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Abstract: This study investigates the behavior 

of singularities in a finite isotropic wedge 

subjected to antiplane deformation, focusing 

on how varying angles influence the strength of 

these singularities. Employing the finite Mellin 

transform technique, we derive solutions to the 

boundary value problems associated with the 

wedge configuration. The analysis reveals that 

as the angle α\alphaα approaches critical 

values of 
2𝜋

3
,

3𝜋

4
 𝑎𝑛𝑑 𝜋. the strength of the 

singularity exhibits significant variations, 

specifically decreasing to ¾, 2/3 and ½, 

respectively. These findings underscore the 

critical relationship between the geometric 

configuration of the wedge and the resultant 

stress distribution around singularities. 

Furthermore, the implications of this research 

extend to practical engineering applications, 

highlighting the importance of understanding 

singularities in the design and analysis of 

structures under similar deformation 

conditions. Recommendations for further 

research include exploring additional 

geometric configurations, conducting 

experimental validations, and implementing 

numerical simulations to enhance the 

understanding of singular behavior in isotropic 

materials. This work contributes to the existing 

literature on boundary value problems and 

provides valuable insights for both theoretical 

and applied mechanics. 
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1.0 Introduction 

The finite Mellin transform is used to analyze 

the stress distribution throughout a finite 

isotropic wedge with radius a and wedge angle 

α\alphaα, defined within the region described 

in cylindrical coordinates. (𝑟, 𝜃, 𝑧)where−∞ <
𝑧 < ∞ , −𝛼 ≤ 𝜃 ≤ 𝛼  𝑎𝑛𝑑 0 ≤ 𝑟 ≤ 𝑎 .The 

wedge is subjected to an anti-plane 

deformation condition by adjusting the radial 

boundaries.   𝜃 = ±𝛼 , 0 ≤ 𝑟 ≤ 𝑎 The wedge is 

subjected to an anti-plane deformation 

condition by setting the radial boundaries to be 

stress-free and specifying displacement 

constraints. 𝑊(𝑎, 𝜃) = 𝛾 , 0 ≤ 𝜃 ≤ 𝛼 , Let 
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α\alphaα denote the angle on the upper part of 

the circular arc. 𝑊(𝑟, 𝜃) is the only non-

vanishing component of the displacement, 

which is directed in the z-direction. The lower 

part of the circular arc, for which −𝛼 ≤ 𝜃 ≤ 0 

is also stress-free. 

Shahani(2005), Lin & Ma (2004), Shahani & 

Ghadiri (2009), Kargarnovin et al. (1997), and 

Chen et al. (2009) have examined problems 

involving isotropic finite wedges subjected to 

non-zero antiplane shear loads in the radial 

direction. The conditions applied to the entire 

circular arc of the wedges were either fixed or 

traction-free Tranter(1948) used Mellin 

transform in finding the stress distribution in an 

infinite wedge.. Adimoha et al. (2024) 

analyzed the displacements in a finite isotropic 

wedge under antiplane shear deformation. In 

this study, we aim to understand the impact of 

this loading mode on the fracture response of a 

finite wedge, specifically in relation to the 

angles at which the stresses become 

unbounded, the strength of geometric 

singularity, and the mode III crack tip stress 

intensity factor. 

2.0 Basic Equations and Problem 

Solution 
 

For this type of deformation, the shear stresses 

along the zzz-direction are the only remaining 

non-zero components in the constitutive 

equations, which can be expressed as follows: 

𝜎𝑟𝑧(𝑟, 𝜃) = 𝜇
𝜕𝑊(𝑟,𝜃)

𝜕𝑟
   (1) 

𝜎𝜃𝑧(𝑟, 𝜃) =
𝜇

𝑟

𝜕𝑊(𝑟,𝜃)

𝜕𝜃
   (2) 

where μ is the material shear modulus. In the 

absence of body forces, the equilibrium 

equation in terms of displacement leads to the 

Laplace equation, given by: 

(
𝜕2

𝜕𝑟2 +
1

𝑟

𝜕

𝜕𝑟
+

1

𝑟2

𝜕2

𝜕𝜃2) 𝑊(𝑟, 𝜃) = 0  , 0 ≤ 𝑟 ≤

𝑎 , −𝛼 ≤ 𝜃 ≤ 𝛼   (3) 

 

 

The boundary conditions are as follows: 

𝜎𝜃𝑧(𝑟, 𝛼) = 0,     0 ≤ 𝑟 ≤ 𝑎  (4) 

𝜎𝜃𝑧(𝑟. −𝛼) = 0,    0 ≤ 𝑟 ≤ 𝑎  (5) 

𝜎𝑟𝑧(𝑎, 𝜃) = 0,   − 𝛼 ≤ 𝜃 < 0 (6) 

𝑊(𝑎, 𝜃) = 𝛾,    0 < 𝜃 < 𝛼  (7) 

The continuity conditions are as follows: 

𝑊(𝑟, 0+) = 𝑊(𝑟, 0− ),    0 ≤ 𝑟 ≤ 𝑎 (8) 
 

𝜎𝜃𝑧(𝑟, 0+) = 𝜎𝜃𝑧(𝑟, 0−)     , 0 ≤ 𝑟 ≤ 𝑎(9) 

The solution of (3) can be obtained using the 

finite Mellin transform. The finite Mellin 

transform of the first kind is defined by: 

𝑊̅(1)(𝑠, 𝜃) = ∫ (
𝑎2𝑠

𝑟𝑠+1 − 𝑟𝑠−1)
𝑎

0
𝑊(𝑟, 𝜃)𝑑𝑟     (10) 

The finite Mellin transform of the second kind is defined by: 

𝑊̅(2)(𝑠, 𝜃) = ∫ (
𝑎2𝑠

𝑟𝑠+1 + 𝑟𝑠−1) 𝑊(𝑟, 𝜃)
𝑎

0
𝑑𝑟     (11) 
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where  𝑠 is a complex transform parameter. 

Once 𝑊(𝑗)
̅̅ ̅̅ ̅̅  (𝑠, 𝜃)𝑓𝑜𝑟 𝑗 = 1, 2 are derived, the displacement 𝑊(𝑟, 𝜃)  can be obtained using the 

inversion formula for these transforms as provided by Kargarnovin et al. (1997). 

𝑊(𝑟, 𝜃) =
(−1)𝑗

2𝜋𝑖
∫ 𝑊̅(𝑗)(𝑠, 𝜃)𝑟−𝑠𝑑𝑠, 𝑗 = 1,2

𝑐+𝑖∞

𝑐−𝑖∞
   (12) 

Equation (10) applied to (3) produces 

:(
𝑑2

𝑑𝜃2 + 𝑠2) 𝑊̅(1)(𝑠, 𝜃) + 2𝑠𝑎2𝑊(𝑎, 𝜃) = 0    (13) 

subject to the condition that: 

𝑙𝑖𝑚
𝑟→0

[(𝑎2𝑠𝑟−𝑠 − 𝑟𝑠)𝑟
𝜕𝑊(𝑟,𝜃)

𝜕𝑟
+ 𝑠(𝑎2𝑠𝑟−𝑠 + 𝑟𝑠)𝑊(𝑟, 𝜃)] = 0  (14) 

The finite Mellin transform of the second kind applied to (3) yields: 

(
𝑑2

𝑑𝜃2 + 𝑠2) 𝑊̅(2)(𝑠, 𝜃) + 2𝑎𝑠+1 𝜕𝑊(𝑎,𝜃)

𝜕𝑟
= 0    (15) 

Provided that 

𝑙𝑖𝑚
𝑟→0

[(𝑎2𝑠𝑟−𝑠 + 𝑟𝑠)𝑟
𝜕𝑊(𝑟,𝜃)

𝜕𝑟
+ 𝑠(𝑎2𝑠𝑟−𝑠)𝑊(𝑟, 𝜃)] = 0  (16) 

The range of values for ccc in the inversion formula (12) represents the regularity strip of 

𝑊(𝑗)
̆  (𝑠, 𝜃) This range is derived from the conditions (14) and (16). The asymptotic behavior of 

the stresses are 

𝜎𝑟𝑧(𝑟, 𝜃) = 𝜎𝜃𝑧(𝑟, 𝜃) = 𝑂(𝑟−𝜆), 0 < 𝜆 < 1 𝑎𝑠 𝑟 → 0  (17) 

Hence 

𝑊(𝑟, 𝜃) = 𝑂(𝑟1−𝜆)   𝑎𝑠  𝑟 → 0(18) 

The boundary data determine the type of finite Mellin transform to use. For this problem, the finite 

Mellin transform of the first kind is applied to equation (3) to obtain equation (13) with the 

boundary datum given in equation (7). The result is as follows: 

(
𝑑2

𝑑𝜃2 + 𝑠2) 𝑊̅(1)(𝑠, 𝜃) = −2𝑠𝑎𝑠𝛾 ,   0 < 𝜃 ≤ 𝛼   (19) 

which is a non-homogeneous second-order ordinary differential equation. The solution of 

equation (19) can be expressed in the following form: 

𝑊̅(1)(𝑠, 𝜃) = 𝐴1(𝑠)𝑠𝑖𝑛𝜃𝑠 + 𝐴2(𝑠)𝑐𝑜𝑠𝜃𝑠 − 2
𝑎𝑠

𝑠
𝛾, 0 < 𝜃 ≤ 𝛼 (20) 

The finite Mellin transform applied to equation (3), utilizing equations (15) and (6), leads to the 

following result: 

(
𝑑2

𝑑𝜃2 + 𝑠2) 𝑊̅(2)(𝑠, 𝜃) = 0,      − 𝛼 < 𝜃 < 0    (21) 

whose solution can be expressed as: 

𝑊̅(2)(𝑠, 𝜃) = 𝐵1(𝑠)𝑠𝑖𝑛𝜃𝑠 + 𝐵2(𝑠)𝑐𝑜𝑠𝜃𝑠    (22) 

The other boundary data are transformed using the transform of the second kind and equation (2) 

to obtain 

:𝜎𝜃𝑧(𝑟, 𝛼) =
𝜇

𝑟

𝜕𝑊(𝑟,𝛼)

𝜕𝜃
= 0 , 𝑓𝑜𝑟 𝜃 = 𝛼, 0 ≤ 𝑟 ≤ 𝑎 

Consequently, 
𝜕𝑊̅(𝑠,𝛼)

𝜕𝜃
= 0 𝑎𝑡   𝜃 = 𝛼 𝑤ℎ𝑒𝑛  0 < 𝜃 ≤ 𝛼 and 𝜃𝜃𝑧(𝑟, −𝛼) =

𝜇

𝑟

𝜕𝑊(𝑟,−𝛼)

𝜕𝜃
   ,   𝜃 =

−𝛼 , −𝛼 ≤ 𝜃 < 0 , 0 ≤ 𝑟 ≤ 𝑎 , which leads to  

𝜕𝑊̅(𝑠, −𝛼)

𝜕𝜃
= 0  𝑎𝑡 𝜃 = −𝛼 𝑤ℎ𝑒𝑛 − 𝛼 ≤ 𝜃 < 0 

Therefore, we seek 𝑊̅(𝑠, 𝜃) that satisfies the boundary value problems (19) and (21) together 

with the conditions 
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𝑑𝑊̅(𝑠,𝛼)

𝑑𝜃
= 0 ,      0 < 𝜃 ≤ 𝛼      (23) 

𝑑𝑊̅(𝑠,−𝛼)

𝑑 𝜃
= 0,    − 𝛼 ≤ 𝜃 < 0      (24) 

𝑊̅(𝑠, 0+) = 𝑊̅(𝑠, 0−)       (25) 
𝑑𝑊̅(𝑠,0+)

𝑑𝜃
=

𝑑𝑊̅(𝑠,0−)

𝑑𝜃
       (26) 

We assume solutions of the forms (20) and (22) repeated as 

𝑊̅(𝑠, 𝜃) = 𝐴1(𝑠)𝑠𝑖𝑛𝜃𝑠 + 𝐴2(𝑠)𝑐𝑜𝑠𝜃𝑠 − 2
𝑎𝑠

𝑠
𝛾 , 0 < 𝜃 < 𝛼(20) 

= 𝐵1(𝑠)𝑠𝑖𝑛𝜃𝑠 + 𝐵2(𝑠)𝑐𝑜𝑠𝜃𝑠 ,   − 𝛼 < 𝜃 < 0(22) 

The coefficients 𝐴𝑖(𝑠), 𝐵𝑖(𝑠), 𝑖 = 1,2 are determined by use of the given boundary conditions. 

From (20) and (22) we get 
𝑑𝑊̅(𝑠,𝜃)

𝑑𝜃
= 𝑠𝐴1(𝑠)𝑐𝑜𝑠𝜃𝑠 − 𝑠𝐴2(𝑠)𝑠𝑖𝑛𝜃𝑠 , 0 ≤ 𝜃 ≤ 𝛼      (27) 

= 𝑠𝐵1(𝑠)𝑐𝑜𝑠𝜃𝑠 − 𝑠𝐵2(𝑠)𝑠𝑖𝑛𝜃𝑠  , −𝛼 ≤ 𝜃 ≤ 0      (28) 

Application of (23) and (24) to (27) and (28) give 

𝐴1(𝑠)𝑐𝑜𝑠𝛼𝑠 − 𝐴2(𝑠)𝑠𝑖𝑛𝛼𝑠 = 0       (29) 

𝐵1(𝑠)𝑐𝑜𝑠𝛼𝑠 + 𝐵2(𝑠)𝑠𝑖𝑛𝛼𝑠 = 0       (30) 

From (29) and (30) we get 

(𝐴1(𝑠) + 𝐵1(𝑠))𝑐𝑜𝑠𝛼𝑠 + (𝐵1(𝑠) − 𝐴1(𝑠))𝑠𝑖𝑛𝛼𝑠 = 0    (31) 

Substitution of the continuity conditions (25) and (26) into (20) and (22) and then into (27) and 

(28) produce 

𝐴2(𝑠) − 2
𝑎𝑠

𝑠
𝛾 = 𝐵2(𝑠)        (32) 

and 

𝐴1(𝑠) = 𝐵1(𝑠)         (33) 

Hence (31), (32) and (33) yield 2𝐴1(𝑠)𝑐𝑜𝑠𝛼𝑠 = −2
𝑎𝑠

𝑠
𝛾𝑠𝑖𝑛𝛼𝑠 that gives,  

𝐵1(𝑠) = 𝐴1(𝑠) =
𝑎𝑠𝛾𝑠𝑖𝑛𝛼𝑠

𝑠𝑐𝑜𝑠𝛼𝑠
           (34) 

Using (29), (30) and (33) leads to 

(𝐴2(𝑠) + 𝐵2(𝑠))𝑠𝑖𝑛𝛼𝑠 = 0 

Thus 

𝐴2(𝑠) + 𝐵2(𝑠) = 0          (35) 

Considering (32) and (35) produces the simultaneous equations 

𝐴2(𝑠) − 𝐵2(𝑠) = 2
𝑎𝑠

𝑠
𝛾 

𝐴2(𝑠) + 𝐵2(𝑠) = 0 

Hence 

𝐴2(𝑠) =
𝑎𝑠𝛾

𝑠
 

and 

𝐵2(𝑠) = −
𝑎𝑠𝛾

𝑠
 

Consequently, the transformed displacement is deduced as 

𝑊̅(𝑠, 𝜃) = −
𝑎𝑠𝛾

𝑠𝑐𝑜𝑠𝛼𝑠
𝑠𝑖𝑛𝛼𝑠𝑠𝑖𝑛𝜃𝑠 +

𝑎𝑠𝛾

𝑠
𝑐𝑜𝑠𝜃𝑠 − 2

𝑎𝑠𝛾

𝑠
    0 < 𝜃 ≤ 𝛼 (36) 

= −
𝑎𝑠𝛾

𝑠𝑐𝑜𝑠𝛼𝑠
𝑠𝑖𝑛𝛼𝑠𝑠𝑖𝑛𝜃𝑠 −

𝑎𝑠𝛾

𝑠
𝑐𝑜𝑠𝜃𝑠     − 𝛼 ≤ 𝜃 < 0   (37) 
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The corresponding displacement fields are obtained by using the inverse Mellin transform (12) 

with 𝑗 = 1𝑗  
For0 < 𝜃 ≤ 𝛼  , 0 ≤ 𝛼 ≤ 𝜋 (36) is used to get 

𝑊(𝑟, 𝜃) =
𝛾

2𝜋𝑖
∫

𝑠𝑖𝑛𝜃𝑠𝑠𝑖𝑛𝛼𝑠

𝑠𝑐𝑜𝑠𝛼𝑠

𝑐+𝑖∞

𝑐−𝑖∞
(

𝑟

𝑎
)

−𝑠

𝑑𝑠 −
𝛾

2𝜋𝑖
∫

(𝑐𝑜𝑠𝜃𝑠−2)

𝑠

𝑐+𝑖∞

𝑐−𝑖∞
(

𝑟

𝑎
)

−𝑠

𝑑𝑠 (38) 

The terms in the integrand of (38) are 

meromorphic functions of 𝑠. Therefore, the 

integral can be evaluated using the residue 

method, guided by Jordan’s lemma. To 

consider the wedge apex, the region where 𝑟 <
𝑎 must be examined. By Jordan’s lemma, we 

close the contour to include the negative real 

axis 𝑅𝑒 < 0 where 𝑅𝑒 denotes the real part 

only, in which case the integrand vanishes as ∣
𝑠 ∣→ ∞. 

The integrand of the second integral has a 

simple pole at s=0s = 0s=0, resulting in a 

constant residue. Such constant residues lead to 

constant solutions, which can be disregarded 

since the problem is a Neumann boundary 

value problem. The first integral contains an 

integrand with simple poles where 𝑐𝑜𝑠 (𝛼𝑠) =
0, located at: 

𝑠𝑛 = −(2𝑛 + 1)
𝜋

2𝛼
, 𝑛 = 0,1,2, … 

Hence, the displacement field is 

𝑊(𝑟, 𝜃) =
2𝛾

𝜋
∑

𝑠𝑖𝑛𝜃(2𝑛+1)
𝜋

2𝛼

2𝑛+1
∞
𝑛=0 (

𝑟

𝑎
)

(2𝑛+1)
𝜋

2𝛼
   ,      𝑟 < 𝑎   (39) 

and 

𝑊(𝑟, 𝛼) =
2𝛾

𝜋
∑

(−1)𝑛

2𝑛+1
∞
𝑛=0 (

𝑟

𝑎
)

(2𝑛+1)
𝜋

2𝛼
    , 𝑟 < 𝑎    (40) 

By the Weierstrass M-test, the displacement given in (39) is uniformly and absolutely 

convergent. We may take 

:𝑢𝑛(𝜃) =
1

2𝑛+1
𝑠𝑖𝑛𝜃(2𝑛 + 1)

𝜋

2𝛼
(

𝑟

𝑎
)

(2𝑛+1)
𝜋

2𝛼
  and 𝑚𝑛 =

1

2𝑛+1
(

𝑟

𝑎
)

(2𝑛+1)
𝜋

2𝛼
  

Application of the ratio test shows that ∑ 𝑚𝑛
∞
𝑛=0 , 𝑟 < 𝑎isconvergent. 

For−𝛼 ≤ 𝜃 < 0 , −𝜋 ≤ 𝛼 < 0 with (37) and𝑗 = 1in(12),weget 

𝑊(𝑟, 𝜃) =
𝛾

2𝜋𝑖
∫

𝑠𝑖𝑛𝜃𝑠𝑠𝑖𝑛𝛼𝑠

𝑠𝑐𝑜𝑠𝛼𝑠

𝑐+𝑖∞

𝑐−𝑖∞

(
𝑟

𝑎
)

−𝑠

𝑑𝑠 +
𝛾

2𝜋𝑖
∫

𝑐𝑜𝑠𝜃𝑠

𝑠

𝑐+𝑖∞

𝑐−𝑖∞

(
𝑟

𝑎
)

−𝑠

𝑑𝑠 

By applying residue theory and analogous analysis in the evaluation of (39), the solution 

corresponding to the second integral is discarded because it is a constant. The solution derived 

from the first integral is precisely the one presented in (39). Therefore, it follows that 

:𝑊(𝑟, 0+) = 𝑊(𝑟, 0−) = 0      (41) 

Hence the line of symmetry,𝜃 = 0 is n zot deformed and 

𝑊(𝑟, −𝛼) = −
2𝛾

𝜋
∑

(−1)𝑛

2𝑛+1
∞
𝑛=0 (

𝑟

𝑎
)

(2𝑛+1)
𝜋

2𝛼
 , 𝑟 < 𝑎   (42) 

The corresponding stresses are obtained   from(1),(2)and    (39),for0 < 𝜃 ≤ 𝛼 and −𝛼 ≤ 𝜃 < 0 

as 

𝜎𝜃𝑧(𝑟, 𝜃) =
𝜇𝛾

𝛼
∑ 𝑐𝑜𝑠𝜃(2𝑛 + 1)

𝜋

2𝛼
∞
𝑛=0 (

𝑟

𝑎
)

(2𝑛+1)
𝜋

2𝛼
−1

  , 𝑟 < 𝑎 (43) 

hence 

𝜎𝜃𝑧(𝑟, 0+) = 𝜎𝜃𝑧(𝑟, 0−) =
𝜇𝛾

𝛼
∑ (

𝑟

𝑎
)

(2𝑛+1)
𝜋

2𝛼
−1

∞
𝑛=0  , 𝑟 < 𝑎  (44) 

If 
𝜋

2
< 𝛼 < 𝜋,wehave

𝜋

2𝛼
< 1and

𝜋

𝛼
> 1.Then

𝜋

2𝛼
− 1 < 0 applied to (44) indicates  that 

𝜎𝜃𝑧(𝑟, 0+) = 𝜎𝜃𝑧(𝑟, 0−) becomes unbounded as 𝑟 → 0. Also, from (39) and (1) we obtained,  
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𝜎𝑟𝑧(𝑟, 𝜃) =
𝜇𝛾

𝛼
∑ 𝑠𝑖𝑛𝜃(2𝑛 + 1)

𝜋

2𝛼
∞
𝑛=0 (

𝑟

𝑎
)

(2𝑛+1)
𝜋

2𝛼
−1

 , 𝑟 < 𝑎  (45) 

The fact that 0 < 𝛼 <
𝜋

2
  implies 

𝜋

2𝛼
> 1 and leads to (2𝑛 + 1)

𝜋

2𝛼
> 2𝑛 + 1 or(2𝑛 + 1)

𝜋

2
− 1 >

2𝑛. Hence, by (39), the series solution for the displacement is bounded as 𝑟 → 0 , 0 < 𝛼 <
𝜋

2
. 

From (43) and (45), the fields are bounded in a wedge with 0 < 𝛼 <
𝜋

2
.But,if

𝜋

2
< 𝛼 < 𝜋 we have 

𝜋

2𝛼
< 1 and (2𝑛 + 1)

𝜋

2𝛼
< 2𝑛 + 1 implies (2𝑛 + 1)

𝜋

2𝛼
− 1 < 2𝑛 ;the least value occurs when   

𝑛 = 0 for which  
𝜋

2𝛼
− 1 < 0.Therefore, the  stress fields are unbounded as 𝑟 → 0 , 𝑓𝑜𝑟 

𝜋

𝛼
< 𝛼 <

𝜋 .The asymptotic behaviours (17) yield  the strength of geometry singularity as 

𝜆 = 1 −
𝜋

2𝛼
        (46) 

Consequently, when 𝛼 =
2𝜋

3
 ,

3𝜋

4
 𝑎𝑛𝑑  𝜋 the strength of singularity becomes 

3

4
 ,

2

 3
 𝑎𝑛𝑑 

1

2
  respectively. 

 

 

 

 

 

 

 

 

 

 

 

 
 

The crack tip stress intensity factor can be derived using the formula provided by Shahani 

(2005). 

𝐾𝐼𝐼𝐼 = 𝑙𝑖𝑚
𝑟→0

√2𝜋 𝑟𝜆𝑠𝜎𝜃𝑧(𝑟, 𝛼 − 𝜋) 

where  𝜆𝑠 is the order of stress singularity at the 

wedge apex. For this analysis, we refer to 

equation (43) to obtain the dominant term of 

the stress, which arises when 𝑛 = 0 as follow: 

𝜎𝜃𝑧(𝑟, 𝜃) =
𝜇𝛾

𝛼
𝑐𝑜𝑠𝜃

𝜋

2𝛼
(

𝑟

𝑎
)

𝜋

2𝛼
−1

, 𝑟 < 𝑎   (47) 

when α = π, the wedge resembles a circular 

shaft with an edge crack. In this scenario, the 

well-known square root singularity occurs at 

the crack tip. Consequently, the stress 

distribution near the crack tip can be 

characterized by a singularity of the form: 

𝜎(𝑟, 𝜃) ∼
𝐾

𝑟
⋅ 𝑓(𝜃) 

where K is the stress intensity factor, 𝑟 is the 

distance from the crack tip, and 𝑓(𝜃) is a 

function that describes the angular dependence 

of the stress field around the crack. This 

singularity is critical for understanding the 

local behavior of the material and the potential 

for crack propagation under applied loads. 

Also, when 𝛼 = 𝜋, the wedge takes on the 

characteristics of a circular shaft with an edge 

crack. In this situation, the well-known square 

root singularity occurs at the crack tip. 

Therefore 

,𝜆𝑠 = 1 −
1

2
=

1

2
 and  

𝐾𝐼𝐼𝐼 = √2𝜋𝑟
𝜇𝛾

𝑎𝛼
(

𝑟

𝑎
)

−
1
2

= √
2𝜋

𝑎

𝜇𝛾

𝛼
 

The stress intensity factor depends on the 

material constants; however, it may also 

𝛼 = 𝜋 

𝛼 = −𝜋 

𝛼 

𝛼 Stress fields 

unbounded 

Stress fields 

bounded 

𝛼 =  − 
𝜋

2
 

𝛼 =  
𝜋

2
 

𝐾𝐼𝐼𝐼 depends on 

𝜇 (𝑐𝑟𝑎𝑐𝑘𝑒𝑑 𝑠ℎ𝑎𝑓𝑡) 
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exhibit a linear relationship with the apex angle 

α in certain cases, particularly when 

considering the shear modulus μ. Specifically, 

if the apex angle α varies linearly with the shear 

modulus, this relationship can influence the 

magnitude of the stress intensity factor, 

potentially modifying the stress distribution 

around the crack tip. 

In general, the expression for the stress 

intensity factor K can be formulated as: 

𝐾 =  𝜎√𝜋𝑎 

where σ is the applied stress and 𝛼is the crack 

length. If α and μ are related, the overall 

behavior of the stress intensity factor can be 

impacted by how these variables interact within 

the material’s response to stress. 
 
 

3.0 Conclusion 
 

In this study, we investigated the behavior of 

singularities in a finite isotropic wedge under 

various angle conditions. Our findings indicate 

that as the angle α approaches specific critical 

values—namely 2𝜋3, 3π4 and 𝜋—the strength 

of singularity exhibits notable variations. 

Specifically, we observed that at = 2𝜋3, the 

strength of the singularity is 34; at 𝛼 = 3𝜋4, it 

reduces to 23 and at 𝛼 = 𝜋, the singularity 

strength further diminishes to 12. These results 

underscore the critical role of the angle in 

influencing the stress distribution around 

singularities, thereby enhancing our 

understanding of deformation behaviors in 

isotropic materials. 

Based on the outcomes of this study, we 

recommend that further research should be 

conducted to explore the effects of other 

geometric configurations and material 

properties on singularity strengths in various 

boundary value problems. Additionally, 

experimental studies should be carried out to 

validate the theoretical findings presented in 

this manuscript, particularly focusing on real-

world applications where such singularities 

may occur. Future work could also include 

numerical simulations to analyze the behavior 

of singularities under dynamic loading 

conditions, providing a more comprehensive 

understanding of the material response. The 

implications of these findings should be 

considered in engineering applications, 

particularly in the design of structures and 

materials subjected to similar conditions, to 

enhance their resilience and performance. 
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