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Abstract: Machine learning algorithms, such 

as random forests (RF), artificial neural 

networks (ANN), and support vector 

regression (SVR), are viable modelling tools 

because they can learn and replicate data 

patterns. However, linear regression models 

are relatively easy to implement. Downward 

longwave radiation (DLR) is rarely measured 

due to complications of its measuring 

instrument, notwithstanding the importance 

of the radiation in the atmosphere and the 

energy balance of the Earth’s surface. 

Besides linear regression, several machine 

learning modes, such as SVR and RF, were 

also used to model daily cloudless and all-sky 

DLR at Ilorin (8.53° N, 4.57° E), Nigeria. We 

further sought an appropriate ANN unit for 

estimating the radiation in this study. 

Predictors comprised the period, clearness 

index, air temperature, water vapour 

pressure, relative humidity, global solar 

radiation, and solar hour angle. We found 

that solar hour angle actively predicts all-sky 

DLR. The most vital variables used for an all-

sky DLR linear regression model for this 

clime are water vapour pressure, relative 

humidity, and solar hour angle. Machine 

learning systems generalise better with vast 

data having well-correlated inputs. The 

results also reveal that several machine 

learning algorithms, like SVR with Pearson 

VII kernel function, can be used for modelling 

DLR. 
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1. 0 Introduction 

In addition to the components of solar 

shortwave radiation, longwave radiation 

components also account for the energy 

balance of the Earth’s surface. Without both 

types of radiation, atmospheric heat energy 

would be inexistent or extremely low. 

Because the energetic shortwave radiation 

balance occurs with sunshine, it vastly 

controls the daytime atmospheric heat. 

However, less powerful longwave radiation is 

available, with or without solar rays from the 

sun. Consequently, longwave fluxes sustain 

both day and night atmospheric energies. 

Several atmospheric phenomena, such as 

land-sea energy exchange, nocturnal cooling 

activities like frosts and fog, snow-cover 

levels, and ambient temperature variation, 

relate to DLR (Sellers, 1965; Ohmura, 1982; 

Zhang et al., 2001). The net longwave 

radiation is the difference between the 

downward longwave radiation (DLR) and the 

upward longwave radiation, which is the 

DLR reflected from the Earth’s surface back 
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to the sky, depending on the ground albedo. 

While the downwelling longwave radiation is 

designated positive, the upward component is 

assigned negative in the evaluation of the net 

longwave radiation. Due to its thermal nature, 

DLR is beneficial for soil evapotranspiration, 

solar collectors, and agricultural and 

architectural applications. 

DLR is rarely measured on the ground 

because the pyrgeometer, the instrument for 

measuring DLR, is fragile due to its high 

sensor sensitivity and requires daytime data 

correction and regular recalibration (Udo, 

2000). Researchers have modelled the 

radiation using various techniques to 

ameliorate the paucity of data (Sugita and 

Brutsaert, 1993; Soares et al., 2004). In 

Africa, intensive ground measurements of 

DLR have occurred in only four sites: 

Tamanrasset (22.78° N, 5.51° E) Algeria, 

Ilorin (8.53° N, 4.57° E) Nigeria, Namib 

Desert (23.56° S, 15.04° E) Namibia, and De 

Aar, Pretoria (30.67° S, 23.99° E), South 

Africa (Culf and Nash, 1993; Marthews et al., 

2012; Obot, 2019). Despite notable studies, 

none exist yet on using machine learning to 

model all-sky DLR at Ilorin, Nigeria. In 

addition to relative humidity, water vapour 

pressure, and air temperature, the impacts of 

some parameters, namely global solar 

radiation and solar zenith angle, have not yet 

been considered in modelling the radiation at 

the site (Udo 2003; Obot et al., 2008, 2019).  

The two main approaches for modelling are 

the traditional linear regression method and 

machine learning (ML) procedures. Linear 

regression is a curve-fitting technique. It is a 

statistical method for modelling the 

relationship between a dependent variable 

and one or more independent variables. The 

best-fitting straight line through the observed 

data points comes forth by minimising the 

sum of the squared differences between the 

observed values and those predicted. 

However, ML uses mathematical-based 

methods, such as statistical mechanics, 

neurology, and other principles, often 

inspired by nature to function. Although 

machine learning can handle problems with 

well-defined mathematical expressions, its 

uniqueness lies in its ability to solve tasks 

without any equation or overt programme 

processes. Machine learning is a subset of 

artificial intelligence (AI) that functions 

based on learning. AI, in general, are 

machines, such as computers, robots, and 

other mechanical and electronic units, that 

perform human tasks, such as walking, 

talking, reasoning, and calculating; however, 

they are separable by their techniques. 

Machine learning is a distinctively 

experience-based algorithm, whereas not 

every AI requires experience. Several 

algorithms, such as artificial neural networks, 

support vector machines, decision trees, 

random forests, adaptive neuro-fuzzy 

inference system, Naive Bayes, logistic 

regression, k-means, k-nearest-neighbour, 

etc., fall under the umbrella of machine 

learning. They perform regression, 

classification, clustering, filtering, content 

memory, and dimensionality reduction. 

Regression algorithms in machine learning, 

such as the Alaike criterion and the least 

median squared method, take diverse forms 

slightly different from the traditional linear 

regression format. Sometimes, a regression 

method in ML eliminates predictors with 

little or no relationship with the dependent 

variable(s). The Akaike criterion is a 

commonly used measure of the goodness of 

fit for linear regression models. It considers 

the goodness of fit and the complexity of the 

model and provides a way to compare models 

using different numbers of parameters to 

avoid overfitting the data. However, the least 

median squared regression fits a linear model 

to data with high noise levels or outliers. It 

minimises the median sum of squared 

residuals contrary to the least square 

regression, which minimises the sum of 

squared residuals. 

There are three main learning procedures in 

ML: supervised, unsupervised, and 

reinforcement. During training, the input-to-

output data pair is shown to the system to 

learn their relationship in supervised learning, 

and the test for an accurate response is with 

new and likely less input. Whereas the 

training data under unsupervised learning 
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have no output, the system has to learn the 

inherently plausible description and quantify 

an object, training in reinforcement learning 

has little output description during training 

with a reward-oriented approach. However, 

another method, the semi-supervised 

algorithm, deploys little labelled training data 

while its target combines a vast unlabelled set 

with the meagre labelled group for optimal 

generalisation.  
Several studies have modelled clear-sky and all-

sky DLR using linear regression and a few 

machine learning algorithms like neural 

networks, support vector regression, and adaptive 

neuro-fuzzy inference system (Sugita and 

Brutsaret, 1993; Crawford and Duchon, 1999; 

Udo, 2003; Soares et al., 2004; Bilbao and De 

Miguel, 2007; Obot et al., 2008, 2019; Krut et al., 

2010). To our knowledge, no work has estimated 

DLR with Weka, an open-source ML software 

with several packages, or established a 

relationship between solar hour angle and the 

radiation before now. In addition to modelling 

all-sky DLR with linear regression, this study 

also aims to use machine learning schemes to 

model cloudless and all-sky DLR from inputs 

such as clearness index, water vapour 

pressure, global solar radiation, temperature, 

and relative humidity using the supervised 

learning technique. Besides, we seek an 

appropriate artificial neural network structure 

for estimating the radiation 
 

2. 0 Materials and Methods 

2.1 Data and Statistical Indexes 
 

The main data used in this study belong to the 

University of Ilorin, Ilorin (8.53° N, 4.57° E), 

the only known station in Nigeria with ground 

measurements of DLR so far. They were, 

however, obtained from the Baseline Surface 

Radiation Network (BSRN) at 

https://www.pangaea.de/PHP/BSRN_Status.

php. Other atmospheric factors like the air 

temperature, relative humidity, and water 

vapour pressure, when not available from 

BSRN, were obtained from the Nigeria 

Meteorological Agency (NIMET). The data 

archived by NIMET pertain to the airport 

approximately 12 km from the University. 

DLR measurements were from September 

1992 to August 1994 and June 1995 to April 

1998 (Udo, 2003; Obot et at., 2019). The 

calibration information for the instruments 

used at the campus is in Table 1. 

 

Table 1: Calibration information of the pyrgeometers used at the site of this study 

 

Instrument 

No. 

Year of 

Calibration  

Calibration Constant 

(μV/Wm-2) 

Place of Calibration  

PIR 20468F3 1980 4.21 New Eppley Lab, New York 

PIR 20468F3 1988 3.92 New Eppley Lab, New York 

PIR 20468F3 1994 3.75 World Radiation Center, Davos 

PIR 28898F3 1992 4.00 New Eppley Lab, New York 

PIR 32225F3 1998 4.07 New Eppley Lab, New York 

 

The sky is clear under certain conditions, but 

mainly, the daily clearness index (𝑘𝑇) should 

be greater than or equal to 0.60. It is 

mathematically expressed as; 

𝑘𝑇 =  
𝐻𝐺

𝐻𝐸
 ≥ 0.60              (1)                                                        

𝐻𝐺  is the global solar irradiation (J/m2), and 

𝐻𝐸 is the extraterrestrial solar irradiation 

intercepted by a plane parallel to the Earth's 

surface (J/m2).  

Input parameters for modelling DLR 

comprised day, month, year, clearness index, 

water vapour pressure, air temperature, 

relative humidity, global solar radiation, and 

solar hour angle. The solar hour angle was 

calculated from; 

𝜔𝑠 = 𝑐𝑜𝑠−1(−𝑡𝑎𝑛∅𝑠𝑖𝑛𝛿)      (2) 

where ∅ and 𝛿 represent the latitude and 

declination in radians.  

Error statistics for assessing the estimation 

capability of the models include correlation 

coefficient (𝑟), mean absolute error (𝑀𝐴𝐸), 

and root mean square error (𝑅𝑀𝑆𝐸). The 

correlation coefficient can be expressed as; 
 

𝑟 =  
∑(𝐷𝐿𝑅𝑒− 𝐷𝐿𝑅̅̅ ̅̅ ̅̅ 𝑒 ) ∑(𝐷𝐿𝑅𝑚− 𝐷𝐿𝑅̅̅ ̅̅ ̅̅ 𝑚 )

√∑(𝐷𝐿𝑅𝑒−  𝐷𝐿𝑅̅̅ ̅̅ ̅̅ 𝑒 )2 ∑(𝐷𝐿𝑅𝑚− 𝐷𝐿𝑅̅̅ ̅̅ ̅̅ 𝑚 )2
   (3)     
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where 𝐷𝐿𝑅𝑒 is the estimated radiation, 𝐷𝐿𝑅̅̅ ̅̅ ̅̅
𝑒 

is the mean estimated radiation, 𝐷𝐿𝑅𝑚 is the 

ground-measured radiation, and 𝐷𝐿𝑅̅̅ ̅̅ ̅̅
𝑚 is the 

mean ground-measured radiation.   

𝑀𝐴𝐸 =  
∑|𝐷𝐿𝑅𝑒− 𝐷𝐿𝑅𝑚|

𝑛
   (4) 

The total number of cases is given by n, and 
 

𝑅𝑀𝑆𝐸 =  √
∑(𝐷𝐿𝑅𝑒− 𝐷𝐿𝑅𝑚)2

𝑛
       (5)     

                                                                 

2.2 Artificial Neural Networks 
 

Civilisation is sustainable from continuous 

human inventions, and in some cases, nature 

replications are in place. Aeroplanes and 

ships, respectively, have shapes like birds and 

fishes for optimal speed in the air and water. 

Hearing aid mimics the hearing mechanism in 

birds (Bar-Cohen, 2000). Artificial neural 

networks (ANN) exclusively function using 

cruelly approximated mathematical 

expressions of the human nervous system. For 

an artificial neuron, the relationship between 

the activation function, 𝑓 and the output, 𝑦 is 

given as:    

𝑦 = 𝑓 (∑ 𝑤𝑖𝑥𝑖

𝑛

𝑖=1

)                                    (6) 

where 𝑤𝑖 represents the weights for all inputs, 

and 𝑥𝑖 represents the neuron input values. 

The peculiarities of ANN, like in the 

biological neuron, are that information 

processing is parallel in contrast to the series 

procedure format of the Von Neumann 

machine. Thus, ANN can tackle numerous 

problems. ANN is also robust and tolerant to 

error failure because it can still perform its 

overall function even if some neurons are 

inactive and can easily handle fuzzy logic 

computing tasks.    

Weka, an open-source ML software, was used 

for the experiments because of its relative 

ease of designing ANN. During the design, 

the hidden layers of the feedforward 

multilayer perceptron neural network were 

turned, while other system parameters were at 

default. In addition to the entire training set, 

further system assessment was with some 

percentages of the training data.  

2.3 Support Vector Regression 

Support vector regression (SVR) is the other 

machine learning algorithm besides the 

support vector classifier (SVC) under the 

support vector machines. Whereas SVR is 

highly accurate and efficient in solving 

regression problems, its counterpart is for 

tackling classification issues. SVR is a 

supervised learning algorithm for mapping 

data into a higher dimensional feature space. 

It uses a suitable kernel function to find the 

optimal hyperplane that maximises the 

margin between the hyperplane and the 

closest data points, known as support vectors. 

Additionally, SVR handles noisy data and 

outliers by incorporating a soft margin, which 

allows some data points to violate the margin. 

Hence, SVR can effectively deal with high-

dimensional data with complex nonlinear 

relationships. There are several kernel 

functions, such as linear kernel, polynomial 

kernel, radial basis function (RBF) kernel, 

and sigmoid kernel. A kernel function has its 

own set of hyperparameters that can produce 

the best performance for a given problem 

when turned. Unlike other kernel functions, 

the Pearson VII Universal-based function 

(PUF) kernel is versatile because it can 

change from Gaussian to Lorentzian shape 

and beyond when its parametric properties for 

curve fitting are varied. Thus, it can replace 

other kernel functions. The PUF kernel 

(Üstün et al., 2006) can be expressed as; 

𝐾(𝑥𝑖, 𝑥𝑗) =

 1 [1 + (
2√‖𝑥𝑖− 𝑥𝑗‖

2
 √2(1/𝜔)−1

𝜎
)

2

]

𝜔

⁄   (7) 

where 𝑥𝑖 and 𝑥𝑗 are the input vectors, 𝜎 and 𝜔 

are the parametric properties for curve fitting.  
 

2.4 Random Forests 
 

Random Forest (RF) is a machine learning 

algorithm for classification and regression 

tasks. It is an ensemble learning method that 

constructs a forest or multitude of decision 

trees at training time and outputs the predicted 

class or average. A forest consists of 

randomly selected regression-based trees. RF 

algorithm constructs the multiple decision 

trees using bootstrapped datasets and 
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randomly-selected subsets of input 

variables. At prediction, each tree in the forest 

independently predicts the class or value of a 

given input. Then, the class or mean that 

receives the most votes from all the trees 

gives the final prediction. This approach helps 

to reduce overfitting and improve the 

accuracy and generalisation of the model. 

Because RF can accurately handle missing 

values, it is useful when dealing with large 

datasets, high-dimensional spaces, and 

complex feature relationships. Moreover, the 

RF algorithm can also provide information on 

the relative importance of each feature in 

predicting the target variable, making it a 

valuable tool in dimensionality reduction and 

exploratory data analysis (Breiman, 2001).  

The experiments in this work involved 

evaluating all the modes in the classifier 

folder in Weka version 3.9.5 under various 

conditions. Besides the unsuitable machine 

learning algorithms for numerical data, 

overfitted or unfitted models were also 

overlooked since they had a correlation 

coefficient value of either 100% or 0% during 

training. Further sieving criteria were that no 

mode should have a correlation coefficient 

value lower than 85% and 𝑅𝑀𝑆𝐸 should be 

less than or equal to 10.0 W/m2 during the 

training phase under clear skies DLR 

estimation. The software also determined the 

statistical indexes from its packages. 
 

3.0  Results and Discussion   

3.1 Linear Regression Model 
 

During the periods under investigation, 206 

days were clear. The retained data for all-sky 

DLR modelling covers September 1992 – 

August 1994, while days with missing data 

for variables, such as water vapour pressure, 

RH, and temperature, in the archives of 

NIMET, were eliminated. Table 2 shows the 

correlation between the independent variable 

(DLR) and the dependent factors. The trends 

between the predictors and DLR, under clear 

skies and all skies, are similar but with 

different correlation coefficient values. If the 

clearness index, which sometimes serves as a 

sieving parameter is ignored, then air 

temperature and global solar radiation are 

poor predictors of DLR in this clime. The 

main variables are water vapour pressure, 

relative humidity, and solar hour angle. Under 

the all-sky situation, the clearness index and 

global solar radiation have negative 

correlations. Additionally, global solar 

radiation correlation with DLR is lower than 

air temperature correlation with the radiation, 

unlike under clear skies. 

 

Table 2: Correlation coefficient values 

between DLR and its predictors 

 

Parameters  Cloudless 

DLR (n = 

206) 

All-sky 

DLR (n 

=721) 

Clearness 

index 

0.0983 - 0.0568 

Air 

temperature 

0.2458 0.1693 

Water vapour 

pressure 

0.7871 0.8057 

Relative 

humidity 

0.6765 0.6998 

Solar hour 

angle 

0.3939 0.5480 

Global solar 

radiation 

0.2854 -0.1081 

  

The linear expression for the daily all-sky 

DLR was obtained using adequately 

correlating factors as; 
 

3.03𝑒 − 0.045𝑅𝐻 + 0.727𝜔𝑠 + 265.349           

     (8) 
 

where 𝑒 is water vapour pressure, RH is 

relative humidity, and 𝜔𝑠 is solar hour angle. 

The correlation coefficient, mean absolute 

error, and root mean square error accrued 

from Equation 8 were 0.8086, 8.4219 (W/m2), 

and 12.5557 (W/m2), respectively. However, 

those respective statistics stood at 0.7784, 

10.3633 (W/m2), and 15.3133 (W/m2) when 

the equation was tested on clear-sky DLR.  
 

3.2 Machine Learning Modes 
 

Regarding the designed ANN, descend order 

of the number of nodes in three hidden layers 

gave optimal results (Fig 1). The same ANN 

was suitable for both clear skies and all-sky 
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DLR estimations while setting network 

viewing to false reduced the running time.  

The results for modelling clear-sky DLR are 

in Appendix 1. After sieving with the two 

earlier-mentioned criteria, 10 out of 27 modes 

were retained (Table 3). During training, the 

correlation coefficient, mean absolute error, 

and root mean square error for the selected 

modes ranged between approximately 0.987 

and 0.888, 1.485 and 6.555 (W/m2), and 3.565 

and 9.458 (W/m2), respectively (Table 3). 

Though RF had the best correlation 

coefficient and root mean square values, 

support vector regression (SVR) with the 

Pearson VII universal-based function (PUF)  

kernel had the least mean absolute error. In 

the testing section, the ranges for 𝑟, 𝑀𝐴𝐸, and 

𝑅𝑀𝑆𝐸 were between approximately 69% and 

85%, 7.19 W/m2 and 10.07 W/m2, and 10.42 

W/m2 and 15.35 W/m2, respectively. 

However, RF had the best results in the 

segment (Table 3).  

 

 

 

Fig 1: The feedforward multi-perceptron network of three hidden layers of 60, 40, and 20 

nodes in the respective layers used for estimating DLR. While DLR was the output, the 

input comprised: day, month, year, water vapour pressure (vapour), relative humidity 

(RH), solar hour angle (𝝎𝒔), clearness index (kt), temperature (tem), and global solar 

radiation (GSR). 

 

Under clear skies DLR modelling, Table 3 

and Table 4 have nine and six predictors, 

respectively, while Table 5 has three 

predictors that highly relate to DLR. Tables 6, 

7, and 8 likewise have the results for 

modelling all-sky DLR with the same nine, 

six, and three predictors, respectively. 

Deploying many input variables in machine  

learning algorithms does not always result in 

better performance though it could be vital to  

use a limited number of reliable variables. 

Whereas there is substantial depreciation in 

the results as the input variables decrease 

from nine to six during the training phase, the  

 

 

reserve sometimes is the case at the testing 

phase for some modes (Tables 3 and 4). 

Unlike during training, the testing phase 

indicates the generalisation capability of 

models. 

The period stamp, which comprises the day, 

month, and year, does not always affect the 

model performance positively under 

cloudless and all-sky conditions. During the 

training phase under clear skies, 𝑟 for ML 

algorithms like ANN and SVR depreciates 

from approximately 92% and 96% for nine 

predictors (Table 3) to 86% and 88%, 

respectively, when six predictors were 

considered (Table 4).
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Table 3: Clear skies estimation of DLR using nine predictors namely day, month, year, 

water vapour pressure, relative humidity, solar hour angle, clearness index, temperature, 

and global solar radiation 

 

Model 𝒓 𝑴𝑨𝑬 

(W/m2) 

𝑹𝑴𝑺𝑬 

(W/m2) 

 𝒓 𝑴𝑨𝑬 

(W/m2) 

𝑹𝑴𝑺𝑬 

(W/m2) 

 Training set (n = 206)  Testing set (n = 103) 

Multilayer Perceptron 

(designed, Fig 1) 

0.9209 6.4318 8.5451  0.6945 10.0689 15.3468 

SVR (PUF) 0.9558 1.4852 6.0068  0.7880 8.1919 12.2915 

Additive Regression 0.8921 6.3449 9.1543  0.7808 8.0839 13.0347 

Bragging 0.9025 5.5418 8.7781  0.8308 8.3542 11.4209 

Random Sub Space 0.8958 6.5547 9.4582  0.7801 8.9996 12.4892 

Regression by 

Discretisation 

0.9763 3.2468 4.356  0.6969 9.8142 15.0395 

Decision Table 0.9730 3.0706 4.6449  0.7737 8.7606 12.7093 

M5 Rules 0.9325 5.522 7.2693  0.7797 8.7392 12.7032 

M5 Tree 0.8875 6.3097 9.2939  0.8092 7.5869 11.6638 

Random Forest 0.9874 2.4612 3.5651  0.8527 7.1939 10.4212 

However, the reserve is the case under the 

same conditions at the testing phase, where 𝑟 

appreciates from around 69% and 79% to 

81% and 80%, respectively, for ANN and 

SVR. 𝑀𝐴𝐸 and 𝑅𝑀𝑆𝐸 also have similar 

trends with both machine learning algorithms. 

Additionally, three to four other algorithms, 

such as Additive Regression and Bragging, 

behave likewise though the Additive 

Regression mode somewhat improved during 

the training phase, which was exceptional.  

In contrast to when predictors reduce from 

nine to six, the reduction from six to three 

variables does not improve clear-sky DLR 

estimations. Whereas every mode had a 

decreased performance during the training 

segment when the predictors reduced from 

nine to six, some algorithms improved as 

predictors reduced from six to three. Such an 

exception includes the Random Sub Space, 

whose 𝑟, 𝑀𝐴𝐸, and 𝑅𝑀𝑆𝐸 improved from 

around 0.85, 8.56 (W/m2), and 11.81(W/m2), 

respectively, to 0.86, 7.20 (W/m2), and 10.53 

(W/m2) when three instead of six predictors 

were used (Table 4–5). However, the 

Decision Table algorithm has no difference 

between Table 4 and Table 5 in the training 

phases. M5 Rules and M5 Tree occasionally 

have indistinguishable characteristics; for 

instance, they have the same correlation 

coefficient, mean absolute error, and root 

mean square error magnitudes during the 

training phase in Table 4 and the testing phase 

in Table 5. This attribute extends to the all-

sky estimations of DLR (Table 7). Therefore, 

both algorithms may be considered unreliable 

in an exercise of this nature.   

Though not absolute, the volume of data can 

inversely or directly impact the modes during 

the testing phase. As such, instead of 70%, 

50% of the training data was retained for 

testing to avoid misleading results with little 

data (Appendix 2). Appendix 2 reveals that 

models have an indirect relationship with data 

as they perform better with little data volume 

during testing. However, in most instances, 

data quantity can also impact machine 

learning models positively at testing. 

Comparing Table 3 to Table 6, since both 

have the same number of predictors, shows 

that although 𝑟, 𝑀𝐴𝐸, and 𝑅𝑀𝑆𝐸 degenerate 

as the data size increases from 206 (Table 3) 

to 721 (Table 6) during training, the statistics 

generally improve across the testing phases. 

A similar trend exists while comparing the 

respective results of Tables 4 and 5 to those of 

Tables 7 and 8. Nonetheless, a remarkable 

deviation from that pattern is the Random 
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Forest. It seems RF overfits when handling 

estimation problems because despite 

performing exceptionally during training on 

every occasion, it rarely sustains such during 

testing (Tables 3-8). 

 

Table 4: Clear-sky DLR machine learning modelling with six inputs of water vapour 

pressure, relative humidity, solar hour angle, clearness index, temperature, and global 

solar radiation using Weka 

 

Model 𝒓 𝑴𝑨𝑬 

(W/m2) 

𝑹𝑴𝑺𝑬 

(W/m2) 

 𝒓 𝑴𝑨𝑬 

(W/m2) 

𝑹𝑴𝑺𝑬 

(W/m2) 

 Training set (n = 206)  Testing set (n = 103) 

Multilayer 

Perceptron 

(designed, Fig 1) 

0.8551 7.1367 10.7185  0.8128 7.8614 12.0958 

SVR(Puk) 0.8810 3.9313 9.5804  0.8047 7.5763 11.8232 

Additive Regression 0.8983 6.4072 8.8514  0.7750 8.3463 13.2829 

Bragging 0.8988 5.5954 8.9502  0.8408 8.0855 11.0883 

Random Sub Space 0.8465 8.5599 11.8117  0.7835 8.8804 12.4925 

Regression by 

Discretisation 

0.9515 3.7299 6.1887  0.8043 8.8523 12.0423 

Decision Table 0.7969 8.0275 12.1514  0.7632 9.0217 12.8857 

M5 Rules 0.8307 7.4478 11.1994  0.7713 8.1934 12.7826 

M5 Tree 0.8307 7.4478 11.1994  0.8221 7.4723 11.2949 

Random Forest 0.9855 2.4159 3.6956  0.8382 6.9752 10.819 

Table 5: Three inputs of water vapour pressure, relative humidity, and solar hour angle 

usage to model clear-sky DLR 
 

Model 𝒓 𝑴𝑨𝑬 

(W/m2) 

𝑹𝑴𝑺𝑬 

(W/m2) 

 𝒓 𝑴𝑨𝑬 

(W/m2) 

𝑹𝑴𝑺𝑬 

(W/m2) 

 Training set (n = 206)  Testing set (n = 103) 

Multilayer Perceptron 

(designed, Fig 1) 

0.8327 7.7528 11.1377  0.8060 8.4981 12.6553 

SVR(PUF) 0.8488 6.0802 10.7642  0.8181 7.3834 11.5019 

Additive Regression 0.8807 6.9428 9.5287  0.8019 8.5157 12.2797 

Bragging 0.8896 5.9788 9.3010  0.8316 8.0596 11.2266 

Random Sub Space 0.8564 7.2025 10.5345  0.7671 9.1384 12.7197 

Regression by 

Discretisation 

0.9097 5.1119 8.3534  0.7159 9.2296 14.3809 

Decision Table 0.7969 8.0275 12.1514  0.7632 9.0217 12.8857 

M5 Rules 0.8144 7.9802 11.6761  0.7954 8.1919 11.9933 

M5 Tree 0.8283 7.7525 11.2746  0.7954 8.1919 11.9933 

Random Forest 0.9848 2.4953 3.7301  0.8324 7.4413 10.9806 

 

Since ambient temperature is not a significant 

nor an active predictor of DLR in this vicinity, 

it may not be included in parametrising the 

radiation, though it is considered valuable. 

Since the sky acts like a blackbody, the 

formats for modelling both clear-sky and all-

sky DLR are often in line with the Stefan 

Boltzmann equation, which incorporates 

temperature (Markut and Church, 1973; 

Sugita and Brutsaret, 1993; Crawford and 

Duchon, 1999; Bilbao and de Miguel, 2007; 

Krut et al., 2010). The expression for radiated 
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energy of bodies in the referred Stefan 

Boltzmann law is; 

𝑅 =  𝜀𝜎𝑇4     (9) 

where 𝜀 is the emissivity of the body, which  

is equal to 1 for a blackbody but less than 1 

for a grey body (like the sky), 𝜎 is the Stefan 

Boltzmann constant, and 𝑇 is the temperature 

of the body. 

 

Table 6: All-sky estimation of DLR using nine predictors namely day, month, year, 

water vapour pressure, relative humidity, solar hour angle, clearness index, 

temperature, and global solar radiation 
 

Model 

 

𝒓 𝑴𝑨𝑬 

(W/m2) 

𝑹𝑴𝑺𝑬 

(W/m2) 

 𝒓 𝑴𝑨𝑬 

(W/m2) 

𝑹𝑴𝑺𝑬 

(W/m2) 

 Training set (n = 721)  Testing set (n = 306) 

Multilayer Perceptron 

(designed, Fig 1) 

0.8525 7.1375 11.1683  0.8269 8.8831 13.7353 

SVR (PUF) 0.9179 2.1576 8.0537  0.8603 6.9599 10.4850 

Additive Regression 0.8328 7.0617 11.2195  0.8627 6.9662 10.3489 

Bragging 0.8942 5.3577 9.1428  0.8576 7.1638 10.5340 

Random Sub Space 0.8739 5.8077 9.9337  0.8575 7.2331 10.5981 

Regression by 

Discretisation 

0.8890 5.7418 9.2871  0.8085 8.8755 12.1022 

Decision Table 0.8410 6.5758 10.9577  0.8242 7.8521 11.5926 

M5 Rules 0.8531 6.1882 10.5693  0.8575 6.6942 10.5866 

M5 Tree 0.8529 6.2025 10.5745  0.8579 6.7131 10.5666 

Random Forest 0.9825 2.3111 4.0354  0.8413 6.8576 11.1234 
 

 

Table 7: All-sky DLR machine learning modelling with six inputs of water vapour 

pressure, relative humidity, solar hour angle, clearness index, temperature, and global 

solar radiation using Weka 

 

Model 𝒓 𝑴𝑨𝑬 

(W/m2) 

𝑹𝑴𝑺𝑬 

(W/m2) 

 𝒓 𝑴𝑨𝑬 

(W/m2) 

𝑹𝑴𝑺𝑬 

(W/m2) 

 Training set (n = 721)  Testing set (n = 306) 

Multilayer Perceptron 

(designed, Fig 1) 

0.8500 7.3719 11.3578  0.8563 8.7092 12.7549 

SVR(Puk) 0.8875 4.2722 9.3471  0.8786 6.1771 9.7862 

Additive Regression 0.8411 6.8933 10.9675  0.8627 6.9662 10.3489 

Bragging 0.8942 5.3665 9.1319  0.8570 7.1777 10.5611 

Random Sub Space 0.8909 5.8134 9.3127  0.8568 7.2416 10.5935 

Regression by 

Discretisation 

0.8656 5.9512 10.1528  0.8392 7.9343 11.1349 

Decision Table 0.8340 6.9937 11.1752  0.8242 7.8521 11.5926 

M5 Rules 0.8297 6.7533 11.3058  0.8400 7.0448 11.2301 

M5 Tree 0.8297 6.7533 11.3058  0.8400 7.0448 11.2301 

Random Forest 0.9819 2.3341 4.0790  0.8518 7.0342 10.7453 

 

Some studies neglect the sky emissivity while 

applying linear regression to DLR (Udo, 

2003; Abramowitz et al., 2012). Similarly, 

this work deploys commonly measurable and 

calculatable atmospheric parameters and 

ignores the sky emissivity to reduce the 

otherwise cumbersomeness of determining 

the clearness index and other relatively 

tedious processes. Water vapour impacts on 

DLR depend on its pressure, relative 
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humidity, and solar hour angle. Therefore, 

these three parameters effectively account for 

daily DLR. During the rainy season, the 

atmosphere is damped and moist and is 

accompanied by heavy cloudiness, unlike the 

dry season. The distinctiveness of the two 

main seasons depends on water vapour 

pressure, relative humidity, and solar hour 

angle.  

 

Table 8: All-sky DLR Three inputs of water vapour pressure, relative humidity, and solar 

hour angle 

 

 

Data acquisition issues could be complicated 

while using some models; hence, the methods 

that generalise better with limited variables 

are preferable. Although machine learning 

schemes need sufficient data for learning, 

oversaturated or undependable predictors, 

such as day, month, and year, lead to poor 

generalisation. Since there is not much 

difference between the six and three 

predictors of DLR, using only three highly 

correlating factors of water vapour pressure, 

RH, and solar hour angle is sufficient for 

estimating DLR. Four of the ten machine 

learning algorithms, namely RF, Decision 

Table, M5 rules, and M5 tree, have one 

problem or another. The six others, including 

the designed ANN, perform reasonably well, 

but SVR is the most commendable unit due to 

its generally low error values. The same SVR 

can be very effective in regression and 

classification problems (López‐Martín, 2021; 

Zhang and Ge, 2013).   
 

  

 

 

 

4.0 Conclusion 
 

This study uses linear regression and machine 

learning modes to model clear-sky and all-sky 

DLR using date and other variables like 

clearness index, air temperature, relative 

humidity, water vapour pressure, global solar 

radiation, and solar hour angle. The ML 

implementation over an Equatorial African 

site (Ilorin) was with Weka. The followings 

are the conclusions; 

(i) Besides water vapour pressure and 

relative humidity, the solar hour angle 

is superior to ambient temperature 

when predicting DLR in this region.  

(ii) Setting aside the cumbersomeness of 

excessive variables usage, which 

could lead to excessive estimation 

errors, and ignoring the sky 

emissivity, a linear regression model 

for daily all-sky DLR was obtained 

with the three most correlated factors 

namely, water vapour pressure, 

relative humidity, and solar hour angle 

as 3.03𝑒 − 0.045𝑅𝐻 + 0.727𝜔𝑠 +
265.349.                                                                              

Model 𝒓 𝑴𝑨𝑬 

(W/m2) 

𝑹𝑴𝑺𝑬 

(W/m2) 

 𝒓 𝑴𝑨𝑬 

(W/m2) 

𝑹𝑴𝑺𝑬 

(W/m2) 

 Training set (n = 721)  Testing set (n = 306) 

Multilayer Perceptron 

(designed, Fig 1) 

0.8187 8.1182 12.1543  0.8415 10.2259 13.8373 

SVR (PUF) 0.8529 5.8945 10.5942  0.8631 6.9780 10.3803 

Additive Regression 0.8220 7.4402 11.5493  0.8412 7.7042 11.0619 

Bragging 0.8796 5.9282 9.6949  0.8429 7.4493 11.0217 

Random Sub Space 0.8697 6.1003 10.0610  0.8398 7.5682 11.1237 

Regression by 

Discretisation 

0.8378 6.8616 11.0686  0.8394 7.8786 11.1181 

Decision Table 0.8527 6.7735 10.5809  0.8242 7.8521 11.5926 

M5 Rules 0.8400 6.7648 10.9920  0.6353 8.9645 19.1102 

M5 Tree 0.8437 6.7055 10.8778  0.8282 7.7997 11.4766 

Random Forest 0.9791 2.5799 4.3492  0.8139 7.6634 12.1531 
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(iii) Machine learning algorithms 

generalise better with encompassing 

data sets and dependable inputs. So, 

it’s unnecessary to deploy several 

variables that will result in excellent 

training phase performance but poor 

generalisation at testing. While the 

training phase should have reasonably 

large data, the testing should have 

little data.  

(iv) A suitable artificial neural network for 

estimating DLR in Weka has 1st, 2nd, 

and 3rd hidden layers, with the number 

of nodes of descending order of 60, 

40, and 20, respectively.   

(v) In some circumstances, improved 

generalisation in machine learning 

algorithms is accompanied by poor 

results during training. Though 

several machine learning modes can 

handle DLR, SVR(PUK) is relatively 

suitable for modelling the radiation. 
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Appendix 1: The training phase of the preliminary experiment using Weka to model 

clear-sky DLR using nine input variables consisting of day, month, year, water vapour 

pressure, relative humidity, solar hour angle, clearness index, air temperature, and 

global solar radiation 

 

S/no Model Weka 

Classifier 

Location 

Folder  

𝒓 𝑴𝑨𝑬 

(W/m2) 

𝑹𝑴𝑺𝑬 

(W/m2) 

   Training set (n = 206) 

1 Isotonic Regression Functions 0.8083 7.6355 11.8448 

2 Gaussian Progresses   Functions 0.7122 10.3086 14.3798 

3 Least Median Squared 

Regression  

Functions 0.8135 6.9548 11.9033 

4 Linear Regression (Akaike 

criterion) 

Functions 0.8307 7.4478 11.1994 

5 ML Regressor Functions 0.8570 7.0295 10.3681 

6 Multilayer Perceptron 

(default) 

Functions 0.8617 7.101 10.9475 

7 Multilayer Perceptron 

(designed, Fig 1) 

Functions 0.9209 6.4318 8.5451 

8 Pace Regression  Functions 0.8298 7.3421 11.2259 

9 RBF Regressor Functions 0.8348 7.255 11.0834 

10 Simple Linear Regression Functions 0.7871 8.0735 12.4073 

11 SVR (PolyKernel) Functions 0.8157 6.8758 11.7977 

12 SVR (Normalised 

PolyKernel) 

Functions 0.7602 8.4166 13.2465 

13 SVR (Puk) Functions 0.9558 1.4852 6.0068 

14 SVR (RBFKernel) Functions 0.7869 8.3831 12.871 

15 KNN (LWL) Lazy 0.7594 9.2315 13.0896 

16 Additive Regression Meta 0.8921 6.3449 9.1543 

17 Bragging Meta 0.9025 5.5418 8.7781 

18 Iterative Absolute Error 

Regression 

Meta 0.7436 9.2728 13.7005 

19 Random Sub Space Meta 0.8958 6.5547 9.4582 

20 Regression by Discretisation Meta 0.9763 3.2468 4.356 

21 Decision Table Rules 0.973 3.0706 4.6449 

22 M5 Rules Rules 0.9325 5.522 7.2693 

23 Decision Stump Trees 0.7436 9.5474 13.4491 

24 DPC Tree Trees 0.8564 7.2885 11.0501 

25 M5 Tree Trees 0.8875 6.3097 9.2939 

26 Random Forest Trees 0.9874 2.4612 3.5651 

27 REP Tree Trees 0.8626 7.0288 10.1761 
 

 

 

 

 

 

 

 



Communication in Physical Sciences, 2023, 9(2):111-124 124 

 

 

Appendix 2: The testing phase of the models of Appendix 1 
 

S/No Model 𝒓 𝑴𝑨𝑬 

(W/m2) 

𝑹𝑴𝑺𝑬 

(W/m2) 

 𝒓 𝑴𝑨𝑬 

(W/m2) 

𝑹𝑴𝑺𝑬 

(W/m2) 

  Testing set (n = 103) 50%  Testing at 70% (n = 62) 

1 Isotonic Regression 0.7827 8.4135 12.4014  0.8139 7.2497 10.5638 

2 Gaussian Progresses   0.7053 10.6757 14.3980  0.7599 9.3396 12.0141 

3 Least Median Squared 

Regression 

0.7952 7.6632 12.1667  0.8195 7.5021 10.5755 

4 Linear Regression 

(Akaike criterion) 

0.7828 8.2464 12.3626  0.8449 7.0764 9.691 

5 ML Regressor 0.7885 8.2177 12.2507  0.8205 7.8007 10.4409 

6 Multilayer Perceptron 

(default) 

0.7203 11.6586 16.5889  0.7815 9.3983 12.5292 

7 Multilayer Perceptron 

(designed, Fig 1) 

0.6945 10.0689 15.3468  0.8750 6.7827 9.1125 

8 Pace Regression  0.7965 7.9468 11.9866  0.8277 7.4788 10.1699 

9 RBF Regressor 0.7549 8.5018 13.1558  0.7798 8.0548 11.4981 

10 Simple Linear 

Regression 

0.7917 7.9332 12.0840  0.8143 7.3353 10.5224 

11 SVR (PolyKernel) 0.7910 7.6560 12.3460  0.8206 7.4188 10.459 

12 SVR (Normalised 

PolyKernel) 

0.7835 8.5194 12.3236  0.8048 7.8846 10.8621 

13 SVR (Puk) 0.7880 8.1919 12.2915  0.8572 6.5981 9.4017 

14 SVR (RBFKernel) 0.7557 10.0735 14.5119  0.7930 8.2790 11.7624 

15 KNN (LWL) 0.7587 9.3178 12.9231  0.7994 7.8899 10.9203 

16 Additive Regression 0.7808 8.0839 13.0347  0.8963 6.2758 8.0696 

17 Bragging 0.8308 8.3542 11.4209  0.8862 6.4564 8.4577 

18 Iterative Absolute 

Error Regression 

0.7481 9.2429 13.3989  0.7926 8.0016 11.6106 

19 Random Sub Space 0.7801 8.9996 12.4892  0.8674 7.042 9.3847 

20 Random by 

Discretisation 

0.6969 9.8142 15.0395  0.9140 5.8375 7.6885 

21 Decision Table 0.7737 8.7606 12.7093  0.8292 7.556 10.1605 

22 M5 Rules 0.7797 8.7392 12.7032  0.8449 7.0764 9.691 

23 Decision Stump 0.7481 9.478 13.1659  0.7926 7.9103 11.0618 

24 DPC Tree 0.8134 8.0113 11.7218  0.8201 8.3306 10.9165 

25 M5 Tree 0.8092 7.5869 11.6638  0.8449 7.0764 9.691 

26 Random Forest 0.8527 7.1939 10.4212  0.9379 5.0027 6.4262 

27 REP Tree 0.7840 8.5277 12.4496  0.7381 8.7607 12.2648 

 

 

 


