Synthesis of Pharmacologically Active Hexahydroacridine-1, 8 (2H, 5H)-diones using Nickel (II) Fluoride Tetrahydrate as a New Heterogeneous Catalyst

Ibanga O. Isaac and Abdul Hameed

Received 23 March 2020/Accepted 19 April 2020/Published online: 20 April 2020

Abstract There are several reactions used in synthesis of dihydropyrimidines, but one of the simplest and most economical method for the synthesis of pharmacologically active acridine-1,8 (2H,5H)-dione derivatives is the classical Hantzsch reaction. Nickel (II) fluoride tetrahydrate catalyzed efficient Hantzsch reaction via one-pot threecomponent condensation of aromatic aldehydes, *5,5-dimethyl-1,3-cyclohexanedione* (dimedone), and ammonium acetate refluxing in water was described for the preparation of hexahvdroacridine-1.8 (2H,5H)-dione derivatives. The products obtained were characterized on the basis of their melting-points, ¹H NMR, ¹³C NMR, UV, IR, EI-MS, and HR-MS. Diethyl malonate and ethyl methyl ketone were observed to serve only as solvent and not reagent as proposed in solvent free synthesis of dihydropyrimidines. The attractive features of this environmentally benign protocol are excellent vields, cost-effective, simplicity and easy work-up. The higher catalytic activity of $NiF_2.4H_2O$ is due to its high acidity, thermal stability and water tolerance.

Key words: Acridinedione; ethanol; Hantzsch reaction; nickel (II) fluoride tetrahydrate; water.

I. O. Isaac^{a,b}

^aDepartment of Chemistry, Akwa Ibom State University, Ikot Akpaden, P.M.B. 1167, Uyo, Akwa Ibom State, Nigeria. Email: <u>ibangaisaac@aksu.edu.ng</u>, ibekaunderscoreisaac@yahoo.com

^bH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan A. Hameed^{b,c}

^bH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan

^cDepartment of Chemistry, Forman Christian College (A Chartered University), Ferozepur Road, Lahore 54600, Pakistan

1.0 Introduction

Multi-component reactions allow the creation of several bonds in a single operation and are attracting increasing attention as one of the most powerful emerging synthetic tools for the creation of molecular diversity and complexity (Aswin et al., 2012). Such reactions offer a wide range of possibilities for the efficient construction of highly complex molecules in a single procedural step, thus avoiding the complicated purification operations and allowing savings of both solvents and reagents (Mansoor et al., 2016). For example, in this research, it was observed that adjusting the amount of solvent to equal the scale of the reaction (that is, if the reaction is carried out in 1 mmol scale, the amount of solvent was adjusted to 1 ml) resulted in a faster reaction rate and high yield of acridine-1,8 (2H,5H)-diones (95 to 100 %) without impurities.

Nitrogen-containing heterocyclic compounds such as acridinediones, have attracted interest of many researchers because their derivatives exhibit a broad spectrum of biological activities, such as antibacterial, antifungal, antimicrobial, anticonvulsant, anti-inflammatory, anti-HIV, antitubercular, antihistamine, antimalarial, analgesic etc. (Satheeshkumar et al., 2017; Aly et al., 2010; Kumar and Rajput, 2009; Dahiya et al., 2008; Kidwai et al., 2005; Alagarsamy et al., 2000; Ghorab et al., 2000). Acridinediones also exhibit DNA binding properties which make them useful as drugs for cardiovascular diseases such as angina pectoris and hypertension, and they are employed as DNA-intercalating anticancer drugs (Nasresfahani and Kassaee, 2015).

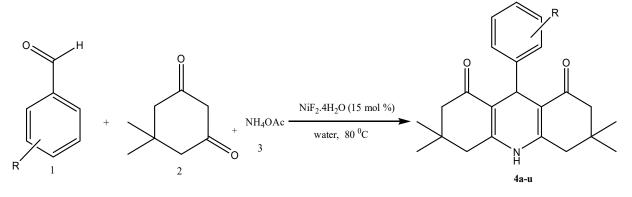
In view of the various biological activities of hexahydroacridine-1, 8 (2H, 5H)-diones, many researchers have developed various methods for the synthesis of this class of heterocycle using various catalysts such as mesoporous silica nanoparticles (Nasresfahani and Kassaee, 2015), silica iodide (Ramesh and Pasha, 2014), silica-supported sulphuric acid (Mansoor et al., 2014), cetyltrimethyl ammonium bromide (CTAB) (Xia and Zhang, 2012), and microwave irradiation (Abdelhamid et al., 2014; Gündüz et al., 2014; Ladani et al., 2011). Although most of these procedures offer several advantages, there are also related disadvantages, such as longer reaction times, unsatisfactory yields, harsh reaction conditions and use of high cost or toxic catalysts and difficult, time and energy consuming methods of purification of the final product.

The use of metal salts that are less toxic, as efficient heterogeneous catalysts, have been adopted in recent years by most synthetic organic chemists as a powerful synthetic tools for the synthesis of many compounds organic (Dutta *et al.*, 2017: Abdolmohammadi and Karimpour, 2016; Banothu et al., 2014; Hashim et al., 2014; Kumar et al., 2010). To the best of our knowledge, however, with the exception to that reported by our research team (Isaac et al., 2018; Isaac et al., 2019; Ali et al., 2019), there is limited information on the use nickel (II) fluoride tetrahydrate as efficient catalyst for synthesis of hexahydroacridine-1, 8 (2H, 5H)diones. Hence, the aim of this research is to investigate the role of NiF₂.4H₂O as an inexpensive, easy work-up, environmentally benign, short reaction time, ease of manipulation and high yielding heterogeneous catalyst for the synthesis of acridinediones (4) via a Hantzsch one-pot multicomponent condensation of aromatic aldehvdes (1). dimedone (2) as active methylene compound and ammonium acetate (3) in refluxing water or ethanol respectively (Scheme 1).

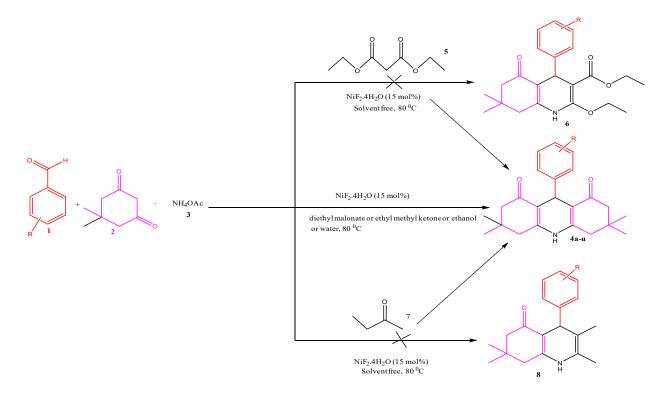
Our intention also was to extend the above method to different 1,3-dicarbonyl compounds for the synthesis of novel unsymmetrically substituted 1,4-dihydropyridines such as hexahydroquinoline-3-carboxylate (6) and tetrahydroquinolin-5(1H)-one (8) derivatives from solvent free multi-component

reaction of diethyl malonate and ethyl methyl ketone respectively with dimedone, aromatic aldehydes and ammonium acetate based on the reaction scheme 2 using nickel (II) fluoride tetrahydrate as efficient catalyst. But ¹H NMR, EI-MS and HREI-MS results showed that the products were hexahydroacridine-1, 8 (2H, 5H)-diones and not as suggested in scheme 2. However, synthesis of hexahydroquinoline derivatives from the reaction of dimedone, aromatic aldehydes, ammonium acetate and malonitrile promoted by a catalytic amount of melamine trisulfonic acid (5 mol%) under solvent free conditions at 60 °C have been reported (Aswin et al., 2012). We ended up discovering two more green solvents that could be used in Hantzsch reaction via one-pot three -component condensation of aromatic aldehvdes. 5.5-dimethyl-1.3cyclohexanedione, and ammonium acetate promoted by nickel (II) trifluoride tetrahydrate.

2.0 Materials and Methods


2.1 Reagents and apparatus

All commercial grade reagents and chemicals used in this work were purchased from Acros Organics, Scharlau, Merck or Sigma-Aldrich Chemicals Ltd and used without further purification. The melting point was determined using Automated BUCHI M-560 melting point apparatus with microscope. The UV and IR spectra were recorded on a THERMO ELECTRON-VISIONproVA.10 spectrophotometer using methanol as the solvent and RX-1 PerkinElmer spectrophotometer with samples prepared as KBr pellets respectively. EI-MS and HR-MS mass spectra were recorded on JEOL MS 600H-1 mass spectrometer. The NMR spectra were carried out using a Bruker AVANCE AV-400 MHz spectrometer in DMSO-d₅ as solvent. All reactions were followed by TLC developed in an ethyl acetate:hexane solvent system, with detection by UV light.


2.2 General Procedure for Preparation of Hexahydroacridine-1, 8 (2H, 5H)-dione Derivatives 4a-4u

A mixture of aromatic aldehyde (0.6 equiv.), active methylene compound-dimedone (2 equiv.), ammonium acetate (2 equiv.), nickel (II) fluoride tetrahydrate (15 mol %) and water (the quantity of water was based on the mmol scale in which the reaction was performed, for 2 mmol reaction, water was 2 ml) was placed in a 25 ml round bottom flask charged with magnetic stirrer, heated at 80 °C under stirring for the appropriate time as monitored by thin-layer chromatography (TLC) using ethyl acetate:hexane (3:7) solvent system. After completion of the reaction as indicated by TLC, methanol was added to obtain a homogenous mixture which was then poured into a beaker charged with crushed ice and magnetic stirrer and kept under stirring for 30 mins. The solid was filtered, dried but not recrystallized to afford the pure product 4a -4u (Scheme 1).

All the products were fully characterized on the basis of their melting -points, IR, UV, and ¹H NMR, ¹³C NMR, EI-MS and HR-MS.

Scheme 1: Synthesis of hexahydroacridine-1,8 (2H, 5H)-dione derivatives, 4a-u, by the reactions of aryl aldehydes, dimedone and ammonium acetate

Scheme 2. Synthesis of hexahydroacridine-1,8(2H, 5H)-dione derivatives by the reactions of aryl aldehydes, dimedone and ammonium acetate

2.3 Spectral data for the synthesized compounds

2.3.1 9-(3-Hydroxyphenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione (4a)

IR (KBr, cm⁻¹): 3390.0, 31723.0, 2959.0, 2870.0, 1621.0; ¹H NMR (400 MHz, DMSO- d_{δ}) δ : 0.87 (s, 6H, 2×CH₃), 0.99 (s, 6H, 2×CH₃), 9.01 (s, 1H, NH), 6.39 – 6.92 (m, 4H, Ar-H), 4.72 (s, 1H, CH), 9.22 (s, 1H, OH), 1.96 – 2.49 (m, 8H, 2×CH₂); ¹³C NMR (400 MHz, DMSO- d_{δ}) δ : 26.56, 29.08, 32.12, 32.56, 39.12, 40.16, 50.32, 111.48, 114.97, 118.21, 128.32, 148.47, 149.16, 156.65, 194.31; EI-MS: m/z (rel. abund. %), 365.1 [M⁺] (19.4), 273.1 (23.1), 348.1 (2.9), 272.1 (100.0), 216.1 (2.9); HREI-MS: m/z calcd for C₂₃H₂₇O₃N₁ [M⁺] 365.1991, found 365.1986; Anal. calcd for C₂₃H₂₇O₃N₁: C, 75.59; H, 7.45; O, 13.13; N, 3.83; Found: C, 75.58; H, 7.39; O, 13.14; N, 3.83. The ¹H NMR spectrum of **4a** is given in **Appendix 1**.

2.3.2 9-(4-Fluoro-3-methoxyphenyl)-3,3,6,6tetramethyl-3,4,6,7,9,10-hexahydroacridine-1,8 (2H, 5H)-dione (4b)

IR (KBr, cm⁻¹): 3280.0, 3074.0, 2956.0, 2360.0, 1643.0, 1610.0, ¹H NMR (400 MHz, DMSO- d_{δ}) δ : 0.87 (s, 6H, 2×CH₃), 1.00 (s, 6H, 2×CH₃), 9.29 (s, 1H, NH), 6.63 – 6.99 (m, 3H, Ar-H), 4.79 (s, 1H, CH), 3.72 (s, 3H, OCH₃), 1.98 – 2.49 (m, 8H, 2×CH₂); EI-MS: (rel. abund. %), 397.1 [M⁺] (86.8), 396.2 (18.4), 382.2 (14.0), 273.1 (72.6), 272.1 (100.0), 216.1 (9.0), 188.1 (8.4); HREI-MS: m/z calcd for C₂₄H₂₈O₃N₁F₁ [M⁺] 397.2053, found 397.2072; Anal. calcd for C₂₄H₂₈O₃N₁F₁: C, 72.52; H, 7.10; O, 12.08; N, 3.52; F, 4.78; Found: C, 72.51; H, 7.05; O, 12.08; N, 3.53; F, 4.78.

2.3.3 9-(4-(1-Hydroxyethoxy)-3-

methoxyphenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10hexahydroacridine-1,8 (2H, 5H)-dione (4c)

IR (KBr, cm⁻¹): 3699.0, 3420.0, 3196.0, 3069.0, 2926.0, 1856.0, 1743.0, 1624.0, 1609.0; ¹H NMR (400 MHz, DMSO- $d_{\hat{o}}$) &: 0.87 (s, 6H, 2×CH₃), 0.99 (s, 6H, 2×CH₃), 8.54 (s, 1H, NH), 6.50 – 6.85 (m, 3H, Ar-H), 4.70 (s, 1H, CH), 3.65 (s, 3H, OCH₃), 9.19 (s, 1H, OH), 2.45 (s, 1H, OCH), 2.40-2.44 (s, 3H, CH₃), 1.96 – 2.36 (m, 8H, 2×CH₂); ¹³C NMR (500 MHz, DMSO- $d_{\hat{o}}$) &: 20.39, 26.38, 28.97, 29.16, 31.87, 32.18, 32.57, 50.21, 55.49, 111.16, 112.21, 114.75, 119.75, 121.92, 148.96, 149.53, 156.65, 194.44; EI-MS: (rel. abund. %), 437.3 [M⁺] (27.7), 396.2 (12.9), 395.2 (39.4), 378.3 (14.3), 273.1

(20.4), 272.1 (100.0), 216.1 (4.2); 188.1 (3.8); HREI-MS: m/z calcd for $C_{26}H_{31}O_5N_1$ [M⁺] 437.2202, found 437.2192; Anal. calcd for $C_{26}H_{31}O_5N_1$: C, 71.37; H, 7.14; O, 18.28; N, 3.20; Found: C, 71.36; H, 7.09; O, 18.30; N, 3.20. **Appendix 2** shows the ¹H NMR spectrum of compound **4c**.

2.3.4 9-(3-Bromo-4-methoxyphenyl)-3,3,6,6tetramethyl-3,4,6,7,9,10-hexahydroacridine-1,8 (2H, 5H)-dione (4d)

IR (KBr, cm⁻¹): 3779.0, 3464.0, 3282.0, 2959.0, 2359.0, 1642.0, 1614.0; ¹H NMR (400 MHz, DMSO- d_{δ}) &: 0.87 (s, 6H, 2×CH₃), 1.00 (s, 6H, 2×CH₃), 9.28 (s, 1H, NH), 6.89 – 7.26 (m, 3H, Ar-H), 4.71 (s, 1H, CH), 3.74 (s, 3H, OCH₃), 1.96-2.49 (m, 8H, 2×CH₂); EI-MS: (rel. abund. %), 457.0 [M⁺] (57.3), 442.0 (4.1), 378.1 (5.4), 374.0 (4.2), 273.1 (40.4); 272.0 (100.0), 216.1 (5.8), 188.1 (5.6); HREI-MS: m/z calcd for C₂₄H₂₈O₃N₁Br₁ [M⁺] 457.1253, found 457.1260; Anal. calcd for C₂₄H₂₈O₃N₁Br₁: C, 62.88; H, 6.16; O, 10.47; N, 3.06; Br, 17.43; Found: C, 63.00; H, 6.13; O, 10.50; N, 3.06; Br, 17.50.

2.3.5 9-(2,6-Dimethoxyphenyl)-3,3,6,6tetramethyl-3,4,6,7,9,10-hexahydroacridine-1,8 (2H,5H)-dione (4e)

IR (KBr, cm⁻¹): 3779.0, 3444.0, 3072.0, 2952.0, 2359.0, 1625.0; ¹H NMR (400 MHz, DMSO-*d*_δ) δ: 0.79 (s, 6H, 2×CH₃), 0.97 (s, 6H, 2×CH₃), 9.00 (s, 1H, NH), 6.44 - 6.95 (m, 3H, Ar-H), 5.38 (s, 1H, CH), 3.69 (s, 6H, OCH₃), 1.80 – 2.49 (m, 8H, $2 \times CH_2$; ¹³C NMR (400 MHz, DMSO- d_{δ}) δ : 24.05, 25.77, 29.36, 31.84, 38.91, 39.12, 39.95, 40.03, 50.72, 104.12, 109.80, 122.62, 126.33, 149.90, 193.65; EI-MS: (rel. abund. %), 409.1 [M⁺] (100.0), 394.1 (23.4), 379.1 (24.8), 378.1 (89.3), 273.1 (11.7), 272.1 (59.6), 271.1 (15.5); 256.1 (14.2); HREI-MS: m/z calcd for $C_{25}H_{31}O_4N_1$ [M⁺] 409.2253, found 409.2260; Anal. calcd for C₂₅H₃₁O₄N₁: C, 73.32; H, 7.63; O, 15.63; N, 3.42; Found: C, 72.31; H, 7.58; O, 15.64; N, 3.42. The ¹H NMR spectrum of 4e is shown in Appendix 3.

2.3.6 2-(3,3,6,6-Tetramethyl-1,8-dioxo-

1,2,3,4,5,6,7,8,9,10-decahydroacridin-9-yl)benzoic acid (4f)

IR (KBr, cm⁻¹): 3275.0, 3178.0, 2955.0, 2590.0, 1598.0, 1480.0, 1376.0; ¹H NMR (400 MHz, DMSO- d_{δ}) & 0.84 (s, 6H, 2×CH₃), 1.01 (s, 6H, 2×CH₃), 9.72 (s, 1H, NH), 7.13 – 7.40 (m, 4H, Ar-H), 5.12 (s, 1H, CH), 13.86 (s, 1H, OH), 1.96 – 2.53

(m, 8H, 2×CH₂); EI-MS: (rel. abund. %), 393.1 [M⁺] (57.9), 391.1 (10.2), 346.1 (64.9), 309.1 (32.2), 292.1 (40.9), 291.0 (100.0), 272.1 (81.5); HREI-MS: m/z calcd for $C_{24}H_{27}O_4N_1$ [M⁺] 393.1940, found 393.1928; Anal. calcd for $C_{24}H_{27}O_4N_1$: C, 73.26; H, 6.92; O, 16.26; N, 3.56; Found: C, 73.25; H, 6.87; O, 16.28; N, 3.56.

2.3.7 3,3,6,6-Tetramethyl-9-(3-nitrophenyl)-

3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione (4g)

IR (KBr, cm⁻¹): 3421.0, 3185.0, 3065.0, 2959.0, 1647.0, 1609.0; ¹H NMR (400 MHz, DMSO- d_{δ}) δ : 0.85 (s, 6H, 2×CH₃), 1.00 (s, 6H, 2×CH₃), 9.45 (s, 1H, NH), 7.47 – 7.95 (m, 4H, Ar-H), 4.91 (s, 1H, CH), 1.96 – 2.49 (m, 8H, 2×CH₂); EI-MS: (rel. abund. %), 394.1 [M⁺] (19.2), 378.1 (16.3), 377.1 (48.6), 347.1 (15.3), 272.0 (100.0), 216.0 (5.4), 188.0 (4.6); HREI-MS: m/z calcd for C₂₃H₂₆O₄N₂ [M⁺] 394.1893, found 394.1898; Anal. calcd for C₂₃H₂₆O₄N₂: C, 70.03; H, 6.64; O, 16.22; N, 7.10; Found: C, 70.02; H, 6.60; O, 16.24 N, 7.10.

2.3.8 9-(4-Hydroxyphenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione (4h)

IR (KBr, cm⁻¹): 3276.0, 3199.0, 2958.0, 2814.0, 2359.0, 1612.0; ¹H NMR (400 MHz, DMSO- d_{δ}) δ : 0.85 (s, 6H, 2×CH₃), 0.99 (s, 6H, 2×CH₃), 8.95 (s, 1H, NH), 6.50 – 6.92 (m, 4H, Ar-H), 4.69 (s, 1H, CH), 9.16 (s, 1H, OH), 1.94 – 2.43 (m, 8H, 2×CH₂); EI-MS: m/z (rel. abund. %), 365.3 [M⁺] (39.9), 348.3 (4.0), 281.2 (3.8), 280.2 (4.7), 273.2 (18.9), 272.2 (100.0), 216.1 (4.7), 215.1 (4.0), 188.1 (3.4); HREI-MS: m/z calcd for C₂₃H₂₇O₃N₁ [M⁺] 365.1991, found 365.2013; Anal. calcd for C₂₃H₂₇O₃N₁: C, 75.59; H, 7.45; O, 13.13; N, 3.83; Found: C, 75.57; H, 7.39; O, 13.14; N, 3.83.

2.3.9 9-(4-Fluorophenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione (4i)

IR (KBr, cm⁻¹): 3712.0, 3421.0, 3178.0, 3052.0, 2957.0, 2358.0, 1619.0; ¹H NMR (400 MHz, DMSO- d_{δ}) & 0.85 (s, 6H, 2×CH₃), 0.99 (s, 6H, 2×CH₃), 9.29 (s, 1H, NH), 6.93 – 7.15 (m, 4H, Ar-H), 4.79 (s, 1H, CH), 1.95 – 2.45 (m, 8H, 2×CH₂); EI-MS: m/z (rel. abund. %), 367.1 [M⁺] (44.4), 352.1 (4.1), 350.1 (3.0), 296.1 (4.8), 283.1 (3.7), 282.1 (7.0), 274.1 (4.2), 273.1 (29.8), 272.0 (100.0), 216.1 (8.5), 198.1 (6.4), 188.1 (8.8); HREI-MS: m/z calcd for C₂₃H₂₆O₂N₁F₁ [M⁺] 367.1942, found 367.1948; Anal. calcd for C₂₃H₂₆O₂N₁F₁: C, 75.18;

H, 7.13; O, 8.71; N, 3.81; F, 5.17 Found: C, 75.17; H, 7.08; O, 8.72; N, 3.81, F, 5.17.

2.3.10 9-(2-Chloro-3-methoxyphenyl)-3,3,6,6tetramethyl-3,4,6,7,9,10-hexahydroacridine-1,8 (2H, 5H)-dione (4j)

IR (KBr, cm⁻¹): 3448.0, 32183.0, 3066.0, 2959.0, 2359.0, 1645.0, 1612.0; ¹H NMR (400 MHz, DMSO- d_{δ}) &: 0.85 (s, 6H, 2×CH₃), 0.99 (s, 6H, 2×CH₃), 9.26 (s, 1H, NH), 6.75 – 7.08 (m, 3H, Ar-H), 5.11 (s, 1H, CH), 3.75 (s, 3H, OCH₃), 1.87 – 2.45 (m, 8H, 2×CH₂); EI-MS: m/z (rel. abund. %), 413.3 [M⁺] (20.0), 380.3 (9.7), 379.3 (67.9), 378.2 (100.0), 376.3 (21.0), 274.2 (9.2), 273.2 (69.5), 272.1 (100.0), 256.2 (10.8), 216.1 (11.7), 188.1 (10.9), 160.6 (8.2); HREI-MS: m/z calcd for C₂₄H₂₈O₃N₁Cl₁ [M⁺] 413.1758, found 413.1773; Anal. calcd for C₂₄H₂₈O₃N₁Cl₁: C, 69.64; H, 6.82; O, 11.60; N, 3.38; Cl, 8.56 Found: C, 69.70; H, 6.78; O, 11.62; N, 3.39, Cl, 8.59.

2.3.11 9-(2,4-Dichlorophenyl)-3,3,6,6tetramethyl-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione (4k)

IR (KBr, cm⁻¹): 3416.0, 3314.0, 3066.0, 2959.0, 2879.0, 2360.0, 1639.0, 1611.0; ¹H NMR (400 MHz, DMSO- d_{δ}) &: 0.85 (s, 6H, 2×CH₃), 0.99 (s, 6H, 2×CH₃), 9.35 (s, 1H, NH), 7.22 – 7.29 (m, 3H, Ar-H), 5.02 (s, 1H, CH), 1.89 – 2.41 (m, 8H, 2×CH₂); EI-MS: m/z (rel. abund. %), 417.1 [M⁺] (30.0), 384.1 (36.2), 383.1 (32.7), 382.1(95.9), 273.1 (45.6), 272.0 (100.0), 272.2 (100.0), 188.1 (9.4); HREI-MS: m/z calcd for C₂₃H₂₅O₂N₁Cl₂ [M⁺] 417.1262, found 417.1273; Anal. calcd for C₂₃H₂₅O₂N₁Cl₂: C, 66.03; H, 6.02; O, 7.65; N, 3.35, Cl, 16.95; Found: C, 66.17; H, 5.99; O, 7.67; N, 3.37; Cl, 17.02.

2.3.12 3,3,6,6-Tetramethyl-9-(4-nitrophenyl)-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione (4l)

IR (KBr, cm⁻¹): 3384.0, 3073.0, 2956.0, 2359.0, 1646.0, 1514.0; ¹H NMR (400 MHz, DMSO- d_6) δ : 0.84 (s, 6H, 2×CH₃), 1.00 (s, 6H, 2×CH₃), 9.43 (s, 1H, NH), 7.39 – 8.06 (m, 4H, Ar-H), 4.89 (s, 1H, CH), 1.95 – 2.49 (m, 8H, 2×CH₂); EI-MS: (rel. abund. %), 394.1 [M⁺] (100.0), 392.2 (6.6), 379.2 (8.6), 378.2 (7.6), 377.2 (16.0), 364.2 (9.7), 348.2 (5.9), 347 (11.7), 274.1 (11.0), 273.1 (94.4), 272.0 (100.0), 216.1 (18.3), 188.1 (16.6); HREI-MS: m/z calcd for C₂₃H₂₆O₄N₂ [M⁺] 394.1893, found 394.1889; Anal. calcd for C₂₃H₂₆O₄N₂: C, 70.03; H,

6.64; O, 16.22; N, 7.10; Found: C, 70.02; H, 6.60; O, 16.24 N, 7.10.

2.3.13 9-(4-Chlorophenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione (4m)

IR (KBr, cm⁻¹): 3446.0, 3280.0, 3176.0, 3059.0, 2956.0, 2879.0, 2360.0, 1649.0, 1610.0; ¹H NMR (400 MHz, DMSO-*d*₀) δ: 0.85 (s, 6H, 2×CH₃), 0.99 (s, 6H, 2×CH₃), 9.31 (s, 1H, NH), 7.13 – 7.21 (m, 4H, Ar-H), 4.77 (s, 1H, CH), 1.95 - 2.46 (m, 8H, $2 \times CH_2$; ¹³C NMR (400 MHz, DMSO- d_6) δ : 26.45, 28.99, 32.09, 38.88, 39.30, 39.59, 39.92, 40.13, 50.14, 111.01, 127.48, 129.40, 129.90, 146.04, 149.44; EI-MS: m/z (rel. abund. %), 383.3 [M⁺] (69.1), 368.2 (5.2), 366.3 (4.3), 312.12 (4.2), 298.2 (4.8), 274.2 (6.5), 273.2 (54.6), 272.0 (100.0), 216.1 (7.7), 272.0 (100.0), 188.1 (6.4); HREI-MS: m/z calcd for C₂₃H₂₆O₂N₁Cl₁ [M⁺] 383.1652, found 383.1643; Anal. calcd for C₂₃H₂₆O₂N₁Cl₁: C, 71.96; H, 6.83; O, 8.33; N, 3.65; Cl, 9.23 Found: C, 72.03; H, 6.79; O, 8.35; N, 3.65, Cl, 9.26.

2.3.14 3,3,6,6-Tetramethyl-9-p-tolyl-3,4,6,7,9,10hexahydroacridine-1,8(2H,5H)-dione (4n)

IR (KBr, cm⁻¹): 3280.0, 3185.0, 3067.0, 2956.0, 2873.0, 1650.0, 1608.0; ¹H NMR (400 MHz, DMSO- d_{δ}) & 0.84 (s, 6H, 2×CH₃), 0.99 (s, 6H, 2×CH₃), 9.21 (s, 1H, NH), 6.92 – 7.02 (m, 4H, Ar-H), 4.74 (s, 1H, CH), 2.16 (s, 3H, CH₃), 1.93 – 2.44 (m, 8H, 2×CH₂); EI-MS: (rel. abund. %), 363.2 [M⁺] (86.2), 362.2 (20.5), 348.2 (12.1), 346.2 (7.0), 279.2 (6.2), 278.2 (9.5), 274.2 (7.6), 273.2 (57.9), 272.0 (100.0), 256.1 (5.3), 188.1 (7.0); HREI-MS: m/z calcd for C₂₄H₂₉O₂N₁ [M⁺] 363.2198, found 363.2206; Anal. calcd for C₂₄H₂₉O₂N₁: C, 79.30; H, 8.04; O, 8.80; N, 3.85; Found: C, 79.29; H, 7.98; O, 8.81; N, 3.85.

2.3.15 3-(3,3,6,6-Tetramethyl-1,8-dioxo-1,2,3,4,5,6,7,8,9,10-decahydroacridin-9yl)benzonitrile (40)

IR (KBr, cm⁻¹): 3783.0, 3694.0, 3301.0, 3067.0, 2957.0, 2369.0, 2234.0, 1644.0; ¹H NMR (400 MHz, DMSO- d_{δ}) δ : 0.84 (s, 6H, 2×CH₃), 0.99 (s, 6H, 2×CH₃), 9.39 (s, 1H, NH), 7.39 – 7.52 (m, 4H, Ar-H), 4.82 (s, 1H, CH), 1.97 – 2.49 (m, 8H, 2×CH₂); EI-MS: m/z (rel. abund. %), 374.2 [M⁺] (94.3), 373.2 (22.7), 359.2 (9.2), 303.2 (7.8), 274.1 (10.2), 273.1 (79.8), 272.0 (100.0), 216.1 (15.7), 188.1 (12.2); HREI-MS: m/z calcd for C₂₄H₂₆O₂N₂ [M⁺] 374.1994, found 374.1998; Anal. calcd for

 $C_{24}H_{26}O_2N_2$: C, 76.98; H, 7.00; O, 8.54; N, 7.48; Found: C, 76.96; H, 6.95; O, 8.55; N, 7.48.

2.3.16 9-(4-Methoxyphenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione (4p)

IR (KBr, cm⁻¹): 3782.0, 3448.0, 3207.0, 3071.0, 2956.0, 2370.0, 1642.0, 1608.0; ¹H NMR (400 MHz, DMSO- d_{δ}) & 0.85 (s, 6H, 2×CH₃), 0.99 (s, 6H, 2×CH₃), 9.21 (s, 1H, NH), 6.68 – 7.04 (m, 4H, Ar-H), 4.73 (s, 1H, CH), 3.64 (s, 3H, OCH₃), 1.94 – 2.44 (m, 8H, 2×CH₂); EI-MS: (rel. abund. %), 379.3 [M⁺] (52.6), 378.3 (15.0), 377.2 (4.3), 362.2 (5.9), 295.2 (4.6), 294.2 (6.5), 273.2 (19.6), 272.2 (100.0), 216.1 (4.6); 188.1 (4.1); HREI-MS: m/z calcd for C₂₄H₂₉O₃N₁ [M⁺] 379.2147, found 379.2141; Anal. calcd for C₂₄H₂₉O₃N₁: C, 75.96; H, 7.70; O, 12.65; N, 3.69; Found: C, 75.95; H, 7.65; O, 12.66; N, 3.69. 2.3.17 9-(3-Bromophenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione (4q)

IR (KBr, cm⁻¹): 3885.0, 3694.0, 3429.0, 3272.0, 3177.0, 3065.0, 2955.0, 2369.0, 1886.0, 1731.0, 1642.0, 1602.0; ¹H NMR (400 MHz, DMSO- d_{δ}) δ : 0.86 (s, 6H, 2×CH₃), 1.00 (s, 6H, 2×CH₃), 9.35 (s, 1H, NH), 7.12 – 7.28 (m, 4H, Ar-H), 4.76 (s, 1H, CH), 2.01 – 2.49 (m, 8H, 2×CH₂); EI-MS: m/z (rel. abund. %), 427.0 [M⁺] (14.2), 273.1 (21.8), 272.1 (100.0), 216.0 (4.0), 84.9 (4.3), 84.0 (5.8), 82.9 (6.7), 44.0 (6.3); HREI-MS: m/z calcd for C₂₃H₂₆O₂N₁Br₁ [M⁺] 427.1147, found 427.1130; Anal. calcd for C₂₃H₂₆O₂N₁Br₁: C, 64.49; H, 6.12; O, 7.47; N, 3.27; Br, 18.65 Found: C, 64.62; H, 6.09; O, 7.49; N, 3.28, Br, 18.71.

2.3.18 3,3,6,6-Tetramethyl-9-(4-(methylthio)phenyl)-3,4,6,7,9,10-

hexahydroacridine-1,8(2H,5H)-dione (4r)

IR (KBr, cm⁻¹): 3914.0, 3790.0, 3661.0, 3439.0, 3277.0, 3180.0, 3066.0, 2956.0, 2869.0, 1878.0, 1648.0, 1608.0; ¹H NMR (400 MHz, DMSO- d_{δ}) δ: 0.85 (s, 6H, 2×CH₃), 0.99 (s, 6H, 2×CH₃), 9.26 (s, 1H, NH), 7.06 (s, 4H, Ar-H), 4.74 (s, 1H, CH), 2.38 – 2.41 (m, 3H, SCH₃), 1.94 – 2.38 (m, 8H, 2×CH₂); EI-MS: (rel. abund. %), 395.3 [M⁺] (51.7), 393.3 (8.3), 380.3 (3.6), 348.3 (3.9), 310.2 (3.1), 274.2 (3.1), 273.2 (16.2), 272.2 (100.0), 216.1 (4.7), 188.1 (3.5); HREI-MS: m/z calcd for C₂₄H₂₉O₂N₁S₁: C, 72.87; H, 7.39; O, 8.09; N, 3.54; S, 8.11; Found: C, 72.88; H, 7.34; O, 8.10 N, 7.09; S, 8.10.

2.3.19 9-(3-Methoxyphenyl)-3,3,6,6-tetramethyl- 3.(

3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione (4s)

IR (KBr, cm⁻¹): 3448.0, 3275.0, 3187.0, 3067.0, 2959.0, 2836.0, 1645.0, 1610.0; ¹H NMR (400 MHz, DMSO- d_{δ}) δ : 0.86 (s, 6H, 2×CH₃), 0.99 (s, 6H, 2×CH₃), 9.25 (s, 1H, NH), 6.59 – 7.07 (m, 4H, Ar-H), 4.78 (s, 1H, CH), 3.64 (s, 3H, OCH₃), 1.96 – 2.45 (m, 8H, 2×CH₂); EI-MS: (rel. abund. %), 379.3 [M⁺] (21.0), 377.3 (3.7), 274.2 (3.0), 273.2 (18.1), 272.2 (100.0), 216.1 (3.6); 188.1 (3.7); HREI-MS: m/z calcd for C₂₄H₂₉O₃N₁ [M⁺] 379.2147, found 379.2151; Anal. calcd for C₂₄H₂₉O₃N₁: C, 75.96; H, 7.70; O, 12.65; N, 3.69; Found: C, 75.95; H, 7.65; O, 12.66; N, 3.69.

2.3.20 9-(3-Chlorophenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione (4t)

IR (KBr, cm⁻¹): 3707.0, 3420.0, 3274.0, 3180.0, 3066.0, 2954.0, 2927.0, 2885.0, 2370.0, 1731.0, 1643.0, 1606.0; ¹H NMR (400 MHz, DMSO- d_{δ}) &: 0.86 (s, 6H, 2×CH₃), 1.00 (s, 6H, 2×CH₃), 9.34 (s, 1H, NH), 7.09 – 7.19 (m, 4H, Ar-H), 4.77 (s, 1H, CH), 1.97 – 2.35 (m, 8H, 2×CH₂); EI-MS: m/z (rel. abund. %), 383.3 [M⁺] (17.0), 274.2 (3.2), 273.2 (22.4), 272.2 (100.0), 216.2 (4.2), 188.2 (3.5); HREI-MS: m/z calcd for C₂₃H₂₆O₂N₁Cl₁ [M⁺] 383.1647, found 383.1633; Anal. calcd for C₂₃H₂₆O₂N₁Cl₁: C, 71.96; H, 6.83; O, 8.33; N, 3.65; Cl, 9.23 Found: C, 72.03; H, 6.79; O, 8.35; N, 3.65, Cl, 9.26.

2.3.21 9-(3-Fluorophenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione (4u)

IR (KBr, cm⁻¹): 3784.0, 3451.0, 3281.0, 3071.0, 2957.0, 2875.0, 1636.0, 1616.0; ¹H NMR (400 MHz, DMSO- d_{6}) δ : 0.85 (s, 6H, 2×CH₃), 0.99 (s, 6H, 2×CH₃), 9.34 (s, 1H, NH), 6.85 – 7.20 (m, 4H, Ar-H), 4.81 (s, 1H, CH), 1.97 – 2.41 (m, 8H, 2×CH₂); EI-MS: m/z (rel. abund. %), 367.3 [M⁺] (54.9), 352.2 (4.1), 350.3 (3.0), 296.2 (4.3), 283.2 (3.0), 282.2 (5.2), 274.2 (6.4), 273.2 (56.5), 272.0 (100.0), 216.2 (9.8), 198.1 (3.9), 188.1 (9.2), 83.1 (3.2); HREI-MS: m/z calcd for C₂₃H₂₆O₂N₁F₁ [M⁺] 367.1948, found 367.1951; Anal. calcd for C₂₃H₂₆O₂N₁F₁: C, 75.18; H, 7.13; O, 8.71; N, 3.81; F, 5.17 Found: C, 75.16; H, 7.08; O, 8.71; N, 3.81, F, 5.17.

3.0 Results and Discussion

In this work, we present a versatile and environmentally benign strategy, one-pot multicomponent reaction for synthesis of acridine 1,8(2H,5H)-diones by the reaction of aromatic aldehydes, dimedone, and ammonium acetate under reflux in water with nickel (II) fluoride tetrahydrate as the catalyst (Scheme 1). Other solvents like ethanol, diethyl malonate and ethyl methyl ketone were also used in the synthesis of this novel compounds. Diethyl malonate and ethyl methyl ketone were initially selected as one of the reagents for solvent free one-pot multi-component synthesis of hexahydroquinoline-3-carboxylate (6) and tetrahvdroquinolin-5(1H)-one (8) derivatives (Scheme 2) respectively which did not yield the target compounds but rather acridine1,8 (2H,5H)diones. This showed that they were acting as solvents.

The optimization of the reaction conditions using a model reaction of 3-hydroxybenzaldehyde (0.6 equiv.), dimedone (2 equiv.) and ammonium acetate (1.5 equiv.) in 1 mmol scale to afford the corresponding product 4a under various reaction conditions was studied. The results are summarized in **Tables 1 and 2**. The efficiency of NiF₂.4H₂O as a heterogeneous catalyst using different amounts of NiF₂.4H₂O and water as solvent was first examined. The results in **Table 1** showed that using just 15 mol% catalyst affected the efficiency of the reaction (Table 1, entries 1- 5), at catalyst amount >15mol%, the decreased in yield by >5 % was observed (Table 1, entries 6-7). To examine the effect of reaction media, several solvents were screened (ethanol, ethyl methyl ketone, diethyl malonate, methanol and water). The best yield of product (99 %) was obtained in ethanol and water (Table 2, entries 1 and 5), followed by diethyl malonate and ethyl methyl ketone (Table 2, entries 2-3). Hence, water and ethanol were the best media for this reaction, but water was used as solvent for subsequent reactions due to its environmental benign nature, easy work-up and availability. This observation collaborates the literature report (Mansoor et al., 2014). During optimization, we also discovered that solvent amount affects the efficiency of the reaction. The efficiency of reaction was inversely proportional to the amount of the

Entry	Catalyst	Amount of catalyst (mol%)	Time (h)	Yield (%) ^b	
1	NiF ₂ .4H ₂ O	0.0	10.0	46	
2	NiF ₂ .4H ₂ O	2.0	9.5	58	
3	NiF ₂ .4H ₂ O	5.0	7.0	62	
4	NiF ₂ .4H ₂ O	10.0	3.0	70	
5	$NiF_2.4H_2O$	15.0	1.5	99	
6	NiF ₂ .4H ₂ O	20.0	1.5	92	
7	NiF ₂ .4H ₂ O	25.0	1.5	87	

Table 1

The reaction of aromatic aldehyde, dimedone, and ammonium acetate: optimization of the amount of catalyst.^a

^a Reaction conditions: aromatic aldehydes (0.6 equiv), dimedone (2 equiv), and ammonium acetate (1.5 equiv) at 80 0 C in water

^bIsolated yields.

Table 2

The reaction of aromatic aldehyde, dimedone, and ammonium acetate: effect of solvent.^a

	Solvent Amount of catalyst (mol%)		Yield (%) ^b	
Ethanol	15.0	2.0	99	
Ethyl methyl ketor	ne 15.0	2.0	70	
Diethyl malonate	15.0	3.0	88	
Methanol	15.0	3.0	65	
Water	15.0	1.5	99	

^aReaction conditions: aromatic aldehydes (0.6 equiv), dimedone (2 equiv), and ammonium acetate (1.5 equiv) in the presence of NiF₂.4H₂O (15 mol%) at 80 ^oC in solvent

^bIsolated yields.

solvent. That is, increase in the amount of solvent, decreases the efficiency of reaction. For reactions in 1 mmol scale, 1 ml of solvent was required for efficient and fast reaction, while reaction in 2 mmol scale also required 2 ml of solvent as compared to 4 ml widely reported in most literature (Mansoor *et al.*, 2014; Xia and Zhang, 2012).

To determine the utility of this protocol, we examined some substituted aromatic benzaldehydes for the reaction with dimedone and ammonium acetate to obtain the desired products under optimized conditions (**Table 3**). The isolated compounds (**4a-u**) were characterized by IR, ¹H NMR, ¹³C NMR, EI-MS, HREI-MS, elemental

analysis and melting point determination. The spectroscopic, analytical and physical data collaborates with those reported in the literature.

Among the 21 acridinedione compounds synthesized, **4b**, **4c**, **4e**, and **4f** were novel and are reported in this work for the first time. The low yield (41%) of **4e** may be attributed to steric hindrance by the two methoxy groups attached at positions 2 and 6 on the aromatic aldehyde ring. Compound **4c** was unique as it exhibited keto-enol tautomerism (**Figure 1**).

This was observed during the interpretation of the EI-MS and ¹H NMR results respectively. EI-MS spectra that was obtained in solid state gave the

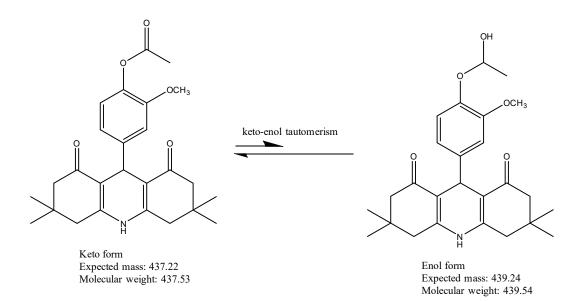
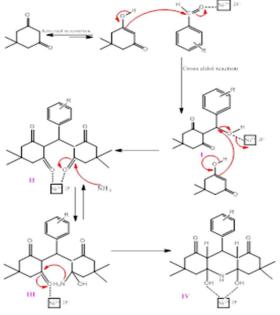
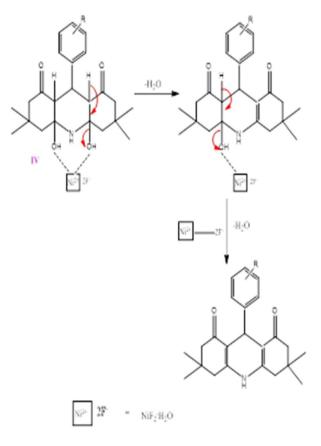




Figure 1: Keto-enol tautomerism of 4c

molecular ion peak of 437.3 corresponding to the molecular weight of the keto form. The ¹H NMR spectra that was obtained in DMSO gave a single proton at 9.199 chemical shift corresponding to -OH proton, represent the enol form. That is in solid state, **4c** exists in keto form while in solution it exists in the enol form. A plausible mechanism for this reaction using NiF₂.4H₂O is given in **Scheme 3**.

Scheme 3: A plausible mechanism for the formation of acridinediones

Entry	Aromatic aldehyde	Nitrogen source	Product source	Time (h)	Yield (%) ^b	Mp (⁰ C)	
						Found	Reported
1	СНО	NH ₄ OAC	4a	1.5	99	309-312	—
2	F OCH ₃	NH ₄ OAC	4b	3.0	80	258-260	_
3	OCH3 CHO	NH ₄ OAC	4c	3.0	91	270-274	_
4	OCH ₃ Br	NH ₄ OAC	4d	3.0	92	313-317	238-241 (Ramesh and Pasha, 2014)
5	CHO OCH ₃ CHO OCH ₃	NH ₄ OAC	4e	2.0	41	265-268	_
6	СНО	NH ₄ OAC	4f	2.0	54	325-327	_
7	CHO	NH4OAC	4g	2.0	70	289-294	290-293 (Nasresfahani and Kassaee,2015)
8	NO ₂ CHO	NH ₄ OAC	4h	1.0	92	362-364	> 300 (Mansoor <i>et al.</i> , 2014
9	ОН СНО	NH ₄ OAC	4i	1.0	96	262-265	274-276 (Mansoor et al., 2014)
10	CHO CI OCH ₃	NH4OAC	4j	3.0	72	373-376	_

Table 3. Synthesis of products 4a - 4u by the reactions of aromatic aldehydes with dimedone and ammonium acetate^a

Table 3 (Continued)

Entry	Aromatic aldehyde	Nitrogen source	Product source	Time (h)	Yield (%) ^b	^b Mp (⁰ C)	
						Found	Reported
11	СНО	NH ₄ OAC	4k	3.0	71	352-355	_
12	CI CI CI	NH ₄ OAC	41	2.0	75	287-290	284-287 (Dutta et al., 2017)
0 13	2 ^N CHO	NH ₄ OAC	4m	2.0	99	296-298	298-301 (Dutta et al., 2017)
14		NH ₄ OAC	4n	2.5	95	317-320	320-325 (Nasresfahani and Kassaee, 2015)
15	СНО	NH ₄ OAC	40	1.0	96	303-307	_
16 H₃CC	ĊN CHO	NH ₄ OAC	4p	1.0	96	273-288	270-280 (Nasresfahani and Kassaee, 2015)
7	Br CHO	NH ₄ OAC	4q	1.5	79	317-320	286-288 (Satheeshkumar e 2017)
18	СНО	NH ₄ OAC	4r	1.0	99	284-287	_
H ₃ CS´ 19	СНО	$\rm NH_4OAC$	4s	1.5	86	307-310	_
20	OCH ₃ CHO	NH ₄ OAC	4t	1.0	96	281-284	280-282 (Satheeshkumar et al., 2017)
21	СІ	NH ₄ OAC	4u	1.0	91	263-266	262-264 (Satheeshkumar <i>et al</i> 2017)

^a Reaction conditions: aromatic aldehydes (0.6 equiv), dimedone (2 equiv), and ammonium acetate (1.5 equiv) in the presence of NiF₂.4H₂O (15 mol%) at 80 0 C in water

^b Isolated yield.

4.0 Conclusion

We efficient have developed an and environmentally benign strategy for synthesis of substituted acridinediones through one-pot multicomponent condensation of aromatic aldehyde, dimedone, and ammonium acetate in an aqueous medium with nickel (II) fluoride tetrahydrate as efficient catalyst. The experimental simplicity, compatibility with various functional groups, the mildness of the conversion, easy work-up procedure and excellent product yield make this strategy attractive for synthesis of a variety of such compounds. Ethyl methyl ketone and diethyl malonate were also discovered as suitable solvents for synthesis of these compounds with excellent product yield.

5.0 Acknowledgements.

I am thankful to the ICCBS-TWAS for selecting me for the award of postdoctoral fellowship, Higher Education Commission (HEC), Pakistan under National Research Grant for Universities for providing necessary financial support and International Center for Chemical and Biological Sciences for providing all the facilities including analytical and NMR techniques.

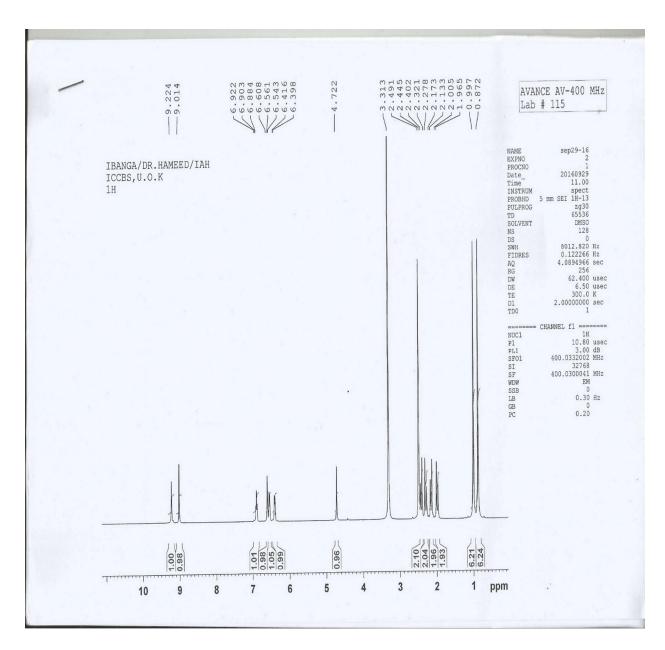
6.0 References

- Abdelhamid, A. A., Mohamed, S. K., Maharramov, A. M., Khalilov, A. N.n & Allahverdiev, M. A. (2014). Facile and efficient synthesis of acridinediones from primary amino alcohols via three-component condensation reactions assisted by microwave irradiation. *Journal of Saudi Chemical Society*, 18, pp. 474 - 478.
- Abdolmohammadi, S. & Karimpour, S. (2016). Rapid and mild synthesis of quinazolinones and chromeno[d]pyrimidinones using nanocrystalline copper (I) iodide under solventfree conditions. *Chinese Chemical Letters*, 27, pp. 114 - 118.
- Alagarsamy, V., Pathak, U. S., Pandaya, S. N. Sriram, D. & De Clercq, E. (2000). Anti-HIV and anti-bacterial activities of some disubstitutedquinazolones and their bio-isoster disubstituted thieno pyrimidones. *Indian Journal* of Pharmaceutical Sciences, 62, pp. 433-437.
- Ali, I., Isaac, I. O., Ahmed, F., Aslam, F., Ali, S., Imran, M., Alharthy, R. D., Shah, M. R., Malik, M. I. & Hameed, A. (2019). Acridine-Thiosemicarbazones-Stabilized Silver Nanoparticles as a Selective Sensor for Copper

(II)-Ion in Tap Water. Chemistry Select, 4, pp. 8757-8763.

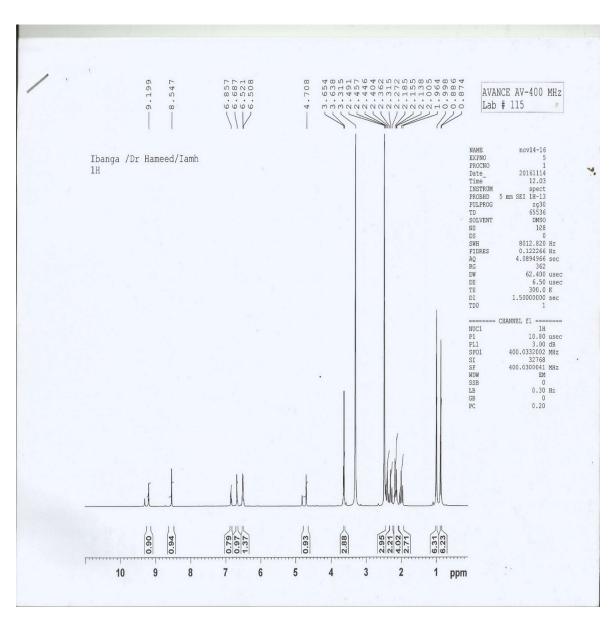
- Aly, M. M., Mohamed, Y. A., El-Bayouki, K. M., Basyouni, W. M. & Abbas, S. Y. (2010). Synthesis of some new 4(3H)-quinazolinone-2carboxaldehyde thiosemicarbazones and their metal complexes and a study on their anticonvulsant, analgesic, cytotoxic and antimicrobial activities. *European Journal of Medicinal Chemistry*, 45, pp. 3365 - 3373.
- Aswin, K., Logaiya, K., Sudhan, P. N. & Mansoor, S. S. (2012). An efficient one-pot synthesis of 1,4-dihydropyridine derivatives through Hantsch reaction catalyzed by melamine trisulfonic acid. *Journal of. Taibah University of Science and Technology*. 6, pp. 1 - 9.
- Banothu, J., Basavoju, S., Bavantula, R. & Crooks,
 P. A. (2014). Synthesis of fused thiazolo[3,2-a] pyrimidinones: N-aryl-2-chloroacetamides as doubly electrophilic building blocks. *Tetrahedron Letters*, 55, pp. 224 - 226.
- Dahiya, R., Kumar, A. & Yadav, R. (2008).
 Synthesis and biological activity of peptide derivatives of iodoquinazolinones/nitroimidazoles. *Molecules*, 13, pp. 958 976.
- Dutta, A. K., Gogoi, P., Saikia, S., and Borah, R. (2017).N,N-Disulfo-1,1,3,3-tetramethyl guanin ium Carboxylate Ionic Liquids as Reusable Homogeneous Catalysts for Multicomponent Synthesis of Tetrahydrobenzo [α] xanthene and Tetrahydrobenzo [α] Acridine Derivatives. *Journal of Molecular Liquids*, 225, pp. 585 591.
- Ghorab, M. M., Abdel-Gawad, S. M., M. S. A. & El-Gaby M. S. A. (2000). Synthesis and evaluation of some new fluorinated hydroquinazoline derivatives as antifungal agents. IL *Farmaco*. 55, pp. 249-255.
- Gündüz, M. G., Isli, F., El-Khouly, A., Yıldırım, S., Fincan, G. S. O., Simsek, R., Safak, C., Sarıoglu, Y., Yıldırım, S. O. & Butcher, R. J. (2014). Microwave-assisted synthesis and myorelaxant activity of 9-indolyl-1,8acridinedione - derivatives. *European Journal of Medicinal Chemistry*, 75, 258-266.
- Hashim, J., Arshad, N., Khan, I., Nisar, S., Ali, B.& Choudhary, M. I. (2014). Preparation of dihydrotetrazolo[1,5-a] pyrimidine derivatives

from Biginelli 3,4-dihydropyrimidine-2-thiones. *Tetrahedron*, 70, pp. 8582 - 8587.


- Isaac, I. O., al-Rashida, M., Rahman, S. U., Alharty, R. D., Asari, A., Hameed, A., Khan, K. M. & Iqbal, J. (2019). Acridine-based (thio)semicarbazones and hydrazones: Synthesis, in vitro urease inhibition, molecular docking and in-silico ADME evaluation. *Bioorganic Chemistry*, 82, pp. 6 - 16.
- Isaac, I. O., Munir, I., Al-Rashida, M., Ali, S. A., Shafiq, Z., Islam, M. Ludwig, R., Ayub, K., Khan, K. M. & Hameed, A. (2018). Novel acridine-based thiosemicarbazones as 'turn-on' chemosensors for selective recognition of fluoride anion: a spectroscopic and theoretical study. *Royal Society Open Sci.http://dx.doi.org/10.1098/rsos.180646*.
- Kidwai, M., Saxena, S., Khan, M. K. R. & Thukral, S. S. (2005). Synthesis of 4-aryl-7,7- dimethyl-1,2,3,4,5,6,7,8-octahydroquinazoline2one/thione-5-one derivatives and evaluation as antibacterials. *European Journal of Medicinal Chemistry*, 40, pp. 816-819.
- Kumar, A. & Rajput, C. S. (2009). Synthesis & antiinflammatory activity of newer quinazolin-4-one derivatives. *European Journal of Medicinal Chemistry*, 44, pp. 83 - 90.
- Kumar, A., Sharma, S., Tripathi, V. D., Maurya, R. A., Srivastava, S. P., Bhatia, G., Tamrakar, A. K., & Srivastava, A.K. (2010). Design and synthesis of 2,4-disubstituted polyhydroquinolines as prospective antihyperglycemic and lipid modulating agents. *Bioorganic and Medicinal Chem*istry, 18, pp. 4138 - 4148.
- Ladani, N. K., Mungra, D. C., Patel, M. P., & Patel, R. G. (2011). Microwave assisted synthesis of novel Hantzsch 1,4-dihydropyridines, acridine-1,8-diones and polyhydroquinolines bearing the

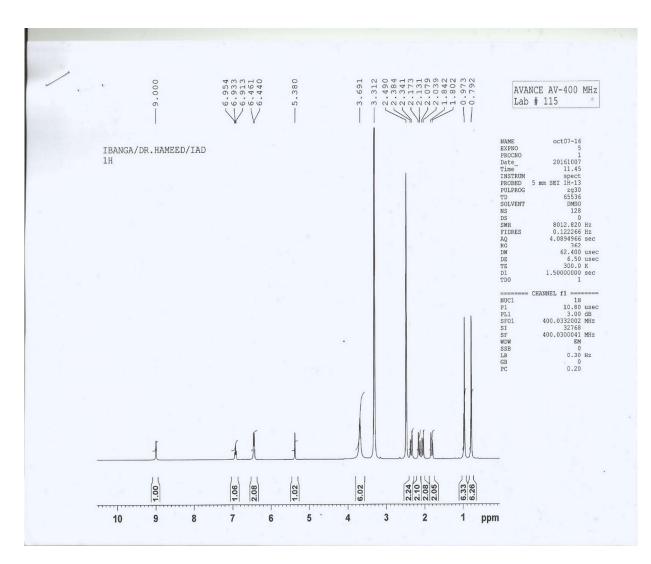
tetrazolo[1,5-a]quinoline moiety and their antimicrobial activity assess. *Chinese Chemical Letters*, 22, pp.1407 - 1410.

- Mansoor, S. S., Aswin, K., Logaiya, K. & Sudhan, S. P. N. (2014). Aqua-mediated synthesis of acridinediones with reusable silica-supported sulfuric acid as an efficient catalyst. *Journal of Taibah University of Science and Technology*, 8, pp.265 - 275.
- Mansoor, S. S., Aswin, K., Logaiya, K. & Sudhan, S. P. N. (2016). Bismuth nitrate as an efficient recyclable catalyst for the one-pot multi component synthesis of 1,4-dihydropyridine derivative through unsymmetrical Hantzsch reaction. *Journal of Saudi Chemical Society*. 20, pp. S100 - S108.
- Nasresfahani, Z. & Kassaee, M. Z. (2015). Mesoporous silica nanoparticles in an efficient, solvent-free green synthesis of acridinediones. *Catalysis Communications*, 60, pp. 100 - 104.
- Ramesh, K. B. & Pasha, M. A. (2014). Study on One-pot Four-component Synthesis of 9-aryhexahydro-acridine- 1,8-diones Using SiO-I as a New Heterogeneous Catalyst and their Anticancer Activity. *Bioorganic and Medicinal Chemistry Letters*, 24, pp.3907 - 3913.
- Satheeshkumar, R., Sayin, K., Kaminsky, W. & Prasad, K. J. R. (2017). Synthesis, spectral analysis and quantum chemical studies on molecular geometry, chemical reactivity of 7-Chloro-9-(2'-chlorophenyl)-2,3-dihydroacridin-4(*1H*)-one and 7-chloro-9-(2'-flourophenyl)-2,3- dihydroacridin-4 (*1H*)-one. Journal of Molecular Structure., 112 8, pp.279 289.
- Xia, J. & Zhang, K. (2012). Synthesis of Nsubstituted acridinediones and polyhydroquinoline derivatives in refluxing water. *Molecules*. 17: 5339 - 5345.



Communication in Physical Chemistry 2020, 5(2): 83-98

Appendix 1: ¹H NMR spectrum of sample 4a



Communication in Physical Chemistry 2020, 5(2): 83-98

Appendix 2: ¹H NMR spectrum of sample 4c

Appendix 3: ¹H NMR spectrum of sample 4e

