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Abstract: Electricity load forecasting plays a 

pivotal role in energy management systems, 

enabling efficient resource allocation and 

optimal power grid operation. This paper 

proposes a hybrid approach for short-term 

electricity load forecasting by integrating a 

neural network model with the enhanced 

firefly algorithm (EFA), inspired by cell 

communication mechanisms, and a genetic 

algorithm (GA). The proposed methodology 

leverages the neural network's ability to 

capture complex patterns from historical load 

data while utilizing metaheuristic 

optimization techniques to enhance 

forecasting accuracy. The EFA, designed to 

improve exploration and exploitation 

capabilities, refines parameter selection 

within the optimization process, while the GA 

further fine-tunes neural network parameters 

to enhance model performance. Extensive 

experimentation on Nigeria’s TCN-NCC 

electricity load dataset demonstrates the 

effectiveness of this approach. The hybrid 

CCMFA-GA-ANN model achieves a mean 

absolute percentage error (MAPE) of 1.07%, 

outperforming other benchmark models such 

as CCMFA (1.26%), BA (1.22%), FA 

(1.21%), and GA (1.19%). The model also 

achieves the lowest mean absolute error 

(MAE) of 48.00 and the highest forecast 

efficiency of 0.52. Additionally, the Pearson 

correlation coefficient of 0.99969 and a 

coefficient of determination (R²) of 0.99999 

indicate a strong agreement between actual 

and predicted values. With a rapid 

convergence time of 2.321 seconds, the 

hybrid approach ensures computational 

efficiency, making it suitable for real-time 

forecasting applications.These results 

highlight the significant improvements in 

forecasting accuracy achieved by the 

proposed approach compared to 

conventional methods. The model’s high 

accuracy and efficiency make it a valuable 

tool for energy management systems, aiding 

decision-making in grid operations, demand-

side management, and infrastructure 

planning. 
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1.0 Introduction 
 

Electricity load forecasting plays a crucial 

role in the stability, reliability, and efficiency 

of power systems. Accurate predictions 

enable utilities to optimize resource 

allocation, improve demand-side 

management, and enhance infrastructure 

planning (Hyndman & Athanasopoulos, 

2018). Traditional forecasting techniques, 

such as autoregressive integrated moving 

averages (ARIMA) and exponential 

smoothing, have been widely used due to 

their statistical robustness and interpretability 
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(Zhang, 2003). However, these methods 

struggle to model the non-linear relationships 

inherent in electricity load data, particularly 

when external factors such as temperature, 

economic activity, and consumer behaviour 

contribute to fluctuations (Hong & Fan, 

2016). 

With advancements in artificial intelligence 

(AI), machine learning techniques, especially 

artificial neural networks (ANNs), have 

gained attention due to their ability to model 

complex non-linear patterns (Huang et al., 

2019). Despite their potential, training neural 

networks requires the optimization of 

numerous parameters, posing significant 

challenges in high-dimensional spaces (Hong 

et al., 2020). To address this challenge, 

researchers have turned to metaheuristic 

optimization algorithms, such as the Firefly 

Algorithm (FA) and Genetic Algorithm 

(GA), which mimic natural processes of 

evolution and collective behaviour, leading to 

robust parameter optimization (Shi & 

Eberhart, 1998; Goldberg, 1989). 

This study proposes a hybrid neural network 

model that integrates FA and GA, inspired by 

biological cell communication mechanisms, 

to enhance forecasting accuracy. FA is known 

for its ability to balance exploration and 

exploitation, while GA introduces 

evolutionary principles that improve 

adaptability and convergence to optimal 

solutions (Yang & Deb, 2009; Keles & Keles, 

2015). By leveraging the strengths of both 

algorithms, the proposed model aims to 

improve short-term electricity load 

forecasting (STLF) performance and provide 

more reliable predictions for power system 

operators. 

Early approaches to electricity load 

forecasting relied on statistical models such 

as ARIMA, exponential smoothing, and 

multiple linear regression. ARIMA models, 

introduced by Box and Jenkins (1976), have 

been widely employed for time series 

forecasting due to their ability to capture 

temporal dependencies (Zhang, 2003). 

However, they require stationarity and 

struggle with capturing complex, non-linear 

relationships in load data. Similarly, 

exponential smoothing techniques have been 

effective in capturing short-term trends but 

fail to model sudden changes caused by 

external factors (Hyndman & 

Athanasopoulos, 2018). 

Machine learning approaches, particularly 

ANNs, have demonstrated superior 

performance over traditional models by 

effectively handling large datasets and 

learning intricate load patterns (Hong & Fan, 

2016). Variants such as convolutional neural 

networks (CNNs) and long short-term 

memory (LSTM) networks have shown 

promising results in forecasting applications 

due to their ability to capture spatial and 

temporal dependencies, respectively (Yuan & 

Lu, 2016). Despite their success, ANN-based 

models require careful parameter tuning, 

including learning rates, activation functions, 

and weight initialization, which significantly 

impact forecasting accuracy (Huang et al., 

2019). 

Metaheuristic optimization algorithms have 

been widely used to enhance the efficiency of 

ANN-based models by optimizing 

hyperparameters. The Firefly Algorithm 

(FA), introduced by Yang and Deb (2009), is 

a nature-inspired optimization technique 

based on the flashing behaviour of fireflies. 

FA has been successfully applied to 

engineering and optimization problems due to 

its ability to balance exploration and 

exploitation, preventing premature 

convergence to local optima (Shi & Eberhart, 

1998). On the other hand, the Genetic 

Algorithm (GA), developed by Goldberg 

(1989), employs evolutionary principles such 

as selection, crossover, and mutation to 

iteratively improve solutions. GA has been 

extensively used for neural network 

optimization, demonstrating improved 

convergence and robustness (Fan et al., 

2024). 

Several studies have explored hybrid 

optimization approaches to improve 

forecasting performance. For instance, Keles 

and Keles (2015) demonstrated that a hybrid 

ARIMA-ANN model outperforms standalone 
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statistical or machine learning approaches in 

electricity demand forecasting. Similarly, 

hybrid models integrating LSTMs with bio-

inspired optimization techniques have 

achieved significant improvements in 

forecasting accuracy (Huang et al., 2019). 

Recent studies have explored the integration 

of FA and GA in machine learning 

applications, demonstrating enhanced 

adaptability and predictive performance 

(Yuan & Lu, 2016). 

Despite these advancements, limited studies 

have investigated the application of FA-GA 

hybrid models inspired by biological cell 

communication in STLF. Most existing 

research focuses on either ANN-based 

forecasting with a single optimization 

technique or conventional statistical methods. 

There remains a critical need for further 

exploration of hybrid approaches that 

improve adaptability and accuracy in 

electricity load forecasting. 

This study aims to develop a hybrid neural 

network model incorporating FA and GA 

inspired by biological cell communication 

mechanisms to improve the accuracy of 

short-term electricity load forecasting. The 

specific objectives include (i) Enhancing the 

optimization process of neural network 

parameters using FA and GA (ii) Improving 

forecasting accuracy by leveraging the 

strengths of both algorithms and (iii) 

demonstrating the efficacy of the proposed 

model compared to traditional methods. 

Electricity load forecasting remains a 

fundamental aspect of power system planning 

and management. While traditional statistical 

methods have been widely employed, their 

limitations in handling non-linear and 

complex patterns necessitate the adoption of 

AI-based approaches. Neural networks, 

despite their ability to model intricate 

relationships, require effective parameter 

optimization to maximize performance. This 

study proposes a hybrid FA-GA neural 

network model to enhance forecasting 

accuracy, leveraging the strengths of both 

optimization techniques. Future research will 

focus on the empirical validation of the 

proposed model, comparing its performance 

with existing forecasting techniques. 
 

2.0 Proposed Methodology 

21. Data Pre-processing: 

2.1.1 Scaling (Normalization of loads) 
 

Since the variables have very different 

ranges, the direct use of network data may 

cause convergence problems. A scaling 

scheme is used, in this scheme the input and 

output variables are scaled to be in the [-c, c] 

range, where c is a positive number. The 

inputs and outputs in this case are scaled  

using equation 1 (Ali, 2022) 

 𝐿𝑜𝑎𝑑𝑠[𝐻𝑂𝑈𝑅] =  
𝐿𝑜𝑎𝑑𝑠[𝐻𝑂𝑈𝑅] − 𝑀𝑖𝑛

𝑀𝑎𝑥 − 𝑀𝑖𝑛
     (1) 

When the load shape has been predicted, the 

hourly load forecast can be calculated using 

equation (1):  

𝐻𝐿𝑜𝑎𝑑𝑠 = (𝑀𝑎𝑥 −  𝑀𝑖𝑛)𝐿𝑜𝑎𝑑𝑠[𝐻𝑂𝑈𝑅] +
𝑀𝑖𝑛,        (2) 

where HLoads indicate the forecasts load 

values, 𝐿𝑜𝑎𝑑𝑠[𝐻𝑂𝑈𝑅] is the current actual 

load, min and max are the minimum load and 

the maximum load respectively.  

The main advantage of scaling is to avoid 

attributes in greater numeric ranges 

dominating those in smaller numeric ranges. 

Another advantage is to prevent numerical 

difficulties during the calculation. It should 

be noted that the forecasting value is rescaled 

back following the reverse of the linear 

transformation and the forecasting 

performance is calculated based on the 

original scale of the data. 
 

2.2. Hybrid Neural Network Architecture 
 

The neural network architecture suitable for 

short-term load forecasting includes fully 

connected layers for feature extraction and 

nonlinear mapping of input features. In other 

to prevent overfitting and enhance 

generalization dropout layers are integrated 

with the ANN structure. The appropriate 

activation functions for hidden layers to 

introduce nonlinearity into the model used in 

this study are the sigmoid activation 

functions. 
 

2.2.1 Enhanced Firefly Algorithm (EFA) 
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The standard firefly algorithm in this research 

is enhanced with cell communication 

mechanisms to improve exploration and 

exploitation of the solution space. As 

potential solutions to the optimization 

problem, the fireflies are initialized, where 

each firefly represents a set of parameters for 

the neural network. The attractiveness 

function based on the fitness of solutions and 

their distances in the search space is defined, 

incorporating cell communication 

mechanisms for enhanced convergence. The 

movement mechanism to update the position 

of fireflies iteratively is implemented, guided 

by the attractiveness function and random 

perturbations. 

The key mathematical expressions for EFA 

are as follows: 
 

Attractiveness 

The Firefly Algorithm (FA) was used for 

neural network parameter optimization. FA is 

based on the attractiveness and movement of 

fireflies in a search space, where brighter 

fireflies attract others based on the inverse-

square law. The attractiveness function was 

defined as:(Liu et al., 2020) 

   𝛽(𝑟) =  𝛽0𝑒−𝛾𝑟2
     (3) 

where 𝛽0 is the maximum attractiveness, 𝛾 is 

the light absorption coefficient, and 𝑟 is the 

distance between two fireflies. 

Distance 

The distance between two fireflies i and j in 

a d-dimensional search space was calculated 

using the Euclidean distance formula: 

𝑟𝑖𝑗 =  ‖𝑥𝑖  −  𝑥𝑗‖  =  √∑ (𝑥𝑖,𝑘 −  𝑥𝑗,𝑘)2𝑑
𝑘=1   

     (4) 
where 𝑥𝑖 and 𝑥𝑗 are the positions of fireflies 𝑖 

and 𝑗 in the 𝑑 − dimensional search space. 

Movement 

The movement of fireflies within the search 

space follows an attractiveness-driven 

mechanism, which is influenced by the 

relative brightness of fireflies and a 

randomized exploration component. The 

position of a firefly i at time step t+1 is 

updated using the equation (Bei et al., 2023) 

𝑥𝑖(𝑡 + 1) =  𝑥𝑖(𝑡) +  𝛽(𝑟𝑖𝑗) (𝑥𝑗(𝑡) −

 𝑥𝑖(𝑡)) +  𝛼𝜀𝑖(𝑡)   (5) 

where 𝛼 is a randomization parameter, and 

𝜀𝑖(𝑡) is a vector of random numbers drawn 

from a Gaussian or uniform distribution. 

Cell Communication Mechanism 

To enhance the exploration and exploitation 

capabilities of the Firefly Algorithm (FA), 

this study integrates a cell communication-

inspired mechanism, which introduces an 

additional adaptation component into the 

movement equation. The updated position of 

a firefly i at time step t+1 is expressed as: 

𝑥𝑖(𝑡 + 1) =  𝑥𝑖(𝑡 + 1) + 𝐶𝑖(𝑡)     (6) 

where 𝐶𝑖(𝑡) is the communication term for 

the 𝑖 − 𝑡ℎ firefly at time 𝑡.. 
The following describes the mathematical 

formulation and steps involved in the cell 

communication mechanism. 

Mathematical Formulation 

Communication Factor (𝜹): 

The communication factor 𝛿 regulates the 

influence of cell communication on the 

firefly's movement. It determines the degree 

to which a firefly is influenced by the 

positions of other fireflies in the population. 

Communication Term 

A communication term is added to the 

position update equation of the firefly to 

incorporate information from other fireflies: 

𝐶𝑖(𝑡) =  𝛿 ∑
(𝑥𝑗(𝑡)− 𝑥𝑖(𝑡))

𝑟𝑖𝑗+ 𝜀

𝑛
𝑗=1,𝑗 ≠ 𝑖       (7) 

Where 𝐶𝑖(𝑡) is the communication term for 

the 𝑖 − 𝑡ℎ firefly at time 𝑡, 𝑥𝑗(𝑡) is the 

position of the 𝑗 − 𝑡ℎ firefly, 𝛿 is the 

communication factor, 𝑟𝑖𝑗 is the distance 

between fireflies 𝑖 and 𝑗, 𝜀 is a small constant 

to prevent division by zero, and 𝑛 is the total 

number of fireflies. 

Enhanced Position Update 

The position update equation (5) for each 

firefly is modified to include the 

communication term: 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) +  𝛽(𝑟𝑖𝑗) (𝑥𝑗(𝑡) −  𝑥𝑖(𝑡))

+  𝛼𝜀𝑖(𝑡) +  𝐶𝑖(𝑡)             (8) 
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Where 𝑥𝑖(𝑡 + 1) is the new position of the 

𝑖 − 𝑡ℎ firefly,  𝛽(𝑟𝑖𝑗) is the attractiveness of 

the 𝑗 − 𝑡ℎ firefly as seen by the 𝑖 − 𝑡ℎ firefly, 

𝛼 is a randomization parameter, 𝜀𝑖(𝑡) is a 

vector of random numbers drawn from a 

Gaussian or uniform distribution and 𝐶𝑖(𝑡) is 

the communication term. 
 

Steps Involved 

The Enhanced Firefly Algorithm (FA) 

inspired by Cell Communication Mechanism 

and Genetic Algorithm is applied to improve 

the accuracy of short-term electricity load 

forecasting. The methodology consists of 

several key steps: 

(i) Initialization: A population of 

fireflies, representing potential 

solutions, is randomly generated. 

Essential parameters such as 

attractiveness, absorption coefficient, 

and randomization factor are also set. 

(ii) Fitness Evaluation: Each firefly’s 

effectiveness is assessed using an 

objective function that measures 

forecasting accuracy, typically by 

minimizing errors like Mean Absolute 

Percentage Error (MAPE) or Root 

Mean Square Error (RMSE). 

(iii)Attractiveness Calculation: Fireflies 

are influenced by brighter (better-

performing) fireflies. The 

attractiveness of each firefly is 

determined based on its position 

relative to others, with those closer 

exerting a stronger pull. 

(iv) Distance Calculation: The relative 

distances between fireflies are 

measured to guide their movement 

within the search space. This step 

ensures that fireflies can locate 

optimal solutions effectively. 

(v) Position Update: Each firefly moves 

toward a brighter firefly based on its 

attractiveness while incorporating a 

random factor to maintain exploration 

and avoid local optima. This helps 

refine solutions over multiple 

iterations. 

(vi) Communication Mechanism: An 

additional adjustment is introduced, 

allowing fireflies to communicate and 

share information about their 

positions. This enhances adaptability 

and improves convergence toward 

optimal forecasting parameters. 

(vii) Iteration Process: The 

process repeats until a predefined 

stopping criterion is met, such as 

reaching a set number of iterations or 

achieving an acceptable forecasting 

accuracy. 

(viii) Output: The final optimized 

solution is selected, providing the best 

configuration for short-term 

electricity load forecasting, ensuring 

improved prediction accuracy and 

reliability. 

Furthermore, equation (6) of the cell 

communication mechanisms can be 

expressed as: 

𝑥𝑖(𝑡 + 1) =  𝑥𝑖(𝑡 + 1) +

 𝛿 ∑
(𝑥𝑗(𝑡)− 𝑥𝑖(𝑡))

𝑟𝑖𝑗+ 𝜀

𝑛
𝑗=1,𝑗 ≠ 𝑖        (9) 

2.3 Genetic Algorithm (GA) 
 

Genetic Algorithms (GAs) are optimisation 

techniques inspired by the principles of 

natural selection and genetics (Holland, 

1975). Genetic Algorithms are particularly 

useful for solving complex optimisation 

problems where the search space is large and 

traditional methods may be inefficient.  
 

2.3.1 Genetic Algorithm (GA) Parameter 

Tuning 
 

As the genetic algorithm is incorporated to 

fine-tune the parameters of the hybrid neural 

network, the chromosome representation for 

encoding the parameters of the neural 

network, including weights, biases, learning 

rates, and activation functions are defined. 

In order to produce offspring solutions and 

maintain diversity within the population 

genetic operators such as crossover and 

mutation is implemented. From the validation 

dataset the fitness of each chromosome based 

on the performance of the resultant neural 

network is evaluated. Selection mechanisms 
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are applied to choose parent chromosomes for 

reproduction, favouring solutions with higher 

fitness values. 

The steps involved in a GA are as follows: 

Initialisation: Generate an initial population 

of potential solutions, often represented as 

chromosomes. 

Evaluation: Compute the fitness of each 

individual in the population using a 

predefined objective function. 

Selection: Select individuals based on their 

fitness to act as parents for the next 

generation. Common selection methods 

include roulette wheel selection, tournament 

selection, and rank-based selection. 

Crossover: Combine pairs of parents to 

produce offspring. Crossover methods 

include single-point crossover, multi-point 

crossover, and uniform crossover. 

Mutation: Apply random modifications to 

some individuals to introduce variability. 

Mutation methods include bit-flip mutation, 

swap mutation, and scramble mutation. 

Replacement: Form a new population by 

replacing some or all of the old population 

with the new offspring. 

Termination: Repeat the process until a 

stopping criterion is met, such as a maximum 

number of generations or a satisfactory 

fitness level. 
 

Mathematically, the GA process can be 

described as follows: 

Given an objective function 𝑓: ℝ𝑛 𝑡𝑜 ℝ, the 

goal is to find the optimal solution 𝑥∗ ∈  ℝ𝑛 

that maximises or minimises𝑓(𝑥). The 

population at generation 𝑡 is denoted by 

𝑃(𝑡) = 𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑚(𝑡),    (10) 

where 𝑚 is the population size and 𝑥𝑖(𝑡) 

represents an individual solution. 

The fitness function evaluates the quality of 

each individual: 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖(𝑡)) =  𝑓(𝑥𝑖(𝑡))    )11) 

The selection process can be modelled by a 

probability distribution 𝑝𝑖 over the 

population, where individuals with higher 

fitness have higher probabilities of being 

selected: 

𝑝𝑖 =  
𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖(𝑡))

∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠}(𝑥𝑗(𝑡))𝑚
𝑗=1

      (12) 

Crossover and mutation operators are applied 

to generate new offspring. The crossover 

operator can be represented as: 

𝑥𝑛𝑒𝑤 =  𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 (𝑥𝑖(𝑡), 𝑥𝑗(𝑡))      (13) 

The mutation operator introduces random 

changes: 

𝑥𝑛𝑒𝑤  =  𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑥𝑛𝑒𝑤)      (14) 

The new population 𝑃(𝑡 + 1)is formed by 

selecting the best individuals from the current 

population and the offspring. 
 

2.4 Hybridization and Training 
 

At this stage, a population of fireflies and 

chromosomes representing neural network 

parameters are initialized. Combining the 

exploration capabilities of the EFA with the 

parameter optimization of GA iterates the 

fireflies and chromosomes through 

generations of optimization using the hybrid 

approach,  

Evaluate the fitness of each solution using an 

appropriate objective function, such as mean 

squared error (MSE) or mean absolute 

percentage error (MAPE), on a separate 

validation dataset. Next, update the positions 

of fireflies and chromosomes based on the 

defined movement and genetic operators. 

Finally, the neural network is trained using 

the parameters obtained from the hybrid 

optimization process on the entire training 

dataset. 
 

2.5. Forecasting and Evaluation 
 

The trained hybrid neural network model is 

used to generate short-term load forecasts. 

The forecasted load values are then compared 

with the actual values from the test dataset 

and the accuracy of the forecasts is evaluated 

using performance metrics such as RMSE, 

MAE, MAPE, and correlation coefficients. 

In order to evaluate the accuracy, statistical 

tests are conducted to assess the significance 

of improvements achieved by the proposed 

hybrid approach compared to baseline 

methods. 
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METRICS FORMULA 

The Mean Absolute Percentage 

Error (MAPE).  

 
𝑀𝐴𝑃𝐸 (𝜀) =

1

𝑁
∑ (

|𝐿𝑡 − 𝐿𝑓|

𝐿𝑡
)

𝑁

𝑖=1

∗ 100                         (15) 

The Root Mean Squared Error 

(RMSE).  

 

𝑅𝑀𝑆𝐸 (𝜎)

= √
1

𝑁
∑(|𝐿𝑡 − 𝐿𝑓|)

2
𝑁

𝑖=1

                                   (16)  

The Mean Squared Error (MSE).  

 
𝑀𝑆𝐸 

=
1

𝑁
∑(𝐿𝑡

𝑁

𝑖=1

− 𝐿𝑓)
2

                                                   (17) 

The Mean Absolute Scaled Error 

(MASE).  

 

𝑀𝐴𝑆𝐸

=  
1

𝑁
∑ |

|𝐿𝑡 −  𝐿𝑓|

(1
(𝑡 − 1)⁄ ) ∑ |𝐿𝑡 − 𝐿𝑡−1|𝑡

𝑖=2

|

𝑁

𝑖=1

     (18) 

Accuracy Percent (Accuracy %) 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 % =  (1 −  𝑀𝐴𝑆𝐸)

∗ 100%                       (20) 

The Coefficient of Determination 

(𝑅2). 

 

𝑅2  =  1 −

 
∑(𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

2

∑(𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑚𝑒𝑎𝑛(𝑎𝑐𝑡𝑢𝑎𝑙)
2                                (21) 

Theil's U Statistic:   

 
𝑈 =  √(

∑ (𝑌𝑡 − 𝑌𝑡̂)2𝑛
𝑡=1

∑ (𝑌𝑡 − 𝑌𝑡−1)2𝑛
𝑡=1

)                                                (22) 

Forecast Efficiency (FE):   𝐹𝐸 =  1 −

 
𝑀𝑆𝐸𝑚𝑜𝑑𝑒𝑙

𝑀𝑆𝐸𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘
                                                    (23) 

Forecast Bias (FB(%)) or Absolute 

Forecast Bias (AFB) 

 

𝐹𝐵 =
(𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝐿𝑜𝑎𝑑−𝐴𝑐𝑡𝑢𝑎𝑙 𝐿𝑜𝑎𝑑)

𝐴𝑐𝑡𝑢𝑎𝑙 𝐿𝑜𝑎𝑑
∗ 100%                    

(24) 

Mean Percentage Error (MPE): 

 
𝑀𝑃𝐸 =

1

𝑛
∑

(𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

𝑎𝑐𝑡𝑢𝑎𝑙
∗ 100%            (25) 

2.6. Sensitivity Analysis and Robustness 

Testing 
 

Sensitivity analysis to evaluate the robustness 

of the hybrid model to variations in input 

parameters and hyperparameters are 

performed. Cross-validation experiments to 

assess the generalization performance of the 

model across different periods are also 

conducted. Lastly, the impact of different 

combinations of optimization algorithms and 

neural network architectures on forecast 

accuracy is then investigated. 
 

2.7 Implementation and Software Tools 
 

The proposed model was implemented using 

DEV C++ ver. 6.3 programming language for 
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the neural network modelling and 

optimization. The MS Excel was used for the 

graph plots. 

Note part of the objective of using this 

methodology, is to assist researchers to 

effectively integrate the hybrid neural 

network with the enhanced firefly algorithm 

inspired by cell communication mechanisms 

and genetic algorithm for short-term 

electricity load forecasting, leading to 

improved accuracy and robustness in load 

prediction tasks. 
 

3.0 Experimental Setup 

3.1. Dataset Selection 
 

The proposed hybrid algorithm is evaluated 

using real-world STLF datasets from various 

power systems in Nigeria. The electricity load 

datasets for the experimentation were 

collected from the National Control Centre of 

the Transmission Company of Nigeria 

Oshogbo. Although in this study it’s only the 

historical load data that is used for the 

implementation. The dataset covers - four 

years (2019 – 2022) to capture different 

seasonal patterns, day-night variations, and 

other sequential dynamics.  

The Data comprises per-hour interval records 

of actual load, the hourly average of Actual 

Load was calculated from the per-hour 

interval record of actual electricity generated 

by all the GenCos in Nigeria.  

The two-month dataset (1st March 2021 – 30th 

April 2021) is divided into training, 

validation, and testing sets, maintaining 

temporal continuity to preserve the integrity 

of the time series data. Also for further 

comparison of the robustness of the proposed 

model, other datasets were analysed (1st April 

2021 – 31st May 2021). 
 

3.2. Pre-processing and Simulations 
 

Data pre-processing steps employed in the 

research, include data cleaning, 

normalization, and feature scaling. The pre-

processed dataset is divided into training, 

validation, and testing sets using a 

predetermined ratio (e.g., 1195-101-168). 

The simulations are implemented in DEV 

C++ ver. 6.3 compiler on the Windows 10 

operating system (64-bit operating system, 

x64-based processor), 4.00 GB (3.89 GB 

usable) installed RAM, Intel(R) Core (TM) 

i3-3217U CPU @ 1.80GHz   1.80 GHz 

processor, DELL computer. 
 

3.3. Parameter Initialization 
 

All the initial values for parameters such as 

population size, maximum iterations, 

convergence criteria, and other algorithm-

specific hyperparameters for the firefly 

algorithm and genetic algorithm were 

established. The weights and biases of the 

neural network model are randomly 

initialised within a predefined range to ensure 

the exploration of the solution space. 
 

34. Model Configuration 
 

The neural network architecture is conFig.d 

based on the chosen design principles, 

including the number of layers, the sigmoid 

activation functions, and the number of 

neurons in each layer. The hyperparameters 

such as learning rate, dropout rate, and batch 

size for training the neural network are set. 

Finally, the objective function for 

optimization, typically the normalised mean 

squared error (NMSE) is used as the loss 

function for the regression tasks. 
 

3.5. Training and Optimization: 
 

The proposed hybrid neural network model 

using the training dataset is trained and the 

parameters are optimized using the integrated 

firefly algorithm and genetic algorithm. The 

convergence of the optimization process by 

tracking the fitness values of solutions and 

other convergence criteria is continuously 

monitored with algorithm parameters 

adjusted as necessary to balance exploration 

and exploitation and ensure convergence to a 

satisfactory solution. 
 

3.6. Validation 
 

The validation dataset is used to validate the 

trained model to assess its generalization 

performance and fine-tune the 

hyperparameters. The forecast accuracy using 

the performance metrics provided is used to 

evaluate the accuracy and robustness of the 

proposed hybrid model. In a similar vein, 
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statistical tests are conducted to compare the 

performance of the hybrid approach with 

baseline methods and identify significant 

improvements. 
 

3.7. Testing and Evaluation 
 

The final trained model is tested on the 

unseen testing dataset to evaluate its 

performance on the data obtained from TCN 

(NCC). The short-term load forecasts using 

the optimized hybrid neural network model 

are generated and the results are compared 

with the actual load values. 

Finally, the accuracy of the forecasts is then 

analysed and the model's ability to capture 

different load patterns and dynamics is 

assessed. 
 

3.8. Sensitivity Analysis and Robustness 

Testing 
 

Sensitivity analysis to investigate the impact 

of variations in input parameters, 

hyperparameters, and dataset characteristics 

on the forecast accuracy is performed. The 

model’s resilience is evaluated by conducting 

robustness testing by introducing noise, 

outliers, or other perturbations to the input 

data.  
 

5. 0 Results and Discussion  
 

The results of the 24-hour ahead load forecast 

using the CCMFA-GA-ANN model for 

Friday, April 30, 2021, demonstrate the 

model's performance and accuracy. The 

iterative optimization process showed an 

improvement in fitness values, with the best 

fitness starting at -0.164611 in the first 

iteration and progressively improving to -

1.52548 in the final iteration. The best 

solution obtained was [-0.545965, -1.52548], 

indicating the optimal parameters achieved 

during training, as shown in Table 1a. 

The objective function results for the training 

and test sets are presented in Table 1b. The 

normalized mean square error (NMSE) 

values varied throughout the training process. 

For instance, during the training phase, 

NMSE values ranged from 0.215305 to 

0.148784, while in the test set, the values 

ranged from 0.349178 to 0.248762. The best 

NMSE value recorded was 0.148784 for the 

training set and 0.248762 for the test set, 

demonstrating the model’s ability to 

minimize forecasting errors effectively. 

Additionally, the training process involved 

several activities such as saving weights at 

specific points and stopping training when 

optimal weights were restored. 

Fig. 1 presents a graphical comparison 

between the actual loads, the naïve forecast, 

and the CCMFA-GA-ANN forecasted values 

over different hours. The results indicate that 

the CCMFA-GA-ANN model closely follows 

the trend of the actual loads, outperforming 

the naïve forecast. Notably, in the early hours, 

both the naïve and CCMFA-GA-ANN 

forecasts align closely with the actual load, 

but as time progresses, deviations become 

more apparent. The load forecast 

demonstrates significant improvements in 

accuracy, especially during peak hours when 

the naïve forecast shows noticeable 

deviations from the actual load. 

The next 24-hour load forecast for May 31, 

2021, is presented in Fig. 2. The forecasted 

values exhibit a pattern similar to the actual 

loads, reinforcing the model’s ability to 

capture load variations effectively. Compared 

to the naïve forecast, the CCMFA-GA-ANN 

model provides a more reliable and accurate 

prediction, with fewer deviations from actual 

values. 

Fig. 3 further validates the model's predictive 

accuracy by illustrating the direct comparison 

between actual loads and the forecasted 

values. The alignment between the two 

datasets indicates that the CCMFA-GA-ANN 

model effectively minimizes forecasting 

errors. However, minor deviations are 

observed at certain hours, particularly around 

midday and late evening, suggesting potential 

areas for further refinement in the forecasting 

approach. 

The performance of the forecast model across 

different time intervals is further depicted in 

Fig. 4, showing a strong correlation between 

actual and forecasted loads. The model 

successfully captures fluctuations, including 

peak load variations, with minimal 
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forecasting errors. This reinforces the 

efficiency of the CCMFA-GA-ANN model in 

providing a robust and reliable forecasting 

mechanism for load demand prediction. 

Table 1c presents numerical comparisons of 

actual load, naïve forecast, and CCMFA-GA-

ANN forecast, highlighting the relative 

absolute error (RAE) across different time 

intervals. Some values exhibit minimal 

deviation from actual loads, while others 

show larger discrepancies, indicating areas 

for potential model optimization. The overall 

forecast performance metrics are summarized 

in Table 1d, with a mean absolute percentage 

error (MAPE) of 1.07%, demonstrating a 

relatively low forecasting error. The model 

recorded a mean absolute scaled error 

(MASE) of 0.18, a mean absolute error 

(MAE) of 48.00, and a forecast efficiency 

(FE) of 0.52. Additionally, the mean 

percentage error (MPE) was -0.02%, and 

Theil’s U statistic was 0.69, confirming a 

strong predictive capability compared to a 

naïve benchmark model. The root mean 

square error (RMSE) was 63.79, while the 

coefficient of determination (R-squared) was 

remarkably high at 0.99999888, indicating 

the model's ability to capture the variance in 

the data accurately. 

The results reveal that the CCMFA-GA-ANN 

model demonstrated a high level of accuracy 

and efficiency in load forecasting, with strong 

predictive performance and minimal errors, 

as evidenced by the Figures and Tables 

presented. The Pearson correlation 

coefficient (r) of 0.99969157 further confirms 

the strong relationship between actual and 

forecasted values. The model’s convergence 

time was recorded at 2.321 seconds, 

highlighting its computational efficiency. 

Future improvements could focus on refining 

the model’s ability to minimize errors at 

specific time intervals to enhance forecasting 

reliability further. 
 

Table 1a: Iteration Results for 24-Hour 

Ahead Load Forecasting 
 

Iteration Best Fitness 

0 -0.164611 

1 -0.299265 

2 -0.522337 

3 -0.940719 

4 -1.17322 

5 -1.23024 

Final -1.52548 

Best Solution [-0.545965, -1.52548] 
 

Table 1b: NMSE Values for Training and Testing 
 

Objective 

Function 

Training 

Set 

Test Set Activities 

NMSE 0.215305 0.349178 - Saving Weights... 

NMSE 0.245169 0.397703 
 

NMSE 0.148784 0.248762 - Saving Weights... 

NMSE 0.151653 0.269627 
 

NMSE 0.169724 0.324905 - Stopping Training and Restoring 

Weights... 

NMSE 0.148784 0.248762 
 

 

Table 1c: Load Forecasting Results 
 

Hrs Actual 

Loads 

Naïve 

Forecast 

Load 

Forecast 

Naïve 

Abs. 

Error 

Forecast 

Error 

RAE 

(%) 

Forecast 

MAE 

Naïve 

MAE 

Forecast 

Bias 

(%) 

1441 4600.00 4600.00 4600.00 36.50 32.01 0.70 0.01 0.01 -0.70 

1442 4593.10 4605.20 4587.08 12.10 6.02 0.13 0.00 0.00 -0.13 

1443 4575.00 4593.10 4624.59 18.10 -49.59 1.08 0.01 0.00 1.08 
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1444 4582.50 4575.00 4625.82 7.50 -43.32 0.95 0.01 0.00 0.95 

1445 4586.90 4582.50 4580.32 4.40 6.58 0.14 0.00 0.00 -0.14 

1446 4552.10 4586.90 4506.33 34.80 45.77 1.01 0.01 0.01 -1.01 

1447 4391.30 4552.10 4440.93 160.80 -49.63 1.13 0.01 0.04 1.13 

1448 4500.40 4391.30 4402.66 109.10 97.74 2.17 0.02 0.02 -2.17 

1449 4496.10 4500.40 4498.93 4.30 -2.83 0.06 0.00 0.00 0.06 

1450 4420.00 4496.10 4509.10 76.10 -89.10 2.02 0.02 0.02 2.02 

1451 4313.00 4420.00 4414.33 107.00 -101.33 2.35 0.02 0.02 2.35 

1452 4365.80 4313.00 4344.30 52.80 21.50 0.49 0.00 0.01 -0.49 

1453 4458.30 4365.80 4404.87 92.50 53.43 1.20 0.01 0.02 -1.20 

1454 4361.90 4458.30 4452.58 96.40 -90.68 2.08 0.02 0.02 2.08 

1455 4411.30 4361.90 4365.17 49.40 46.13 1.05 0.01 0.01 -1.05 

1456 4273.70 4411.30 4356.78 137.60 -83.08 1.94 0.02 0.03 1.94 

1457 4386.80 4273.70 4342.76 113.10 44.04 1.00 0.01 0.03 -1.00 

1458 4485.70 4386.80 4464.53 98.90 21.17 0.47 0.00 0.02 -0.47 

1459 4750.90 4485.70 4571.51 265.20 179.39 3.78 0.04 0.06 -3.78 

1460 4702.40 4750.90 4699.57 48.50 2.83 0.06 0.00 0.01 -0.06 

 

Table 1d: Performance Metrics for Load Forecasting 
 

Metrics Values 

Mean Absolute Percentage Error (MAPE) 1.07% 

Mean Absolute Scaled Error (MASE) 0.18 

Mean Absolute Error (MAE) 48.00 

Forecast Efficiency (FE) 0.52 

Mean Percentage Error (MPE) -0.02% 

Theil's U Statistic 0.69 

Root Mean Square Error (RMSE) 63.79 

Coefficient of Determination (R²) 0.99999888 
Accuracy Percentage 82.42% 

Pearson Correlation Coefficient (r) 0.99969157 
Convergence Time 2.321 s 

 

 
 

Fig. 1: Next 24 hours load forecast using CCMFA-GA model for 30th April 2021 
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Fig. 2: Next 24 hours load forecast using CCMFA-GA model for 31st May 2021 

 

 
Fig. 3: Actual Load vs Forecast Load for 29th May 2021 

 

 
Fig. 4: Actual Load vs Forecast Load for 29th April 2021 

Fig. 5 illustrates the variation in the 

normalized mean square error (NMSE) for 

both the training and test datasets over six 

different iterations during the training process 

of the CCMFA-GA-ANN model. The NMSE 

values in the training set vary from 0.215305 

in the first iteration to 0.148784 in both the 

third and sixth iterations, indicating an 

improvement in model accuracy as training 

progresses. 

 
Fig. 5: Graph showing the weight adjustment, training and test dataset 
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The lowest NMSE of 0.148784 suggests that 

the model was able to reduce training errors 

effectively. In the test set, the NMSE initially 

starts at 0.349178 in the first iteration and 

fluctuates before reaching a minimum of 

0.248762 in the third and sixth iterations. The 

higher NMSE in the test set compared to the 

training set suggests some degree of 

generalization error. Additionally, the NMSE 

fluctuation in the test set, with peaks at 

iterations two and five, indicates minor 

overfitting tendencies at certain points. The 

training NMSE consistently remains lower 

than the test NMSE, which is expected as 

models are usually optimized for training data 

first. However, the narrowing gap between 

training and test NMSE values in later 

iterations, particularly at iterations three and 

six, suggests an improved generalization 

ability of the model. 

Table 2 presents the performance metrics of 

the CCMFA-GA model for 24-hour ahead 

load forecasting across one week, from April 

24 to April 30, 2021. The Mean Absolute 

Percentage Error (MAPE) ranges from 1.07% 

on Friday to 4.30% on Sunday, with Friday 

showing the best forecasting accuracy while 

Sunday exhibits the highest error. The Mean 

Absolute Scaled Error (MASE) varies 

between 0.10 on Wednesday and 0.35 on 

Saturday, suggesting that the model captures 

weekday load patterns better than weekend 

fluctuations. The Mean Absolute Error 

(MAE) ranges from 48.00 on Friday to 

161.42 on Sunday, with lower values 

indicating better forecasting accuracy. 

Forecast Efficiency (FE) ranges from -1.50 

on Saturday to 0.52 on Friday, with negative 

FE values on Saturday and Sunday indicating 

suboptimal forecasting performance on 

weekends, while Friday demonstrates the best 

efficiency. 

The Mean Percentage Error (MPE) varies 

between -1.90% on Sunday and 0.74% on 

Saturday, showing minimal bias in the 

model’s predictions, with slight 

underestimation on Sunday and slight 

overestimation on Saturday. The Theil’s U 

statistic values range from 1.58 on Saturday 

to 0.69 on Friday, where the lower value on 

Friday suggests stronger predictive ability, 

while the higher value on Saturday reflects 

poorer performance. The Root Mean Square 

Error (RMSE) ranges from 63.79 on Friday to 

243.63 on Sunday, further reinforcing that 

Friday had the most accurate forecast while 

Sunday had the least accurate. The R-squared 

(R²) values remain consistently high, between 

0.99998 and 0.99999, showing a strong 

correlation between actual and predicted 

values. Similarly, the Pearson correlation 

coefficient (r) ranges from 0.99466 on 

Sunday to 0.99969 on Friday, confirming a 

strong agreement between actual and 

predicted loads. 

The computational efficiency of the model is 

reflected in the convergence times, which 

range from 2.618 seconds on Saturday to 

3.556 seconds on Friday. The higher 

convergence time on Friday suggests that 

additional computational effort was required 

to achieve better accuracy. Overall, the best 

forecasting performance was observed on 

Friday, April 30, 2021, which had the lowest 

MAPE of 1.07%, MAE of 48.00, Theil’s U of 

0.69, and RMSE of 63.79, along with the 

highest FE of 0.52. In contrast, the worst 

forecasting performance occurred on Sunday, 

April 25, 2021, with the highest MAPE of 

4.30%, MAE of 161.42, RMSE of 243.63, 

and lowest FE of -0.10. 

The model exhibited greater errors on 

weekends, suggesting inconsistencies in load 

patterns that require further refinement. 

Despite this, the CCMFA-GA model 

demonstrated high forecasting accuracy, 

particularly on weekdays, with a strong 

correlation coefficient and efficient 

computational performance. To improve the 

model’s weekend forecasting performance, 

additional variables such as social activity 

trends and seasonal variations could be 

incorporated. Fine-tuning the model using 

hyperparameter optimization or hybrid 

approaches such as integrating Long Short-

Term Memory (LSTM) models may enhance 

accuracy. Reducing errors through cross-

validation techniques and additional 
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regularization mechanisms could also be 

beneficial. Implementing adaptive learning 

mechanisms that allow real-time adjustments 

for dynamic load variations, particularly 

during weekends, may further enhance the 

model’s performance. This analysis confirms 

that while the CCMFA-GA model is highly 

effective for short-term load forecasting, 

there remains scope for improvement, 

particularly in weekend predictions. 
 

Tables 2: Comparison of 24hrs Ahead Load forecast using CCMFA-GA model for 1 week 
 

Performan

ce Metrics 

Saturday Sunday Monday Tuesday Wednesd

ay 

Thursda

y 

Friday 

24/04/20

21 

25/04/20

21 

26/04/20

21 

27/04/20

21 

28/04/202

1 

29/04/20

21 

30/04/20

21 

The 

MAPE  

 2.40%  4.30%  2.40%  3.07%  2.61%  1.96%  1.07% 

The 

MASE  

 0.35  0.12  0.26  0.20  0.10  0.13  0.18 

The MAE   108.59  161.42  108.15  141.36  114.42  92.46  48.00 

The 

Forecast 

Efficiency 

(FE)  

 -1.50  -0.10  -0.00  0.04  0.24  0.18  0.52 

The MPE   0.74%  -1.90%  0.11%  0.50%  -0.15%  0.36%  -0.02% 

The 

Theil's U 

statistic  

 1.58  1.05  1.00  0.98  0.87  0.91  0.69 

The 

RMSE  

 150.89  243.63  134.51  177.92  146.64  118.07  63.79 

(R - 

Squared) 

value  

 

0.999994

21 

 

0.999980

45 

 

0.999995

45 

 

0.999992

64 

 

0.999994

04 

 

0.999996

74 

 

0.999998

88 

The 

Accuracy 

Percentage  

 65.46%  87.77%  73.70%  80.00%  90.45%  87.43%  82.42% 

The 

Pearson 

Cor. Coef. 

r  

 

0.998304

41 

 

0.994667

64 

 

0.998639

33 

 

0.997822

65 

 

0.998236

28 

 

0.999048

69 

 

0.999691

57 

Convergen

ce Time  

 2.618s  2.698s  2.723s  2.951s  2.704s  2.647s 3.556s 

Fig. 6 presents the graphical representation of 

four key performance metrics—Mean 

Absolute Percentage Error (MAPE), Mean 

Absolute Scaled Error (MASE), Root Mean 

Square Error (RMSE), and Mean Absolute 

Error (MAE)—for the proposed CCMFA-GA 

model in forecasting 24-hour ahead load 

demand from April 24 to April 30, 2021. Each 

graph highlights variations in forecasting 

accuracy across different days of the week, 

revealing patterns in model performance. 

The first graph illustrates the variation of 

MAPE over the forecast period. The MAPE 

values indicate the percentage deviation of 

the forecasted load from the actual load. The 

graph shows a peak on Sunday, suggesting 

that the model exhibited the highest 

forecasting error on this day. The error 

gradually decreases throughout the week, 

reaching its lowest value on Friday, April 30. 

This trend suggests that the model performs 

better on weekdays, potentially due to more 
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stable load consumption patterns in contrast 

to the irregular demand seen on weekends. 

The second graph depicts the variation in 

MASE across the forecasting period. MASE 

measures the forecasting error relative to a 

baseline model and provides insights into the 

consistency of errors. The highest MASE is 

observed on Saturday, indicating significant 

forecasting errors relative to the baseline. The 

error decreases on Sunday and fluctuates 

during the weekdays, with the lowest value 

recorded on Wednesday. This suggests that 

the model more effectively captures mid-

week load trends but struggles to generalize 

during weekends. 

The third graph represents RMSE values, 

which quantify the magnitude of forecasting 

errors in megawatts (MW). The RMSE graph 

exhibits a peak on Sunday, confirming that 

this day experienced the highest absolute 

forecast error. The errors decrease throughout 

the week, reaching their lowest on Friday. 

This pattern aligns with the MAPE graph, 

further supporting the observation that the 

model performs best on weekdays while 

struggling on weekends. 

The fourth graph illustrates the variation of 

MAE, which represents the average absolute 

error in MW. Similar to RMSE, the highest 

MAE is recorded on Sunday, indicating large 

deviations between actual and predicted 

values. The MAE values gradually decline 

throughout the week, with the lowest error 

observed on Friday, reflecting improved 

accuracy in weekday forecasts. 

Generally, Fig. 4 highlights the model's 

tendency to exhibit higher errors on 

weekends, particularly on Saturday and 

Sunday, while achieving better accuracy on 

weekdays, especially on Friday. This 

discrepancy is due to irregular electricity 

demand patterns on weekends, making it 

more challenging for the model to predict 

load accurately. To improve weekend 

forecasting, additional factors such as 

consumer behavior trends, social activities, 

and industrial demand variations should be 

incorporated into the model. Additionally, 

implementing adaptive learning techniques or 

hybrid approaches could help refine 

predictions and minimize errors during non-

standard load conditions. 

Fig. 7 presents the variations in absolute 

forecast errors over a 24-hour period, 

comparing the CCMFA-GA model with other 

forecasting methods. The first graph 

highlights the differences in error magnitude 

between CCMFA-GA and GA, while the 

second graph extends this comparison to 

include FA, BA, and ANN models. 

Throughout the day, the absolute forecast 

errors fluctuate, with noticeable spikes during 

peak demand hours, particularly between 

18:00 and 20:00, which aligns with increased 

load consumption. Despite these fluctuations, 

the CCMFA-GA model consistently 

demonstrates lower error values than the 

other models, reaffirming its accuracy and 

reliability. 

Table 3 provides a comprehensive evaluation 

of the forecasting models using multiple 

performance metrics. The results indicate that 

CCMFA-GA achieves the lowest Mean 

Absolute Percentage Error (MAPE) of 

1.07%, outperforming CCMFA, BA, FA, and 

GA. The Mean Absolute Error (MAE) values 

further highlight CCMFA-GA’s superior 

performance, with the lowest error magnitude 

of 48.00 compared to CCMFA’s 56.36 and 

GA’s 53.18. The forecast efficiency (FE) is 

highest for CCMFA-GA at 0.52, suggesting 

better predictive capability compared to other 

models. Additionally, the Theil’s U statistic is 

lowest for CCMFA-GA at 0.69, indicating 

minimal bias in its predictions. 
The correlation between predicted and actual 

values is highest for CCMFA-GA, as seen in 

the Pearson Correlation Coefficient of 

0.99969157 and an R² value of 0.99999888. 

These metrics confirm the model’s ability to 

closely match actual load values. Another 

significant advantage of CCMFA-GA is its 

convergence speed, as it reaches an optimal 

solution in just 2.321 seconds, significantly 

faster than CCMFA at 6.945 seconds and BA at 

21.62 seconds. This efficiency makes it 

particularly suitable for real-time forecasting 

applications, where quick decision-making is 
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crucial. While CCMFA-GA consistently 

outperforms other models across different 

performance metrics, it is observed that 

forecasting errors tend to increase during 

peak demand hours. This suggests that further 

refinements, such as integrating deep learning 

techniques or real-time adaptive models, 

could enhance its predictive accuracy during 

periods of high load variability. Nevertheless, 

the overall findings from Figure 5 and Table 

3 strongly indicate that CCMFA-GA provides 

the most accurate, efficient, and 

computationally effective solution for 24-

hour-ahead load forecasting. 

 

 

 

 

 
Fig. 6: Graphs showing the MAPE, MASE, RMSE and MAE using the proposed model 
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Fig. 7: Comparison of Forecast Absolute Errors Across Different Models 
 

 

Table 3: Comparisons of 24HRS Ahead Load forecast using various models 
 

METRICS CCMFA-

GA 

CCMFA BA FA GA 

The MAPE   1.07%  1.26%  1.22%  1.21%  1.19% 

The MASE   0.18  0.20  0.18  0.17  0.18 

The MAE   48.00  56.36  54.64  54.29  53.18 

The Forecast 

Efficiency (FE)  

 0.52  0.42  0.44  0.44  0.47 

The MPE is   -0.02%  -0.53%  -0.33%  -0.24%  -0.23% 

The Theil's U 

statistic is  

 0.69  0.76  0.75  0.75  0.73 

The RMSE   63.79  70.15  68.93  69.03  67.04 

The Coeff. of Det. 

(R2) value  

0.99999888 0.99999865 0.99999869 0.99999869 0.99999877 

The Accuracy 

Percentage  

 82.42%  80.18%  82.19%  82.54%  82.42% 

The Pearson 

Correlation 

Coefficient r  

0.99969157 0.99966953 0.99965557 0.99964687 0.99966692 

Convergence Time   2.321s  6.945 s    21.62 s   11.11 s   5.996 s 
 

 

 
Fig. 5 
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4.0 Conclusion 
 

The findings of this study demonstrate that 

the proposed hybrid model, CCMFA-GA-

ANN, significantly improves short-term 

electricity load forecasting accuracy. The 

model achieves the lowest MAPE of 1.07%, 

the lowest MAE of 48.00, and the highest 

forecast efficiency of 0.52, outperforming 

other benchmark models. The Theil’s U 

statistic of 0.69 and a Pearson correlation 

coefficient of 0.99969 indicate a strong 

agreement between actual and predicted 

values, confirming the reliability of the 

hybrid approach. Additionally, the model 

exhibits superior computational efficiency, 

achieving the fastest convergence time of 

2.321 seconds, making it highly suitable for 

real-time applications. The results also reveal 

that the model maintains a high accuracy 

percentage of 82.42%, further reinforcing its 

effectiveness in load forecasting. However, 

analysis of forecast errors suggests that 

discrepancies are slightly higher during peak 

demand hours, indicating a potential area for 

improvement. 

The conclusion drawn from this study affirms 

that the integration of a neural network with 

an enhanced firefly algorithm and a genetic 

algorithm results in a robust and efficient 

forecasting model. The hybridization 

enhances optimization, allowing for more 

precise tuning of model parameters, 

ultimately leading to improved accuracy and 

computational speed. The ability of CCMFA-

GA-ANN to capture complex temporal 

patterns in load demand makes it a valuable 

tool for electricity utilities, grid operators, 

and policymakers involved in energy 

management and infrastructure planning. The 

study highlights the practical implications of 

accurate load forecasting in optimizing 

resource allocation, reducing operational 

costs, and enhancing grid stability. 

Based on the findings, it is recommended that 

further refinements be made to enhance the 

model’s performance during peak load 

periods, where slightly higher errors were 

observed. Incorporating additional features 

such as real-time weather conditions, socio-

economic factors, and demand-side response 

measures could further improve forecast 

accuracy and adaptability. Future research 

should also focus on validating the model 

across different datasets and geographical 

regions to ensure its generalizability and 

robustness in diverse scenarios. The 

application of the hybrid model in real-time 

energy management systems can provide 

significant benefits in optimizing electricity 

distribution, minimizing demand-supply 

imbalances, and supporting sustainable 

energy planning. 
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