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Abstract: A good number of economic 

variables undergo the process of regime shifts. 

In modeling such variables, it is necessary to 

consider a model that has provision for the 

regime form of nonstationarity. The smooth 

transition autoregressive (STAR) model is a 

choice model for time series with regime shifts. 

Given the role of transition functions in the 

performance of STAR models, this study 

introduced a family of transition functions by 

modifying the conventional logistic function. 

This new family, called the power logistic 

transition function, has the symmetric 

transition function and asymmetric transition 

function as special cases, making it useful in 

constructing both symmetric and asymmetric 

STAR models. The symmetric form of the family 

and the associated STAR model are extensively 

explained. The performance of the symmetric 

version of the power logistic smooth transition 

autoregressive model was illustrated with a 

monthly exchange rate of naira to United 

States dollar and African Financial 

Community Franc spanning from January 

2004 to April 2021, which were extracted from 

Central Bank of Nigeria statistical bulletin. 

The numerical results obtained show that the 

symmetric power logistic smooth transition 

autoregressive model outperforms the linear 

autoregressive model and other existing 

symmetric smooth transition autoregressive 

models.  
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1.0  Introduction 

Time series analysts have made appreciable 

efforts to introduce a rich class of regime-

switching models in which different time series 
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are allowed to undergo regime shifts. Chan and 

Tong (1986) suggested the generalization of 

the nonlinear two-regime univariate self-

exciting threshold autoregressive (SETAR) 

model introduced by Tong (1983) to smooth 

threshold autoregressive (STAR) model to 

make the transition from one regime to the 

other smooth. Also, Terasvirta (1994) made a 

slight generalization of the exponential 

autoregressive (EAR) model of Haggan and 

Ozaki (1981) and the SETAR model of Tong 

(1983) into a single family of models called 

smooth transition autoregressive (STAR) 

models. The exponential STAR (ESTAR) is 

the modification of EAR, while the logistic 

STAR (LSTAR) family contains, as a special 

case, the SETAR model. However, the idea of 

smooth transition autoregression is traced back 

to Bacon and Watts (1971). The smooth 

transition autoregressive (STAR) model is a 

special class of nonlinear models that has a  

widespread application to exchange rates. 

Several empirical studies have shown that 

STAR models account for the dynamics of 

exchange rates (Taylor and Sarno, 1998; 

Sarantis, 1999; Taylor and Peel, 2000; Sarno, 

2000; Baum et al., 2001; Liew et al., 2003; 

Tong and Lim, 1980). 

Different analysts have made diverse 

modifications to STAR models to capture 

different properties of time series in the areas 

that the STAR models are found to be deficient. 

For instance, Anderson (1997) modified 

ESTAR to asymmetric ESTAR to capture 

possible asymmetry in the investors' response 

to situations when the bill of shorter maturity is 

either overpriced or underpriced relative to the 

bill of longer maturity. Liew et al. (2003) 

modified the LSTAR model to absolute logistic 

STAR (ALSTAR) to capture the dynamics of 

two Yen-based nominal exchange rates. 

Shangodoyin et al. (2009) proposed an 

alternative representation of the LSTAR model 

called the error logistic smooth transition 

regression (ELSTR) model with the 

asymmetric transition function to model the  

United States of America and Nigerian 

inflation series separately. Silverstone (2005) 

generalized a two-regime second-order logistic 

transition function (LSTR2) to a B-parameter 

smooth transition autoregressive (BSTAR) 

model with an asymmetric transition function 

for modeling the annual growth rates of Italian 

industrial production. Ajmi and El-Montasser 

(2012) generalized the BSTAR model to 

Seasonal Bi- parameter Smooth Transition 

autoregressive (SEA-BSTAR) model by the 

introduction of seasonal dummies into the 

model to account for the seasonal effect in the 

United Kingdom industrial production index. 

Yaya and Shittu (2016) generalized the LSTAR 

model to two symmetric STAR models, 

namely, the absolute error logistic STAR 

(AELSTAR) model and the quadratic logistic 

STAR (QLSTAR) model, to account for the 

symmetric properties of economic time series. 

The choice of transition function is 

fundamental to the forecast performance of a 

STAR model. Thus, when we empirically 

compare symmetric or asymmetric models 

built with different transition functions, their 

performance ranking differs. A time series 

analyst using STAR models often desire the 

most efficient of the models. The relative 

efficiency of each of the models varies across 

data. In a variety of situations, it is necessary to 

introduce a new STAR model by modifying the 

existing one to improve fit. One way of 

modifying a STAR model is to replace its 

transition function with a new one. The purpose 

of this work is to introduce a new family of 

transition functions called the power logistic 

(PL) function, paying attention to its symmetric 

version and the related STAR model for 

empirical illustrations. This paper also 

compares the forecasting performance of the 

symmetric Power Logistic STAR (SPLSTAR) 

model with other existing symmetric STAR 

models together with the linear autoregressive 

(AR) model. 

This paper is further organized as follows: 

Section 2 covers the materials and methods. 
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Results are presented in Section 3. Discussion 

of results is carried out in Section 4, while 

Section 5 concludes the study. 
 

2.0    Materials and  Method 

2.1      Source of Data 
 

The monthly exchange rate of naira to United 

States dollar (USD) and African Financial 

Community (CFA) Franc spanning from 

January 2004 to April 2021, which were 

extracted from the Central Bank of Nigeria 

statistical bulletin, will be used for empirical 

analyses. 

 

2.2 The Proposed Family of Transition Functions and its  Properties 
 

 The proposed family has the following representation: 

F(yt−d; , ) = {1 + 0.5exp[−(yt−d
i − )]}

−2 
−

1

1.52 ,  > 0,   i = 1,2,                            (1)  

 

where  is the scale parameter and  is the 

location parameter.  
1

1.52
 is subtracted from (1) 

to ensure that F(yt−d;  = 0, ) = 0 and it is 

useful in performing linearity tests. 0.5 is 

attached to (1) to ensure that the derivative of 

order (2𝑠 + 1), 𝑠 ≥ 0 exists and that 
dk

dk F(yt−d;  = 0, ) ≠ 0, for odd 𝑘 and 1≤

𝑘 ≤ 2𝑠 + 1. According to Luukkonem 𝑒𝑡 𝑎𝑙. 
(1988), a transition function must satisfy the 

following conditions: 

(I) The transition function, F(), is a 

continuous function possessing a non-zero 

derivative of order (2𝑠 + 1), 𝑠 ≥ 0. 
 

 

 

(II) 𝐹(0) = 0 and 
dk

dk F()|
=0

≠ 0, for odd 𝑘 

and 1≤ 𝑘 ≤ 2𝑠 + 1. The condition 𝐹(0) = 0 is 

not restrictive as it is only used for performing 

the linearity test. The Taylor series 

approximation of F(yt−d; , ) is generally 

used to test the null hypothesis of linearity 

against the alternative of STAR-type 

nonlinearity due to the problem of unidentified 

nuisance parameters under the null hypothesis. 

It will be used to verify the requisite properties 

of the power logistic function. If 𝑓 is defined in 

the interval containing "𝑥0" and its derivatives 

of all orders exist at  = 𝑥0, then by Taylor 

series expansion,  

 

f(x) ≅ f(𝑥0) +
f (𝑥0)(x − 𝑥0)

1!
+

f (𝑥0)(x − 𝑥0)2

2!
+

f (𝑥0)(x − 𝑥0)3

3!
+ ⋯,                 (2) 

where f j(𝑥0)  denotes the jth derivative of 𝑓 evaluated at the point 𝑥0. The Taylor series third-

order approximation to the power logistic function (1) is  

 

F(yt−d; , ) ≅ F(yt−d;  = x0, ) + ∑
Fj(yt−d;  = x0, )( − x0)j

j!

3

j=1

.                             (3) 

From (1), we obtain 

 

F(yt−d;  = x0, ) =
(yt−d

i − )exp[−x0(yt−d
i − )]

{1 + 0.5 exp[−x0(yt−d
i − )]}

3  ,                                                        (4) 
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F(yt−d;  = x0, )

=

−(yt−d
i − )

2
exp[−x0(yt−d

i − )]{1 + 0.5 exp[−x0(yt−d
i − )]}

+1.5(yt−d
i − )

2
{exp[−x0(yt−d

i − )]}
2

{1 + 0.5 exp[−x0(yt−d
i − )]}

4  .                                 (5) 

 

F′′′(yt−d;  = x0, ) =
𝑞. 𝑟. 𝑠. 𝑡

𝑢
,                                                                                                     (6) 

where 

𝑞 = (yt−d
i − )

3
exp[−x0(yt−d

i − )],  

𝑟 = [{1 + 0.5 exp[−x0(yt−d
i − )]} − 1.5exp[−x0(yt−d

i − )]], 

𝑠 = {1 + 0.5 exp[−x0(yt−d
i − )]} + 3(yt−d

i − )
3

{exp[−x0(yt−d
i − )]},2 

𝑡 = [{exp[−x0(yt−d
i − )]} − {1 + 0.5 exp[−x0(yt−d

i − )]}], 

𝑢 = {1 + 0.5 exp[−x0(yt−d
i − )]}

5
. 

 

Substituting (4), (5) and (6) into (3), we have 

𝐹(yt−d; , ) = 𝑎 + 𝑏 ×
( − x0)

1!
+

𝑐 + 𝑑

𝑢
×

( − x0)2

2!
+

𝑞. 𝑟. 𝑠. 𝑡

𝑢
×

( − x0)3

3!
,                 (7) 

where 

 𝑎 = {1 + 0.5exp[−x0(yt−d
i − )]}

−2 
−

1

1.52,   

𝑏 =
(yt−d

i − )exp[−x0(yt−d
i − )]

{1 + 0.5 exp[−x0(yt−d
i − )]}

3, 

𝑐 = −(yt−d
i − )

2
exp[−x0(yt−d

i − )]{1 + 0.5 exp[−x0(yt−d
i − )]},   

𝑑 = 1.5(yt−d
i − )

2
{exp[−x0(yt−d

i − )]}
2

. 

 When x0 = 0 in (7), we have 

F(yt−d; , ) ≅
(yt−d

i − )

{1.5}3
−

(3)(0.5)(yt−d
i − )

3
δ3

1.55 × 3!
, 

where F′′(yt−d;  = 0, ) = 0. 

∴ F(yt−d; , ) ≅ 0.2963(yt−d
i − ) − 0.0329(yt−d

i − )
3

δ3.                                        (8) 

 

(8) proves that (1) is a continuous function possessing a non-zero derivative of order (2𝑠 + 1), 𝑠 =

0, 1.  Also,  F(yt−d;  = 0, ) = 0 and 
dk

dk F()|
=0

≠ 0, for 𝑘 = 1,3 and 1≤ 𝑘 ≤ 2𝑠 + 1. 

The advantage of power logistic function (1) over the existing transition functions is that it 

accounts for both asymmetric and symmetric properties of time series.  

When 𝑖 = 1 in (1), the asymmetric power logistic (APL) function is obtained and is given by 

F(yt−d; , ) = {1 + 0.5exp[−(yt−d − )]}−2 −
1

1.52
,  > 0.                                            (9) 

At  = 1, APL possesses an elongated S-shape, while at  = 5, APL exhibits normal S-shape but 

changes to Z- shape at  = 15, 50. Hence, at large , the shape of APL changes from S to Z 

(Figure 1). Both S and Z shapes signify the asymmetric property of APL. 



Communication in Physical Sciences, 2023, 9(3):310-324 314 
 

 

 
Fig 1:  Asymmetric Power Logistic Function with Different Values of Delta (). 

 
 Fig 2: Symmetric Power Logistic Function with Different Values of Delta () 

 

When 𝑖 = 2 in (1), the symmetric power logistic (SPL) function is obtained and is given by 

F(yt−d; , ) = {1 + 0.5exp[−(yt−d
2 − )]}

−2 
−

1

1.52 ,  > 0,                                         (10) 

 Following Figure 2, the SPL transition is a V-shaped transition function with a broad base at 

 = 1 similar to the inverted bell shape of a normal distribution. The V- shape gets thinner as the  

parameter increases.   
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2.3 STAR Model Specification, Estimation and Corresponding Hypothesis Testing  
 

According to Dijk et al. (2002), a two-regime STAR model for a univariate time series 𝑦𝑡, which 

is observed at 𝑡 = 1 − 𝑝, 1 − (1 − 𝑝), … , −1,0,1, … , 𝑇 − 1, 𝑇  is given by 

𝑦𝑡 = (1,0 + 1,1𝑦𝑡−1 + ⋯ + 1,p𝑦𝑡−𝑝)(1 − F(𝑦𝑡−𝑑; δ, )) 

+ (2,0 + 2,1𝑦𝑡−1 + ⋯ + 2,p𝑦𝑡−𝑝)F(𝑦𝑡−𝑑; δ, )) +  ν𝑡.               (11)  

(11) can be rewritten as                                                                        

𝑦𝑡 = 1
′ 𝑤𝑡(1 − F(𝑦𝑡−𝑑; δ, )) + 2

′ 𝑤𝑡F(𝑦𝑡−𝑑; δ, ) + 𝛎𝑡,                                                  (12) 

where  i = (i,0,i,1, ⋯ ,i,p)′ for 𝑖 = 1,2, 𝑤𝑡 = (1, 𝑦𝑡−1, … , 𝑦𝑡−𝑝)′. F(𝑦𝑡−𝑑; δ, ) is the 

transition function. The ν𝑡′𝑠 are assumed to be a martingale difference sequence concerning the 

history of the time series up to time 𝑡 − 1, which is donated as 𝑡−1 =

{𝑦𝑡−1, 𝑦𝑡−2, … , 𝑦1−(𝑝−1), 𝑦1−𝑝}, 𝐸[ν𝑡/𝑡−1] = 0, and 𝐸[ν𝑡
2/𝑡−1]  = 2.  

Model (9) with (12) is called the asymmetric Power logistic STAR (APLSTAR) model, while 

model (10) with (12) is called the symmetric Power logistic STAR (SPLSTAR) model. 

The first-order logistic function (LSTR1) proposed by Terasvirta (1994) given by 

F(𝑦𝑡−𝑑; δ, )  = (1 + exp[−(𝑦𝑡−𝑑 − )])−1,  > 0,                                                        (13) 

and the STAR model (13) with (12) is called the logistic STAR (LSTAR) model. 

The second-order logistic (LSTR2) function given by 

F(𝑦𝑡−𝑑; δ, ) = (1 + exp[−(𝑦𝑡−𝑑 − 1)(𝑦𝑡−𝑑 − 2)])−1, 1 ≤ 2,  > 0,                      (14) 

where  = (
1

, 2)′, as proposed by Jansen and Terasvirta (1996). 

Another common choice of F(𝑦𝑡−𝑑; δ, )  is the exponential function proposed by Terasvita (1994) 

given by 

 F(𝑦𝑡−𝑑; δ, )  = 1 − exp[−(𝑦𝑡−𝑑 − )2],    > 0.                                                             (15) 

Model (15) with (12) is called the exponential STAR (ESTAR) model. 

In this work, we employ a new version of (13) by choosing the symmetric power logistic transition 

function in (10). Before fitting a STAR model into time series, it is necessary to establish the 

appropriateness of the STAR model by carrying out a suitable nonlinearity test on the series. Upon 

the confirmation of the suitability of the model in modeling the time series, the optimal lag length 

of an AR model for each regime in the model is sought using the Akaike information criterion 

(AIC) 

The parameters in the STAR model (12) can be estimated by nonlinear least squares (NLS). 

Let F(wt, ) = 1
′ 𝑤𝑡(1 − F(st: δ, )) + 1

′ 𝑤𝑡F(st: δ, ), where  = {1
′ ,2

′ , , },  

then (12) becomes 

               𝑦𝑡 = F(wt, ) + ν𝑡                                                                                                 (16)   

 

  The parameters  = {1
′ ,2

′ , , }  can be estimated using NLS as follows:            

   ̂ = argmin


QT() = argmin


∑ (𝑦𝑡 − F(wt, ))2𝑇
𝑡=1                                                          (17) 

The nonlinear least squares estimate is the value of ̂ That minimizes (17). 

If ν𝑡 is assumed to be normally distributed, then 

NLS is equivalent to maximum likelihood. The 

NLS estimates are consistent and 

asymptotically normal (Tong, 1990).  

In testing linearity against (12), the null 

hypotheses, such as H01 : 1= 2 or  H02:  =
0 will reduce (12) to a linear AR model and 

whichever formulation of the null hypothesis is 

used, the model contains unidentified 

parameters. Where H01 is used,  and  in (12) 

are the unidentified nuisance parameters. 

Where H02 is used, , 1 and  2  represent the 

unidentified nuisance parameters. The solution 

to unidentified nuisance parameters under the 
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null hypothesis is the third Taylor series 

approximation of F(yt−d; , ) proposed by 

Luukkonen (1988)  leads to the following 

auxiliary regression equation assuming that d is 

known:  

𝑦𝑡 = 
0
′ 𝑤𝑡 + 

1
′ 𝑤𝑡yt−d + 

2
′ 𝑤𝑡yt−d

2 + 
3
′ 𝑤𝑡yt−d

3 +𝑡                                                          (19) 

The null hypothesis of linearity within the auxiliary regression (19) to be tested against alternative 

STAR models is H03: 
1

= 
2

= 
3

= O.  

The F test statistic is given by 

L3M =
(SSR0 − SSR1)/3(p + 1).

SSR1/(𝑇 − 4(𝑝 + 1))
                                                                                                 (20) 

which is approximately F distributed with 

3(𝑝 + 1) and 𝑇 − 4(𝑃 + 1) degrees of 

freedom.  

The delay parameter, 𝑑, 1 ≤ 𝑑 ≤ 𝑝, is the one 

with the smallest value of the residual sum of 

squares (RSS) of the estimated regression model 

(19) based on the nonlinear time series. 

The choice between LSTAR (Asymmetric) and 

ESTAR (Symmetric) models after establishing 

the existence of nonlinearity in a series. Based 

on this, Terasvirta (1994) suggested that the 

choice of transition function be based on a 

sequence of tests within (19) as follows: 

 H04: β3 = 0  

H05: β2 = 0β3 = 0  

H06: β1 = 0β2 = β3 = 0 

If H04 is rejected implies that the model is 

LSTAR and that the ETAR family of the model 

is rejected. If H05 is rejected, it is evidence that 

the true model is the ESTAR model. If the true 

model is a LSTAR model, then H06 is rejected. 

According to Terasvirta (1994), if H06 is 

rejected while H05 was accepted, it favours 

LSTAR model. Also, if H06 is accepted while 

H05 was rejected, pointing at an ESTAR model. 

Hence, if the model is a LSTAR model, H04  

and  H06 are strongly rejected than  H05, 
otherwise, ESTAR is the true model 

Escribano and Jorda (2001) suggest that a 

second-order Taylor approximation is necessary 

to capture the two inflexion points of the 

exponential function, yielding the auxiliary 

regression.
 

𝑦𝑡 = 
0
′ 𝑤𝑡 + 

1
′ 𝑤𝑡𝑠𝑡 + 

2
′ 𝑤𝑡yt−d

2 + 
3
′ 𝑤𝑡yt−d

3 +
4
′ 𝑤𝑡yt−d

4 + 
𝑡
                                        (21) 

 

The null hypothesis to be tested is H07: 
1

=


2

= 
3

= 
4

= 0. The resultant LM test 

statistic denoted by L4M, has an asymptotic 2 

distribution with 4(𝑝 + 1) degrees of freedom 

under the null hypothesis.       

We adopted Escribano and Jorda procedure 

(EJP) based on the following two hypotheses 

within the auxiliary regression (21):  

H0L: 𝛽2 = 𝛽4 = 0 with an F-test (FL) 

 H0L: 𝛽1 = 𝛽3 = 0 with an F-test (FE)  

If the minimum p-value corresponds to FE, 
select the LSTAR model; otherwise, select the 

ESTAR model. 
 

2.4 Evaluation of Forecasting 

Performance 
 

 

 

The root mean square error (RMSE) is used to 

evaluate the forecast performance of the overall 

in-sample observations. The ratio of RMSE of 

the STAR model to that of the corresponding 

benchmark AR model chosen by AIC will be 

obtained to determine the efficiency of the new 

model.  

If 𝑦𝑡, 𝑡 = 1, 2, … , ℎ are the actual values of the 

observations used in the estimation of the 

model, 𝑓𝑡 , 𝑡 = 1, 2, … , ℎ are the forecast values, 

then, 𝑒𝑡 = 𝑦𝑡 − 𝑓𝑡, 𝑡 = 1, 2, … , ℎ are the 

forecast error. The RMSE of the in-sample 

forecast is the square root of the mean square 

error (MSE) given by 

RMSE= √
1

𝑃
∑ 𝑒𝑡

2ℎ
𝑖=1                             (34) 
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3.0 Results and Discussion 

3.1. Time Series Plots 
 

The time series plot of the exchange rate of 

naira to USD shown in Figure 3 indicates that 

the naira gains value in the second quarter of 

2006 to the third quarter of 2008 when 

compared to USD. It started to depreciate in the 

first quarter of 2009 and get worsened in the 

first quarter of 2016 and the first quarter of 

2020 due to the economic recession and the 

covid-19 pandemic. The time series plot of the 

exchange rate of naira to CFA Franc shown in 

Figure 4 indicates that CFA Franc gradually 

gains value from 2004 to 2005, where it 

depreciates and thereafter gains value from the 

third quarter of 2006 to 2016 and appreciates 

more from the second quarter of 2016 to 2020 

and beyond when compare to naira. 

 

 
Fig 3: Time series plot of exchange rate of naira to USD 

 
Fig 4: Time series plot of exchange rate of naira to CFA Franc. 
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The autocorrelation function (ACF) of the two 

series shown in Figures 5 and 6 decay very 

slowly, indicating the presence of a trend in the 

series. A formal test for the stationarity of the 

series is explained below.  

 
Fig 5: ACF of exchange rate of naira to USD 

 
Fig 6: ACF of the exchange rate of naira to CFA Franc 
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3.2 Stationarity Test 

 From Table 1, the augmented Dickey-Fuller 

test confirmed the presence of unit roots in the 

two series since the p-value= 0.597 >
0.05 and p-value = 0.6693 > 0.05 for the 

exchange rate of naira to USD and CFA Franc, 

respectively. However,the two series are 

stationary at the first difference since the p-

value = 0.01 < 0.05 for each of the two series.  

 

Table 1: Results of Augmented Dickey-Fuller Tests 

 

 

Variable 

Original Series (Level) First Differenced Series 

Dickey Fuller 

Statistic 
- Value Lag 

Order 

Dickey 

Fuller 

Statistic 

- Value 

Naira to Dollar -1.95 0.597 5 -5.5688 <0.01 

Naira to CFA 

Franc 

-1.777 0.6693 5 -6.3449 <0.01 

 

3.3 Optimal Lag Length for the Linear and STAR Models  
 

The optimal lag length for the linear stationary 

autoregressive (AR) model representing the 

conditional mean model under the null 

hypothesis for the two series is determined to 

carry out the linearity test. Terasvirta (1994) 

suggested that the order could be determined 

by the Akaike information criterion (AIC). 

Hence, ARIMA (4,1,0) and ARIMA(1,1,0) 

models for the exchange rate of naira to USD 

and CFA Franc, respectively, are chosen based 

on the value of AIC shown in Table 2 to 

represent the conditional mean model under the 

null hypothesis. 

 

Table 2: Determination of Order of Linear Models Fitted to Exchange Rates 

 

Model AIC 

Naira to USD Naira to CFA Franc 

ARIMA(1,1,0) 1565.48 -1109.93 

ARIMA(2,1,0) 1565.89 -1108.02 

ARIMA(3,1,0) 1566.2 -1106.03 

ARIMA(4,1,0) 1558.29 -1104.11 

ARIMA(5,1,0) 1565.2 -1102.42 

 

Based on Table 3, the estimated residuals from 

ARIMA(4,1,0) and ARIMA(1,1,0) models are 

free from serial correlation since the p-value of 

Box-Pierce statistic = 0.7211 >  0.05 and 

0.82855 > 0.05 for Naira to USD and CFA 

Franc exchange rate, respectively. Hence, the 

null hypothesis of no serial correlation could 

not be rejected at a 5% level of significance. 

The test of the null hypothesis of linearity 

against alternative STAR models using the 

Lagrange multiplier (LM) test proposed by 

Terasvirta (1994) is carried out. In Table 4, the 

p-value= 0.0000 < 0.05 for the exchange rate 

of naira to USD leads to the rejection of the null 

hypothesis of linearity, but we could not reject 

the null hypothesis of linearity for the exchange 

rate of naira to CFA Franc since its p-value = 

0.4622 > 0.05. Hence, the exchange rate of 

naira to USD is a nonlinear time series and is 

modelled with STAR model, while the 

exchange rate of naira to CFA Franc is 

classified as a linear process. The delay 
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parameter, 𝑑, 1 ≤ 𝑑 ≤ 4 is the smallest value 

of the residual sum of squares (RSS) of the 

estimated regression model (29). In Table 4, 

d=2 is the smallest value of RSS; we  slelct 𝑑 =
2 for the exchange rate of naira to USD.  

Based on Table 5, the specification of the 

transition function is based on the Terasvita 

procedure (TP) and Escribano and Jorda 

procedure (EJP). For TP, (H04) = 0.1997 >
0.05 ( 𝐻04 is not rejected) implies that 𝛽3 = 0 

in (29), suggesting the ESTAR model with an 

exponential function. Also, since  (H05) =
0.000 < 0.05, H05 is rejected and 𝛽2 ≠ 0 in 

(29) and H06 is accepted while H05 is rejected, 

confirming the ESTAR model with exponential 

function for the modeling exchange rate of 

naira to USD. For EJP, (H0L) = 0.0000 < 

(H0E) = 0.0203 suggests the ESTAR model. 

Both TP and EJP suggest an ESTAR model 

with an exponential function (symmetric) for 

modeling the exchange rate of naira to USD. 

Consequently, we fit symmetric STAR models 

to an exchange rate of naira to USD and 

determine the best model at the evaluation 

stage using forecast evaluation measures and 

residual standard error for each of the estimated 

STAR models. 

 

 

Table 3: Parameter Estimates of Linear Models Fitted to Exchange Rates 

 

Exchange Rate Model Parameter Estimate Box-Pierce Statistic 

 

 

 

Naira to USD 

 

 

 

ARIMA 

(4,1,0) 

𝜙1 0.34140 

(0.00411) 

 

 

 

0.12741 

(0.7211) 

𝜙2 -0.092975 

(0.19309) 

𝜙3 0.011949 

(0.86740) 

𝜙4 0.214275 

(0.00143) 

Naira to CFA 

Franc 

ARIMA 

(1,1,0) 
𝜙1 0.210593 

(0.002182) 

0.046946 

(0.8285) 

**The values in the parentheses are p-values of estimated parameters. 

 

 

Table 4: Outcomes of Linearity Test 

 

 

Variable 

 

F- Statistic 

 

- 

Value 

RSS  of  the Delay Length (d) 

1 2 3 4 

Naira to 

USD 

7.583956 0.0000 17815.47 12930.62   14911.41 18043.03 

Naira to 

CFA 

Franc 

0.904751 0.4622 - - - - 

 ** RSS is the residual sum of squares 
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Table 5: Selection of Transition Function for Exchange Rate of Naira to USD 

 

TP EJP 

Null 

Hypothesis 

F- Statistic Transition 

Function 

Null 

Hypothesis 

F- Statistic Transition 

Function 

H04 1.56368 

(0.1997) 

 

 

Exponential 

function 

H0L 7.86431 

(0.0000) 

 

 

Exponential 

function 

H05 11.16604 

(0.0000) 

 

H0E 

 

3.34480 

(0.0203) H06 6.76766 

(0.0000) 

**In Table 5, the values in the parentheses are p values of estimated parameters. 𝐩(𝐇𝟎𝟒), 
𝐩(𝐇𝟎𝟓) and 𝐩(𝐇𝟎𝟔) are the p values of the test corresponding to 𝐇𝟎𝟒, 𝐇𝟎𝟓 and 𝐇𝟎𝟔, 
respectively. 𝐩(𝐇𝟎𝐋)and 𝐩(𝐇𝟎𝐄) are the p values of the test that corresponds to 𝐇𝟎𝐋 and 𝐇𝟎𝐄, 

respectively. 
 

3.4  Estimation of STAR Models Fitted to 

Exchange Rate of Naira to Dollar 
 

Five symmetric STAR (ESTAR, quadratic 

STAR (QLSTAR), absolute error logistic 

STAR (AELSTAR) and absolute logistic 

STAR (ALSTAR) models were fitted to the 

exchange rate of naira to USD. The parameter 

estimates of ESTAR, QLSTAR, AELSTAR 

and ALSTAR using the nonlinear least squares 

method are shown in Table 6. 

The residuals from the estimated STAR models 

were tested for serial correlation using the 

portmanteau lack of fit test. The results 

revealed that the residuals are uncorrelated 

since the p-value of each of the estimated 

models >  0.05 as shown in Table 7. 

Consequently, the null hypothesis of no serial 

correlation for each of the estimated models 

(SPLSTAR, ESTAR, ALSTAR, QLLSTAR 

and AELSTAR) is not rejected. For model 

evaluation, RMSE and standard error of 

residuals were computed for each of the 

estimated STAR models. The results also show 

that the SPLSTAR model has both the lowest 

standard error of residuals and root mean 

square error (RMSE) relative to the other 

model under comparison. All the symmetric 

STAR models considered except the ESTAR 

model outperformed its linear counterpart. 

 

Table 6: Parameter Estimates of Symmetric STAR Models Fitted to Exchange Rate of Naira 

to USD. 

Parameter

s 

Estimated Models 

SPLSTAR ESTAR ALSTAR QLSTAR AELSTAR 

𝟏𝟎 -0.20245 

(0.8948) 

-1.89188 

(0.1751) 

-2.59640 

(0.2751) 

-0.15256 

(0.1949) 

-0.16697 

(0.8193) 

𝟏𝟏 0.45740 

(0.0000) 

-0.20245 

(0.894) 

0.33482 

(0.0000) 

0.1046 

(0.1592) 

0.31480 

(0.0000) 

𝟏𝟐 -0.60134 

(0.0158) 

0.47365 

(0.808) 

-2.20197 

(0.688) 

-0.59375 

(0.01058) 

-0.12307 

(0.36054) 

𝟏𝟑 -0.35026 

(0.09347) 

0.35678 

(0.836) 

-1.76451 

(0.714) 

-0.33566 

(0.06208) 

0.30168 

(0.01035) 

𝟏𝟒 0.49532 -0.50493 2.00034 0.48098 -0.18191 
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(0.00902) (0.736) (0.679) (0.00274) (0.15807) 

𝟐𝟎 -0.55280 

(0.0000) 

45.90488 

(0.8181) 

74.98879 

(0.8181) 

-0.60737 

(0.1940) 

-410.59058 

(0.0058) 

𝟐𝟏 0.33904 

(4.37e-07) 

0.34608 

(1.79e-06) 

0.33302 

(1.02e-06) 

0.33960 

(4.38e-07) 

0.07386 

(0.34337) 

𝟐𝟐 0.56129 

(0.03100) 

-0.57036 

(0.771  ) 

2.17373 

(0.692) 

0.55311 

(0.02315) 

0.32375 

(0.06796) 

𝟐𝟑 0.55089 

((0.01273)) 

-0.34857 

(0.841) 

1.97291 

(0.681) 

0.53635 

(0.00581) 

-1.00402 

(1.78e-05) 

𝟐𝟒 -0.48963 

(0.01615) 

0.73524 

(0.626) 

-1.99253 

(0.680) 

-0.47498 

(0.00741) 

0.51834 

(0.00873) 

 6.33657 

(0.28353) 

-3.01734 

(0.022) 

-1.44328 

(0.843) 

10.59869 

(0.21070) 

12.97391 

(< 2e-16) 

 110.7481 

(0.3999) 

74.00304 

(0.9133) 

1124.0001 

(0.9953) 

120.74821 

(0.4999) 

1547.78986 

(0.9990) 

 

**The values in the parentheses are p-values of estimated parameters. 

 

Table 7: Estimates of Box-Pierce and Lagrange Multiplier Statistics for 

   Exchange Rate of Naira to USD. 

 

Model Box-Pierce Test 𝜎𝜈̂ RMSE 

𝑄ν̂t
(𝐾) p-value 

SPLSTAR 2.1015 0.1472 9.625 9.432221 

ESTAR 0.11191 0.738 10.48 10.27395 

ALSTAR 1.9036 0.1677 9.779 9.583539 

QLSTAR 2.1296 0.1445 9.633 9.440546 

AELSTAR 0.062136 0.8032 9.841 9.643963 

AR(4) 0.12741 0.7211 10.140 10.1520 

** 𝑸𝛎̂𝐭
(𝑲) ) is the Box-Pierce Statistic, 𝝈𝝂̂ is the standard error of residuals and RMSE is 

the root mean square error for the conditional mean model. 

 

3.5      Discussion of Findings 
  

The  Power logistic transition function is being 

proposed. The major advantage of this function 

over all the transition functions in common use 

is that it is relatively more flexible. As a 

consequence, it is useful in constructing both 

symmetric and asymmetric STAR models. In 

this work, considerable attention has been paid 

to the symmetric power logistic transition 

function and its associated STAR model in this 

study.  

 The findings of this study are in line with the 

works of Liew et al. (2003), Anderson (1997), 

Shangodoyin et al. (2009), Siliverstovs (2005)  

 

and Yaya and Shittu (2016) in which STAR 

models are modified to capture different 

properties of time series in the areas that the 

STAR models are found to be deficient. On the 

other hand, the uniqueness of this study is the 

modification of the LSTAR model to the 

PLSTAR model, which possesses both 

symmetric and asymmetric transition 

functions.                        

 Symmetric STAR models are justifiably fitted 

to a monthly exchange rate of naira to United 

States dollar over the period January 2004 to 

April 2021. The fit of the SPLSTAR model is 

compared with the fits of the competing 



Communication in Physical Sciences, 2023, 9(3):310-324 323 
 

 

(comparable) models. So far, only the 

symmetric aspect of the modified model has 

been applied to capture the nonlinear properties 

of the exchange rates. It is therefore 

recommended that in subsequent studies, the 

asymmetric power logistic STAR model 

should be considered and its performance 

should be compared with that of asymmetric 

STAR models. 
 

4.0 Conclusion 
 

In this study, the well-known logistic function 

is modified, leading to a power logistic family 

of transition functions. Two special cases of 

this family, namely, the symmetric power 

logistic function and asymmetric power 

logistic function, are defined. The power 

logistic function is approximated by using the 

Taylor series expansion up to the third order. 

Certain properties of the functions are 

determined following the approximations. The 

two functions are used to formulate the 

symmetric and asymmetric STAR models. 

Only the symmetric power logistic transition 

function and its associated STAR model are 

considered in this study. It is observed that the 

symmetric power logistic STAR model is the 

most suitable for the exchange rate of naira to 

the United States dollar.  
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