On the dataset employed, the findings 
of PCNN-15 and DAPN-48 models showed 
that an average of 99.92 percent of the model 
predictions were correct. The findings of the 

suggested models also show that for the 
classification of SCA blood images, PCNN-
15 and DAPN-48 displayed the highest 
proficiency in properly identifying SCA 
images. They also have the lowest ability to 
misclassify the SCA blood images. PCNN-15 
and DAPN-48 also have average specificity 
of 99.83%. 

 

Table 4: Metrics Evaluation of PCNN-15 
 

Algorithms Sensitivity (%) Specificity (%) Balanced Accuracy 
(%) 

Normal 100 99.67 100 
Neonate 100 100 99.83 
Sickle cell 100 99.83 99.92 

 
 

Table 5: Performance Evaluation Classification of PCNN-48 
 

Algorithms Sensitivity (%) Specificity (%) Balanced Accuracy 
(%) 

Normal 100 57.33 100 
Neonate 100 100 78.67 
Sickle cell 100 78.67 89.33 

The proposed models correctly classified 
SCA images on average of 89.3 percent, with 
an incorrect classification rate of 11.7 
percent, based on the performance of the 
PCNN-48 model presented in table 5. The 

results of the PCNN-48 model on the dataset 
used in the experiment showed that the model 
correctly predicted 89.3 percent. The PCNN-
48 model had the worst results of all the 
models described in this paper. 

 

Table 6: Performance Evaluation Classification of DAPN-48 
 

Algorithms Sensitivity (%) Specificity (%) Balanced Accuracy 
(%) 

Normal 100 99.67 100 
Neonate 100 100 99.83 
Sickle cell 100 99.83 99.92 

 

Table 7: Performance Evaluation Classification of VGG19 
 

Algorithms Sensitivity (%) Specificity (%) Balanced Accuracy 
(%) 

Normal 100 96.78 100 
Neonate 100 100 98.67 
Sickle cell 100 95.67 99.33 

 

In terms of the performance of the VGG19 
model, as shown in Table 7, the models 
properly classified SCA images in an average 
of 97.48 percent of actual cases, with a 

classification error rate of 2.52 percent of 
actual cases. The VGG19 model results 
revealed that an average of 97.48 percent of 
the model's predictions were correct. The 
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average specificity of VGG19 is 97.48 
percent. 
 

Table 8: Performance Evaluation Classification of RESNET-50 
 

Algorithms Sensitivity (%) Specificity (%) Balanced Accuracy 
(%) 

Normal 100 98.97 100 
Neonate 100 100 97.83 
Sickle cell 100 97.93 98.92 

In terms of the RESNET-50 model 
performance, as shown in table 8, the models 
properly classified SCA images in an average 
of 98.99 percent of actual cases, with a 
classification error rate of 2.52 percent of 
actual cases. The VGG19 model results 

revealed that an average of 97.48 percent of 
the model predictions were correct. The 
average specificity of VGG19 is 97.48 
percent. 
 

Table 9: Comparative Analysis of PCNN-15, PCNN-48, DAPN-48, VGG19 and RESNET-
50 
Algorithms MAE RMSE MASE 
PCNN-15 0.0011111 0.0333333 0.124444 
PCNN-48 0.1422222 0.3771236 15.92889 
DAPN-48 0.0011111 0.0333333 0.124444 
VGG19 0.0332123 0.2323451 4.459873 
RESNET-50 0.0321111 0.2222121 4.232134 

 
Figure 4  shows the bar charts for the results 
generated from PCNN-15, PCNN-48, DAPN-

48, VGG19 and RESNET-50 models  

 
 

 
Fig. 4: Result of erythrocytes IDB dataset classification 

 
Table 10 show evidence of  the performance 
of our proposed models to that of other high-
performing algorithms. The algorithms 

utilized by the authors in Chy and Rahaman 
(2019), such as k Nearest Neighbour (kNN), 
Support Vector Machine (SVM), and 
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Extreme Learning Machine (ELM), were 
compared to our proposed models. The 
performance of the approach utilized in Chy 
& Rahaman (2018) was also compared to that 
of our models. The comparisons reveal that 
our suggested models outperform the prior 
models utilized in the literature for SCA 
detection. 
 

Table 10: Performance Comparison of 
Proposed Model with other Techniques 
Algorithms Accuracy 

(%) 
Sensitivity 
(%) 

Specificity 
(%) 

kNN (Chy & Rahaman, 2019) 73.33 75.00 66.67 
SVM (Chy & Rahaman, 2019) 83.33 83.33 83.33 
ELM (Chy & Rahaman, 2019) 87.73 87.50 83.33 
Image Processing [13] 95.00 96.55 92.35 
PCNN-15 99.83 99.92 100 
PCNN-48 78.67 89.33 100 
DAPN-48 99.83 99.92 100 
VGG19 97.48 97.52 100 
RESNET-50 98.83 98.92 100 

 

4.0  Conclusions 
This paper presents Plain Convolution Neural 
Network (PCNN) and Data Augmentation 
Convolution Network (DAPN) techniques 
for classifying RBC in outlying blood 
samples as normal, neonate, and sickle cells. 
The fusion of data augmentation and CNN 
has the advantage of enhancing the detection 
and classification accuracy of SCA images. 
The results of our experiments showed that 
data augmentation of convolutional neural 
networks and plain convolution neural 
networks with 15 layers perform well than 
plain convolution neural networks with 48 
layers. It was found that the integration of 
CNN with other methods had the advantage 
of high classification accuracy. Findings 
show that deep learning methods with less 
expertise and resources in SCA diagnosis can 
produce faster and more efficient results. In 
the future, we intend to engage in 
interdisciplinary academic research that will 
combine medical professionals’ knowledge 
and experience with other deep learning-
based systems that are yet to be exploited but 
have the potential to increase the 
effectiveness of SCA diagnosis. 
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