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Abstract:The focus of many researchers in the 

field of distribution theory has been on the 

expansion of the existing probability distributions 

to improve their modeling flexibility. In this paper, 

we introduced a new continuous probability 

distribution called the Topp-Leone Kumaraswamy 

inverse exponential distribution with four 

parameters. We studied the nature of the proposed 

distribution with the help of its mathematical and 

statistical properties such as quantile function, 

ordinary and incomplete moments, generating 

function and reliability. The probability density 

function of order statistics for this distribution was 

also obtained. Monte Carlo simulation was carried 

out to see the performance of maximum likelihood 

estimation of Topp-Leone Kumaraswamy Inverse 

Exponential distribution. In this study, we 

performed a classical estimation of parameters by 

using the technique of maximum likelihood 

estimate. The proposed model was applied to two 

real datasets and shows that it provides a better fit 

than other well-known distributions presented. 
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1.0 Introduction 

An inverse distribution is the distribution of the 

reciprocal of a random variable in probability 

theory and statistics. In the Bayesian sense of prior 

and posterior distributions for scale parameters, 

inverse distributions are particularly common. 

Inverse distributions are special cases of the class 

of ratio distributions in which the numerator 

random variable has a degenerate distribution in 

random variable algebra. 

The inverse exponential distribution is a subclass of 

the inverse Weibull distribution. The inverse 

exponential distribution was first proposed by 

Keller and Kamath (1982) and it can model datasets 

with inverted bathtub failure rates. It's a variant of 

the exponential distribution with the benefit of not 

having a constant failure rate. The IEx distribution 

in terms of various system failure causes was 

addressed by Lin et al., (1989). Using complete 

samples, they calculated the maximum likelihood 

estimator and confidence limits for the parameter 

and the reliability function. They also used a 

maintenance data set to equate this model to the 

inverted Gaussian and log-normal distributions. 

The inclusion of an extra shape parameter to obtain 
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the generalized IEx distribution was discussed by 

Abouammoh and Alshingiti (2009). 

Recent research in this area has focused on 

expanding existing probability distributions to 

improve their modeling flexibility. In line with that, 

several works by Oguntunde et al., (2017a), 

Oguntunde et al., (2017b), Oguntunde et al., 

(2017c) and Oguntunde et al., (2017d) used 

different families of distributions to extend the 

inverse exponential distribution. In expanding the 

classical distributions to improve their modeling 

flexibility, many authors have proposed families of 

distributions in literature. Some of the families of 

the proposed distributions include:- the Topp Leone 

exponentiated-G by Ibrahim et al., (2020a), Topp 

Leone Kumaraswamy-G by Ibrahim et al., (2020b), 

Type I Half-Logistic Exponentiated-G Family of 

Distributions by Bello et al., (2020), Type II Half-

Logistic Exponentiated-G Family of Distributions 

by Bello et al., (2021), The Kumaraswamy-G by 

Cordeiro and de Castro (2011), Topp Leone-G by 

Al-Shomrani et al., (2016), Odd Chen-G family by 

Anzagra (2020), Power Lindley-G Family of 

distributions by Hassan and Nassr (2019), Modi 

family of distributions by Modi et al., (2020), A 

new generalized-G class by Rasheed (2020).  

A new generalized family of distributions by Sule 

et al., (2022), etc. In this context, we proposed a 

generalization of the inverse exponential 

distribution based on Ibrahim et al., (2020b), which 

stems from the following general construction: if H 

denotes a random variable's baseline cumulative 

function, then a generalized class of distributions 

can be defined by 

 
2

( ; , , , ) 1 1 ( ; )F x H x


     = − −     (1) 

The pdf corresponding to (1) is 

 
1

2 1 2
1( ; , , , ) 2 ( ; ) ( ; ) 1 ( ; ) 1 1 ( ; )f x h x H x H x H x


           

−
−

−    = − − −      (2) 

where ( ; )H x   is the cdf of the baseline 

distribution with parameter vector . 

for 0, , , , 0x      , where equations (1) and 

(2) are the cdf and pdf of the TLK-G family of 

distributions. 

The cdf and pdf of the IEx distribution are given by 

( ; ) xH x e




 

− 
 =

   (3)
 

2
( ; ) xh x e

x





 

− 
  

=  
                             (4) 

0, 0x   . 

This paper proposes a new continuous distribution 

that generalizes the inverse exponential distribution 

using the family of distributions derived by Ibrahim 

et al., (2020b). This is to improve the flexibility of 

the baseline distribution to fit a variety of data 

arising from different disciplines with different 

shapes. 
 

2.0 The Topp-Leone Kumaraswamy Inverse Exponential (TLKIEx) Distribution 
 

This section defines a new continuous distribution called TLKIEx distribution and provide some plots of 

its pdf, cdf and hazard rate function (hrf). The cdf  of the TLKIEx distribution is obtained by inserting 

equation (3) into equation (1) and it is given as: 

2

( ; , , , ) 1 1 xF x e







   
 

− 
 

     = − −    
            (5)

 

1
2 1 2

2
( ; , , , ) 2 1 1 1x x xf x e e e

x


 

  
  


    

−
−

     
− − −     
     

              = − − −                            (6) 

For 0, , , , 0x      . 

Where  is the scale parameter and , ,    are the shape parameters respectively. 
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Fig. 1: Plots of pdf of the TLKIEx distribution for different parameter values. 

 

3.0  Mathematical Properties. 
 

This section derives some of the mathematical and statistical properties of the TLKIEx distribution such 

as the quantile function, moments, moment generating function, reliability measure and order statistics. 
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3.1 Moments 

The rth of x is obtained as 

0

( ) ( )r rE X x f x dx



= 
          (7)

 

The rth moments of the TLKIEx distribution are obtained as 
1

2 1 2

2

0

( ) 2 1 1 1r r x x xE X x e e e dx
x


 

  
  
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−
−

     
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

  (8)

 

Using binomial expansion on the last term in (8) with the relation 

1

1

( 1) ( )
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i
i

i

x x
i
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


−
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− =
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1

( 1) ( 1)
(1 )
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i
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i i
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− +
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respectively. 
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e e
i i


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     (11)

 

Substituting (11) into (8), we have 
2 ( 1) 1

2

0 0

( 1) ( )
( ) 2 1

! ( )

i

i
r r x x

i

E X x e e dx
i i

 
 






+ −
    − −   

−    

=

    −  = −   
  −      

 
 .   (12) 

Again, using the  binomial expansion on the last term in (10), we have 
2 ( 1) 1

1

( 1) (2 ( 1))
1

! (2 ( 1) )

i
j

j

x x

j

i
e e

j i j
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    − + − =   
     + −    

 .     (13)

 

Substituting (13) into (12), we have 
( 1)

2

0 1 0

( 1) ( ) ( 1) (2 ( 1))
( ) 2

! ( ) ! (2 ( 1) )

j
i j

r r x

i j

i
E X x e dx

i i j i j




 
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 
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From (14), let 
2

( 1) ( 1) ,
( 1)

dy
y j x j dx

x y j x

 
 
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Then, 
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Where 
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The mean of the TLKIEx distribution is obtained by setting 1r = in equation (18). 
 

3.2 Moment Generating Function (MGF) 
 

The MGF X  can be obtained using the equation 

0

( ) ( )tx txE e e f x dx



= 
          

 (19)
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Following the process of moments above, we have the MGF given as 
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1
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3.3 Reliability function 

The reliability function is also known as the survival function, which is the probability of an item not 

failing before some time. It can be defined as 

( ; , , , ) 1 ( ; , , , )R x F x       = −
        (23)

 

2

( ; , , , ) 1 1 1 xR x e







   
 

− 
 

     = − − −    
            (24)
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3.4 Hazard rate function 

The hazard function is given as 

( ; , , , )
( ; , , , )

( ; , , , )

f x
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3.5 Quantile function 
 

The quantile function is defined as the inverse of the cdf and it is given as: 
1( ) ( )Q u F u−= . Using the cdf 

of TLKIEx distribution in equation (5), we have 
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1
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log 1 1x u






−

  
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              (27)

 

The median of the TLKIEx distribution can be derived by substituting 0.5u =  in equation (27)  

  

  
Fig. 2: Plots of hazard rate function of the TLKIEx distribution for different parameter values. 
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4.0 Order statistics 
 

Let 1 2, ,..., nX X X  be n  independent random variable from the TLKIEx distributions and let 

(1) (2) ( )... nX X X    be their corresponding order statistic. Let : ( )r nF x  and : ( )r nf x , 1,2,3,...r n=  

denote the cdf and pdf of the rth order statistics :r nX  respectively. The pdf of the rth order statistics :r nX  is 

given as 

1

:

0

1 ( 1) ( 1)
( ) [ ( )] ( )

( , 1) ! ( 1 )

i
r i

r n

i

n r
f x F x f x

B r n r i n r i


+ −

=

− − +
=

− + − + −
      (28) 

Using the cdf and pdf of TLKIEx distribution in equation (5) and equation (6), we have 
( 1) 1

2 2 1 2

: 2
0

2
( ) ( 1) 1 1 1 1 1
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r i
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i x x x x
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f x e e e e
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   

 
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       − − − − −       
       

=

                       = − − − − − −                      − +                   
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+

 −  − 
+ +  

= =

 + − +  
= −     − +    

 
  (29)

 

Equation (29) is the rth order statistics of the TLKIEx distribution.  

Therefore, the pdf of the minimum and maximum order statistics of the TLKIEx distribution are obtained 

by setting 1r =  and r n=  respectively in equation (29). 
 

5.0 Estimation 
 

In this section, we estimate the parameters of the TLKIEx distribution using maximum likelihood 

estimation (MLE). For a random sample, 1 2, ,..., nX X X  of size n  from the TLKIEx ( , , , )    , the log-

likelihood function L ( , , , )     of equation (6) is given as 
2

2
1 1 1 1

1
( ) log 2 log log log log (2 1) log 1 ( 1) log 1 1i

i

n n n n
x x

i i i ii

n n n n e e
x x

   


     

   −  − 
   
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               = + + + + − + − − + − − −                         
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            (30) 

The components of the score vector, say 
log ( ) log ( ) log ( ) log ( )

( ) , , ,
   


   
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Differentiating equation (30) concerning each parameter and setting the equation to zero, we have 
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      (34)

 

Now, equation (31), equation (32), equation (33) and equation (34) do not have a simple form and are 

therefore intractable. As a result, we have to resort to the non-linear estimation of the parameters using 

iterative procedures. 
 

5.0  Simulation study 
 

In this Section, we perform the simulation study to see the performance of MLEs of TLKIEx 

distribution. The random number generation is obtained with its quantile function (qf). We note that the 

uth qf of the TLKIEx distribution is given in equation (27). Hence, if U has a uniform random variable on 

(0, 1), then x  has the TLKIEx random variable.  

We  generated N=10000  samples  of  sizes  n=50,  100,  200 and 500  from  TLKIEx  distribution  with  

its  qf. Then we computed the empirical means, biases and mean squared errors (MSE) of the MLEs with 

( )ˆ

1

1
ˆ

N

i i

i

Bias
N

  
=

= −
         (35)

 

and 

( )
2

ˆ

1

1
ˆ

N

i i

i

MSE
N

  
=

= − ,         (36) 

for ( , , , )    =  

To examine the performance of the MLEs for the TLKIEx distribution, we perform a simulation study as 

follows: 

1. Generate N samples of size n from the TLKIEx distribution with its qf. 

2. Compute the MLEs for the N samples, say  ˆ ˆ ˆˆ( , , , )    , for 1,2,...,i N=  

3. Compute the MLEs for N samples 

4. Compute the biases and mean squared errors (MSE) given in equation (35) and equation (36). 

We repeat these steps for N= 10000 and n = 50, 100, 200 and 500 with different values of   

( , , , )    = . Table 1 shows how the biases and MSE vary concerning n. As expected, the Biases and 
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MSEs of the estimated parameters converge to zero as n increases proving the consistency of the 

estimators. 

 

Table 1: Biases and MSE of the TLKIEx distribution for selected parameter values. 

 

Groups Initial 

values 

Bias and 

MSE 

                         Sample sizes 

n=50 n=100 n=200 n=500 

 

 

 

 

 

          I 

  =0.5 Bias 0.4757282 0.380458 0.2415676 0.08192196 

MSE 1.128401 0.8846674 0.5046992 0.3118731 

  =1 Bias -0.5242718 -0.619542 -0.7584324 -0.9180780 

MSE 1.149710 1.0108019 0.8783997 0.6661371 
 =1 Bias 2.0270014 1.069987 0.7901550 0.29064191 

MSE 4.433887 3.5073255 2.2855787 0.8993250 

 =1 Bias 1.0270014 0.069987 -0.209845 -0.7093581 

MSE 4.074966 3.3408618 2.1548922 1.1079268 

 

 

 

 

 

          II 

  =0.5 Bias 0.6607848 0.4058381 0.2491716 0.2579595 

MSE 2.366874 0.9139879 0.772265 0.5087453 

  =1.5 Bias -0.8392152 -1.0941619 -1.2508284 -1.2820405 

MSE 2.422754 1.3666966 1.313590 1.3071725 
 =1 Bias 3.2580953 1.7659127 1.4749357 -0.5941619 

MSE 8.116632 3.8690291 3.153124 1.6343640 

 =1 Bias 1.7580953 0.2659127 -0.0250643 -0.5567376 

MSE 7.639073 3.4527740 2.787003 1.4461530 

 

 

 

 

 

          III 

  =0.5 Bias 0.4564184 0.4112619 0.3480379 0.2634555 

MSE 0.9916529 0.7500362 0.635278 0.4417987 

  =1.5 Bias -1.0435816 -1.0887381 -1.1509621 -1.2365445 

MSE 1.3653279 1.2564906 1.228647 1.1263980 
 =1.1 Bias 3.6466509 1.7616832 1.4467925 1.1727391 

MSE 8.0577188 3.9690887 3.507378 2.4293541 

 =1 Bias 2.2466509 0.3616832 0.0467925 -0.2272609 

MSE 7.4991253 3.5663167 3.195516 2.1525669 

 

 

 

 

 

         IV 

  =1.5 Bias 0.454713 0.3373149 0.1573868   -0.3707917 

MSE 3.112982 1.772277 1.511235 0.8094963 

  =1.5 Bias -1.045287 -1.1626851 -1.3426132 1.7292083 

MSE 3.252156 2.092611 2.015358 1.8954971 
 =1.1 Bias 3.875349 1.8563823 1.3376786   1.0302311 

MSE 7.233175 4.223159 2.807066 1.9164191 

 =1 Bias 2.475349 0.4563823 -0.0623214 -0.3697689 

MSE 6.553074 3.809977 2.473173 1.6828454 

 

6.0 Application to real-life data set 

The first data set represents the breaking strength of 100 Yarn as reported by Gomes-Silva et al., (2017).  

The data-set consists of 63 measurements of the strengths of 1.5 cm glass fibres, which were initially 

collected by United Kingdom National Physical Laboratory staff. The data is presented below: 

0.55, 0.74, 0.77, 0.81, 0.84, 1.24, 0.93, 1.04, 1.11, 1.13, 1.30, 1.25, 1.27, 1.28,1.29, 1.48, 1.36, 1.39, 

1.42, 1.48, 1.51, 1.49, 1.49, 1.50, 1.50,1.55, 1.52, 1.53, 1.54, 1.55, 1.61, 1.58, 1.59, 1.60, 1.61, 1.63,1.61, 

1.61, 1.62, 1.62, 1.67, 1.64, 1.66, 1.66, 1.66, 1.70, 1.68, 1.68, 1.69, 1.70, 1.78, 1.73, 1.76, 1.76, 1.77, 

1.89, 1.81, 1.82, 1.84, 1.84, 2.00, 2.01, 2.24. 

The second data set represents the sum of skin folds in 202 athletes collected at the Australian Institute 

of Sports as has been used by Hosseini et al., (2018). The data set is: 



Communication in Physical Sciences, 2022, 8(4): 590- 603 600 
 

 

28.0, 98, 89.0, 68.9, 69.9, 109.0, 52.3, 52.8, 46.7, 82.7, 42.3, 109.1, 96.8, 98.3, 103.6, 110.2, 98.1, 57.0, 

43.1, 71.1, 29.7, 96.3, 102.8, 80.3, 122.1, 71.3, 200.8, 80.6, 65.3, 78.0, 65.9, 38.9, 56.5, 104.6, 74.9, 

90.4, 54.6, 131.9, 68.3, 52.0, 40.8, 34.3, 44.8, 105.7, 126.4, 83.0, 106.9, 88.2, 33.8, 47.6, 42.7, 41.5, 

34.6, 30.9, 100.7, 80.3, 91.0, 156.6, 95.4, 43.5, 61.9, 35.2, 50.9, 31.8, 44.0, 56.8, 75.2, 76.2,101.1, 47.5, 

46.2, 38.2, 49.2, 49.6, 34.5, 37.5, 75.9, 87.2, 52.6, 126.4, 55.6, 73.9, 43.5, 61.8, 88.9, 31.0, 37.6,52.8, 

97.9, 111.1, 114.0, 62.9, 36.8, 56.8, 46.5, 48.3, 32.6, 31.7, 47.8, 75.1, 110.7, 70.0, 52.5, 67, 41.6, 34.8, 

61.8, 31.5, 36.6, 76.0, 65.1, 74.7, 77.0, 62.6, 41.1, 58.9, 60.2, 43.0, 32.6, 48, 61.2, 171.1, 113.5, 148.9, 

49.9,59.4, 44.5, 48.1, 61.1, 31.0, 41.9, 75.6, 76.8, 99.8, 80.1, 57.9, 48.4, 41.8, 44.5, 43.8, 33.7, 30.9, 

43.3, 117.8, 80.3, 156.6, 109.6, 50.0, 33.7, 54.0, 54.2, 30.3, 52.8, 49.5, 90.2, 109.5, 115.9, 98.5, 54.6, 

50.9, 44.7, 41.8, 38.0, 43.2,70.0, 97.2, 123.6, 181.7, 136.3, 42.3, 40.5, 64.9, 34.1, 55.7, 113.5, 75.7, 99.9, 

91.2, 71.6, 103.6, 46.1, 51.2, 43.8, 30.5, 37.5, 96.9, 57.7, 125.9, 49.0, 143.5, 102.8, 46.3, 54.4, 58.3, 

34.0, 112.5, 49.3, 67.2, 56.5, 47.6, 60.4, 34.9. 

The pdf of the competing distributions considered are: 

• Exponentiated Kumarawamy Inverse Exponential (ExKIEx)distribution by Umar et al., (2017) 
1

1

2( ; , , , ) 1 1 1x x xf x x e e e

   
  

    

−
−

     
− − −     

−      

            = − − −                         (37)

 

• Kumaraswamy Inverse Exponential (KIEx) distribution by Oguntunde et al., (2014). 
1

2( ; , , ) 1x xf x x e e

 
 

   

−
   

− −   
−    

    
 = −   

              (38)

 

• Inverse Exponential (IEx) distribution by Keller and Kamath (1982) 

2( ; ) xf x x e



 
 

− 
−  =  

Tables 2 and 3 present the estimate of each 

parameter and goodness of fit for the models 

considered. The goodness of fits considered is the 

Akaike Information Criteria (AIC). The smaller 

the AIC value the better the model. Figs. 3 and 4 

present the shapes, fit and flexibility of the new 

model to the data sets considered. The black line 

represents the new model, the red line represents 

the ExKIEx, the green line represents the KIEx 

and the blue line represents the IEx distributions. 

It can be seen from the histogram and fitted plots 

that the black line which represents the TLKIEx 

distribution fits better in the two data sets 

considered. 

 

Table 2: The MLEs and Information Criteria of the models based on data set 1’ 

 

Models ̂  ̂  ̂  ̂  l−  AIC 

TLKIEx 0.3038 37.6361 0.5069 337.1824 18.6440 45.2879 

ExKIEx 0.0359 223.6706 0.8048 135.2661 21.5617 51.1234 

KIEx 44.6609   163.2478 - 0.1825 22.0606 50.1211 

IEx - 1.4084 - - 89.4392 180.8784 

 

Table 3: The MLEs and Information Criteria of the models based on data set 2 
 

Models ̂  ̂  ̂  ̂  l−  AIC 

TLKIEx 9.1822   6.4616 4.5909 2.1196 954.6239 1917.2480 

ExKIEx 4.0728   2.9706   92.8097 2.9237 955.2849 1918.5700 

KIEx 10.6439 8.0556 - 14.5206 955.7860 1917.5720 

IEx - 57.1300 - - 1055.7730 2119.5450 
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Fig. 3: Histogram and fitted pdfs for the TLKEx, KEx, TLEx, ExEx and Ex models to the data set 

1. 

 
Fig. 4: Histogram and fitted pdfs for the TLKEx, KEx, TLEx, ExEx and Ex models to the data set 2 

 

7.0 Conclusion 

This paper has derived a new distribution called 

the Topp-Leone Kumaraswamy inverse 

exponential distribution that extends the 

inverse exponential distribution by adding 

extra shape parameters. Some properties of 

the new distribution were derived such as the 

survival function, hazard rate function, 

quantile function, median and order statistics. 

The shapes of the proposed distribution were 

shown by plotting the graphs of the pdf and 

hazard rate function. The estimation of the 

model parameters by the method of the 

maximum likelihood was done using a 

package in R known as AdequacyModel. 

Monte Carlo simulation was carried out to 
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see the performance of MLEs of the TLKIEx 

distribution and as expected, the Biases and 

MSEs of the estimated parameters converge 

to zero as n increases proving the consistency 

of the estimator. Application of the new 

distribution to two real data sets was carried 

out to see the performance and flexibility of 

the new model. The results of the analysis 

presented in Tables 1 and  2 showed that the 

Topp-Leone Kumaraswamy inverse 

exponential distribution is quite effective and 

superior in fitting the two data sets 

considered. Also, the fit and flexibility of the 

new model can be seen from the histogram 

and fitted pdf plots for the two data sets, it can 

be deduced that the new model fits the two 

data sets better than the competing models 

considered.  

As also seen from the plots of the pdf and hazard 

rate function, the new model can be applied 

in different areas due to the different shapes 

exhibited by the new model. 
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