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Abstract: In this study, a new potential named 

the “q-deformed modified Mobius square 

potential (MMSP)” is proposed. The 

Schrodinger equation with this model is solved 

using the famous Nikiforov-Uvarov (NU) 

method to obtain the energy equation and wave 

function of this system. The effects of the 

potential parameters and deformation 

parameter ( )0 0q and q   is analysed 

numerically and graphically. Findings reveal 

that the energy of the system increases as the 

deformation parameter increases. This implies 

that the deformation could be used as a 

regulator or booster to manipulate the energy 

spectra of the system. The findings from this 

study will apply to atomic and molecular 

physics and chemical physics. 
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1.0 Introduction 
 

The Schrödinger equation (SE) is one of the 

most famous wave equations in Physics 

(Inyang et al., 2021a; Inyang et al., 2022; 

William et al., 2020). The reason is that the 

equation enables us to study the interactions of 

a particle in a quantum system in a non-

relativistic regime (Akpan et al., 2021; Ntibi et 

al., 2020;  Inyang et al., 2021b). The equation 

is considered the central result in the study of 

quantum systems since it is endowed with the 

necessary information needed to describe a 

quantum system under consideration. The 

Schrödinger wave equation is one of the most 

powerful equations in modern Physics and 

Chemistry.  In addition to these fields, the 

Schrödinger equation has applications in 

developing research areas such as quantum 

information (Ayedun et al., 2022; Inyang et al., 

2023a) and Quantum finance (Baaquie, 2007). 

In quantum mechanics, the solutions to the SE 

for a given system can be obtained if we know 

the form of the underlying interaction potential. 

This goes to show in principle that potential 

plays a great role in physics and particularly 

quantum mechanics (Schiff,1955).  A 

confining potential is, therefore, a 

mathematical representation of those forces 

that bind the particles of a system in a specific 

region. Confining potentials such as Coulomb, 

Kratzer, Cornell, and others have many forms 

depending upon the interaction of particles 

within the system and have been studied 

(Sameer & Majid, 2012; Thompson et al., 

2021; Inyang et al., 2021c;  Omugbe et 

al.,2023; Inyang et al., 2023b). A careful 

perusal of research works on the analytical 
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solutions of the SE reveals that various forms 

of interaction potentials have extensively been 

employed to unravel the underlying dynamics 

of a variety of systems with varying degrees of 

success. Confining potentials play a vital role 

in studying a host of physical systems in 

diverse fields of physics like solid state 

physics, atomic and molecular physics, nuclear 

and particle physics and chemical physics 

(Okon et al., 2023; William et al., 2023; 

Omugbe et al., 2022; Inyang et al., 2022a; Edet 

et al.,  2019; Edet et al., 2020). For example, 

the combination of harmonic and Coulomb 

potential has been used to bind the two 

electrons in a two-dimensional quantum dot 

(QD) region, the Kratzer and the 

pseudoharmonic potentials are considered as 

diatomic molecular potentials and the Cornell 

potential is extensively used as inter quark 

potential (Ibekwe et al., 2022a; Ibekwe et al.,  

2022b; Omugbe et al.,  2021; Ibekwe et al.,  

2021). 

Also, the analytic solutions of SE for a general 

potential can be proved an asset, as such 

general results may be utilized to obtain 

solutions for some variants of the general 

potential, which can act as suitable models for 

some physical systems. Therefore, the 

possibility of enhancing the domain of 

applications of these potentials is explored and 

some of its variants, particularly in QD 

systems, meson particles, and diatomic 

molecules produce good results that are 

comparable to results investigated via other 

alternative potentials and methods.  Given the 

foregoing, we propose a model called q-

deformed Modified Mobius Square Potential 

(MMSP) given as; 

( )
2

2

1 21

r

r

A Be
V r V

qe





−

−

 +
= −  

− 
 (1) 

where 1V , A , B , and   are the depth of the 

potential, the range of the potential, the length 

of the molecular bond, and an adjustable 

screening parameter, respectively. q  is the 

deformation parameter. The q-MMSP is a 

short-range potential it is a general case of the 

modified Mobius square potential. Hence, this 

work is an extension of the work of (Okorie et 

al., 2018). 

 Due to the need to expand our knowledge of 

solvable potentials and their possible utility in 

studying physical systems, in the present 

research, attention is focused on q-deformed 

potentials. The inclusion of " "q  a term in a 

potential is generally desirable to improve the 

accuracy of theoretical predictions. q-deformed 

hyperbolic potentials, which were proposed by 

Arai more than two decades ago, destroy the 

symmetry of the system and consequently the 

symmetry of the solution. They present 

promising applications for modelling the atom-

trapping potentials in Bose-Einstein 

condensates or vibrational spectra of diatomic 

molecules (Arai ,1991).  We have seen that 

several authors who studied various quantum 

systems reported interesting results about the 

effect of the deformation parameter on the 

energy spectra, thermal properties, wave 

function etc. of such systems. Eğrifes et 

al.,2000 results aided in improving the 

accuracy of the deformed hyperbolic 

potentials. Peña et al,.2020 noted that 

depending on the choice of the parameters 

involved in the exponential type, several q-

deformed exponential potentials were obtained 

as particular cases. This indicates that it is not 

necessary to use specialized methods to solve 

the SE for specific q-deformed exponential 

potentials. In this regard, to show the 

usefulness of the proposed method, the authors 

obtained the bound state solutions of the q-

deformed Tietz, Hulthén, Manning-Rosen, 

Shioberg, quadratic exponential, Wei and Hua 

among other potential models. The proposal is 

useful when considering new q-deformed 

potentials with hypergeometric wavefunctions 

to be used in quantum chemical applications of 

diatomic molecules.  In the study of (Abdalla et 

al.,  2013), several observations were realized 

for each potential. However, for all the cases 

which they studied the oscillations are the usual 
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ones. It is also noted that all of these functions 

are sensitive to variations in the parameters 

involved. Their discussion for some particular 

potential showed that for a large value of the 

parameter q the system tends to exhibit the 

energy for an infinite potential well between 

two points zero and in addition to a free 

particle. Falaye et al. 2012, discussed 

extensively the Hermiticity for the class of q-

deformed potentials. Edet and Okoi, 2019 

reported that the energy spectra of the q-

deformed Hulthen plus generalized inverse 

quadratic Yukawa potential (HPGIQYP) was 

increased in the presence of 0q  . But 

decreased when 0q  . Seven special cases of 

the potential are discussed and the numerical 

energy eigenvalues are calculated for two 

values of the deformation parameter in 

different dimensions. Onate and Ojonubah 

2016, applied the thermodynamic functions to 

study the behaviour of the zinc-blende crystal 

structure and the results obtained showed fair 

agreement with reported experimental data for 

the specific heat capacity. Min-Cang 2013 

shows that the deformed hyperbolic Eckart 

potential is a shape-invariant potential and the 

bound state energy is independent of the 

deformation parameter 𝑞.  Ovando et al.,2018 

results showed that non-deformed potentials 

arise from non-q-dependent parameters and 

rather correspond to a class of q-shifted 

exponential-type potentials obtained from the 

Arai’s q-deformed hyperbolic functions. As a 

second result, by using q-dependent 

parameters, it is possible to obtain true q-

deformed exponential-type potentials. As a 

useful application of these potentials, some 

examples of q-deformed exponential-type 

potentials were considered using a proper 

selection of the involved parameters. Their 

proposal is general and can be viewed as a 

unified treatment to the study of q-deformed 

exponential-type potentials with the advantage 

that it is not necessary to use a specialized 

method for solving the Schrödinger equation 

for each specific potential because many of 

them are obtained as particular cases of the 

treated potential. Furthermore, new q-

deformed potentials used as interesting 

alternatives in quantum chemical applications 

can be derived. Furthermore, the SE is very 

tedious or almost impossible to solve for 

physical systems for which 0l  , except a very 

few potentials viz; Coulomb, Harmonic, Mie 

and Pseudopotentials (Sameer & Majid, 2012). 

So, for the s − wave ( 0l =  case), the SE can be 

readily solved (Ikhdair 2009). However, in 

cases where 0l   belonging to the p , d , f , g  

etc. we resort to using an approximation 

scheme that best approximates the centrifugal 

term in the SE hence, leading to approximate 

bound state solutions (Ferreira & Prudente 

2013). Moreover, long ago, physicists and 

chemists have developed different advanced 

mathematical methods to solve the SE ranging 

from numerical to analytical techniques. 

Interestingly, the solutions obtained are the 

same irrespective of the technique used except 

for some algebraic configurations. Some of the 

commonly used techniques in both relativistic 

and non-relativistic equations for different 

potentials are the following amongst many 

others; the Factorization method (Dong 2007), 

Asymptotic Iteration Method (AIM)(Edet et 

al., 2022), the Nikiforov-Uvarov (NU) method 

(Inyang et al., 2023c; Ntibi et al., 2022; Inyang 

& Obisung 2022b), among others (Inyang et 

al.,  2020;Ikot et al., 2022; Okorie et al., 2020; 

Tezcan & Sever 2009; Falaye et al.,  2015;Ma 

et al.,  2006). In this work, we shall solve the 

approximate analytical solutions of 

Schrödinger equation with q-deformed 

modified Mobius square potential (MMPS) 

within the frame work of the Nikiforov-Uvarov 

method. The paper is structured as follows: A 

brief review of the Nikiforov–Uvarov method 

is discussed in Sect. 2. In Sect. 3, we present 

the solution to the radial part of the Schrodinger 

equation. In Sect. 4, discussions of numerical 

results. Finally, a brief conclusion is given in 

Sect. 5. 
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1.1 The Review of Nikiforov-Uvarov (NU) 

Method 

The NU method (Nikiforov and Uvarov 1988) 

is, however, the reduction of a second-order 

linear differential equation to a generalized 

hyper-geometric type equation. The method 

gives the solution in terms of special 

orthogonal functions as well as corresponding 

energy eigenvalue. With appropriate 

coordinate transformation, ( )s s r= , the 

equation is written as 

( )
( )

( )
( )

( )

( )
( )2

0
s s

s s s
s s

 
  

 
 + + =        (2) 

To obtain an exact solution to eq. (2), we let the wave function be 

( ) ( ) ( )s s s  =           (3) 

By substituting eq. (3) into eq. (2), we obtain the hyper-geometric equation  

( ) ( ) ( ) ( ) ( ) 0s s s s s     + + =         (4)     

The wave function is given as 

( )

( )

( )

( )

s s

s s

 

 


=            (5) 

For a fixed n, the hyper-geometric type function ( )s is expressed in Rodrigues relation as 

( )
( )

( )
( ) ( )

n

n
n n

n

B s d
s s s

s ds
  


 =           (6) 

where nB is the normalization constant and ( )s the weight function which satisfies the condition 

below;  

( ) ( )( ) ( ) ( )
d

s s s s
ds

   =          (7) 

Where also  

( ) ( ) ( )2s s s  = +           (8) 

For bound solutions, it is required that 

( )
0

d s

ds


            (9) 

Therefore, the function ( )s and the parameter  required for the NU method are defined as  

( )
( ) ( ) ( ) ( )

( ) ( )
2

2 2

s s s s
s s k s

   
  

  − −
=  − + 

 

     (10) 

( )k s  = +            (11) 

The values k  are obtained if the discriminant in the square root of eq. (10) vanish, so the new 

eigen equation becomes 

( ) ( ) ( )2

2

1

2
n

nd s n n d s

ds ds

 


−
= − −         (12) 

 0,1,2,n = −  

By equating eq. (11) and eq. (12), the energy eigenvalue is obtained 

Sol 
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2.0 Solution of Schrodinger Equation with q-deformed Modified Mobius Square 

Potential (q-MMSP)  
 

The Schrödinger equation is given by (Inyang et al., 2023): 

( ) ( ) ( )
( )2

2
,

, , ,
2

r t
r t V r t r t i

m t


 


−  + =


      (13) 

where m is the mass of the particle, 2  is the Laplacian operator and ( ) ( ),V r t V r=  is q-MMSP.  

Thereby, the Schrödinger equation for the q-MMSP (13) is 

( ) ( )
( )2 2

2

2 2 2

, , ,1 1
sin , , , , , , (14)

2 sin sin

r t
r r t V r t i

mr r r t

  
      

    

        
− + + + =    

         
 

In what follows, let us consider a particular solution to Eq. (14) given in terms of the eigenvalues 

of the angular momentum operator 
2L̂  as 

( ) ( ) ( ),, , , ,
Et

i

mr t e R r Y    
−

=         (15) 

where ( ), ,mY   are spherical harmonics and ( )R r  is the radial wave function. Then, by 

substituting Eq. (15) into Eq. (14), we obtain the radial wave equation 

( ) ( ) ( )
( )

22 2

12 2 2 2

12 2
0

1

r

r

d R r dR r m A Be
E V R r

dr r dr qe r





−

−

   + +
  + + + − =  −    

   (16) 

Let ( )
( )U r

R r
r

=           (17) 

This helps us rewrite eq. (16) as; 

( ) ( )
( )

22 2

12 2 2 2

12
0

1

r

r

d U r m A Be
E V U r

dr qe r





−

−

   + +
  + + − =  −    

     (18) 

Expanding the potential term in (18), we rewrite it as follows; 

( )

( ) ( ) ( )

( )
( )

2 2 2 2 4

1 1 1

2 2 22 2 22 2 2

122
0

1 1 1

r r

r r r

d U r V A V ABe V B em
E U r

dr rqe qe qe

 

  

− −

− − −

   +  + + + + − =
  − − −

  

 (19) 

Using the approximation of (Greene & Aldrich 1976); 

( )

2 2

22 2

1 4

1

r

r

e

r qe





 −

−
=

−
          (20) 

Using eq. (20) , we rewrite (19) as follows; 

( )

( ) ( ) ( )

( )

( )
( )

2 2 22 2 2 4

1 1 1

2 2 2 22 2 2 2 2 2

1 422
0 (21)

1 1 1 1

rr r

r r r r

d U r eV A V ABe V B em
E U r

dr qe qe qe qe

 

   

 −− −

− − − −

    +    + + + + − =
    − − − −

    

 

By change of coordinates,  
2 rs e −= .           (22) 

The following transformation takes place 
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( ) ( )

( )

( )

( )
( ) ( ) ( ) ( )

2

2 2

2 1 022 2

1 1
2 0 (23)

1 1

d U s qs dU s
q s q s U s

ds s qs ds s qs
      

−
 + + − − + + − − − =
 − −

  

where we have used the following dimensionless notations for mathematical simplicity: 

( )
2 2

1 1 1
0 1 22 2 2 2 2 2 2 2

; ; ; ; 1
2 2 2

nmE mV A mV AB mV B
    

   
− = = = = = +     (24) 

Comparing (23) with the hypergeometric equation of equation (2), we obtain the following 

polynomials: 

( ) ( ) ( ) ( ) ( )
22 21 , 1 , 1qs s s qs s s qs  = − = − = −      (25) 

The polynomial ( )s is given by, 

( ) ( )( ) ( )
2

2 2

2 1 02
2 4

qs q
s q kq s k q s       

 
= −  + − − + − + − + − 

 
   (26) 

To find the expression for k , the discriminant of (26) is equated to zero. Thus we obtain, 

( ) ( )
2

2

1 0 0 2 1 02
4

q
k q q q q        = − − −  − − − − +     (27) 

The substituting k in ( )s in equation (26), 

( ) ( ) ( )
2

2

2 1 0 0 0
2 4

qs q
s q q q q s        

  
 = −  − − − + + − − − 
  
  

   (28) 

Taking the negative value ( )s in equation (28) to obtain, 

( ) ( )
2

2

2 1 0 0
2 4

q q
s q q q q      

 
 = − − − − − + + − 

 
 

     (29) 

To obtain the polynomial ( )s , we use ( ) ( ) ( )2s s s  = +  

( ) ( ) ( )
2

2

2 1 0 0 01 2 2
4

q
s qs q q q q s        

  
 = − − − − − + + − − − 
  
  

   (30) 

The derivative of ( )s  equation (30), 

( ) ( ) ( )
2

2

2 1 0 0 02 0
4

q
s q q q q q s        

   
   = − + − − − + + − − −  

   
   

  (31) 

The parameter   is defined as, 

( ) ( )

( )

2 2
2 2

1 0 0 2 1 0 2 1 0

0

2 (32)
4 2 4

q q q
q q q q q q q

q

             

 

= − − − − − − − − + − − − − − +

− −

  

n is expressed as, 

( ) ( )
2

2 2

2 1 0 0 02 2 2
4

n

q
n q nq n q q q nq n        = + + − − − + − − − −   (33) 

The eigenvalue expression holds if  
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n = .          (34) 

2
2

2 1 2
0 02 2

0

2 1
02

1 1

2 41

4 1 1

2 4

n
q q q q

n
q q q

  
 

 
  



  
 + + − − − + − + 
  = +  

  + + − − − +  
  

     (35) 

Substituting equation (24) into (35) and evaluating, we obtain the energy as follows: 

 

( )

( )

2
2

2 2

1 1 1

2 2 2 2 2 2 2

2 2

1 1
2 2 2 2 2 2 2

2

1
2 2

1 1 1

2 2 2 2 2 2 2

11 1

2 4 2 2

2 2
(36)

2 11 1

2 4 2 2

n

mV B mV AB mV A
n

q q q

mV A mV B

q
E V A

m mV B mV AB mV A
n

q q q

  

  

  

  +  + + − − − + 
  
  

 
− + 

 = − −
  +
 + + − − − +  
   

 
 
 
 

 

To find the eigenfunction, the weight function is first evaluated. From equation (4), 

( )

( )

( ) ( )

( )

2
2

0 2 1 0

1
1

2 4

1

q
qs s q q q

d s
ds

s s qs

     




  
 − − − + − − − + 

   =  
− 

 
 

   (37) 

Integrating equation (37), we obtain 

( ) ( ) ( )
2

2
2 1 00

1

2 41
q q

q q q
qs s qs

    


 
 + − − − +−
 
 = −        (38) 

From equation (7), 

( )

( )

( ) ( )

( )

2
2

0 2 1 02 1 2
4

1

q
qs s q q q

d s
ds

s s qs

     




 
− − − − − − + 

 =
 −
 
 

    (39) 

Integrating equation (39), we obtain 

( ) ( ) ( )
2

2
2 1 00

2
2

41
q

q q q
qs s qs

    


− − − +−
= −        (40) 

Recall ( )s is expressed in Rodrigues relation (5) and using (42), we obtain 
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s B s s qs s qs

ds

P qs

          

     


− − − − + + − − − +− − + −

 
 − − − − +
 
 

 
= − − 

  

= −

 

In terms of Jacobi Polynomial, the complete wave function of the q-deformed Mobuis Square 

potential is given as, 

( ) ( ) ( )
( )

( )

2
22

0 2 1 02
2 1 00

2
2 ,1

4
2 41 1 2

q
q q qq q

qq q q
q

n n ns B s qs P qs
     

    


 
   − − − − +
  + − − − +−   

 = − −   (42) 

2.0 3.0 Results and Discussion 
 

We investigated the effects of the deformation 

parameter on the energy eigenvalues of the q-

deformed Modified Mobius Square potential.  

Table 1, shows the numerical results of energy 

for 1s state for various values of screening 

parameter ( )  with  1A= = = , 
1 0.2V =  

and 2B = − . It is seen that the energy decreases 

as the screening and deformation parameters 

increase.  

In the numerical results of energy of the q 

deformed-MMSP for 2s state for various 

screening parameter ( )  with  1A= = = , 

1 0.2V =  and 2B = − , it is seen that the energy 

decreases as the screening and deformation 

parameters increases. In the numerical results 

of energy of the q deformed-MMSP for 2p state 

for various values of screening parameter ( )  

with  1A= = = , 
1 0.2V =  2B = − , it is seen 

that the energy increases as the deformation 

and screening parameters increase. It is seen in 

that the numerical results of Energy for 3s state 

for various values of screening parameter ( )  

with  1A= = = , 
1 0.2V =  and 2B = − , that 

the energy decreases as the screening and 

deformation parameters increases. We show 

numerical results of energy of the q deformed-

MMSP for 3p state for various values of 

screening parameter ( )  with  1A= = = , 

1 0.2V =  and 2B = − . Here, the energy 

decreases with increasing deformation 

parameters. Also, the numerical results of 

energy of the q deformed-MMSP for 3d state 

for various values of screening parameter ( )  

with  1A= = = , 
1 0.2V =  and 2B = − , we 

see that the energy decreases with increasing 

screening parameter ( ) .The energy tends to 

increase as the deformation parameter 

increases but drops as 1q → . In Figure 1, we 

plot the energy spectra q deformed-MMSP 

versus 1V  when 1q = . We see that the energy 

increases as the potential parameter 1V  

increases. In Figure 2, we plot the energy 

spectra q deformed-MMSP against 1V  when 

1q = − . We notice that the energy decreases as 

the potential parameter 1V  increases. In Figure 

3, we plot the energy spectra of the q deformed-

MMSP with the parameter A  when 1q = . It 

was observed here that the energy decreases 

with increasing A . In Figure 4, we plot the 

energy spectra q deformed-MMSP versus A  

when 1q = − . We see that the energy increases 

with rising A . In Figure 5, we show the plot of 

the energy spectra of q deformed-MMSP 

versus B  when 1q = . Here, the energy 

increases with increasing B . In Figure 6, the 

energy spectra of q deformed-MMSP versus B  

when 1q = − is plotted. It is seen that the energy 

decreases and comes to a minimum in the 

neighbourhood of 1B =  and increases again 

immediately. In Figure 7, we show here the 

energy spectra of q deformed-MMSP versus   

when 1q = . Again, it is seen that the energy 

decreases as the parameter increases
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Table 1: Numerical results of Energy spectra for several quantum state for various values of 

screening parameter ( )  with  1A= = = , 
1 0.2V =  and 2B = −  

 

State   0.5q = −  0.5q =  1q =  

1s 0.025 -0.000213 -0.000590 -0.001563  
0.050 -0.000850 -0.002361 -0.006250  
0.075 -0.001913 -0.005313 -0.014063  
0.100 -0.003400 -0.009444 -0.025000  
0.125 -0.005313 -0.014757 -0.039063  
0.150 -0.007650 -0.021250 -0.056250 

2s 0.025 -0.001512 -0.006410 -0.018683  
0.050 -0.006040 -0.025484 -0.070472  
0.075 -0.013563 -0.056757 -0.144571  
0.100 -0.024043 -0.099486 -0.228125  
0.125 -0.037433 -0.152690 -0.310348  
0.150 -0.053668 -0.215200 -0.384486 

2p 0.025 0.00058806 0.00163920 0.00347288  
0.050 0.00235896 0.00664460 0.01432650  
0.075 0.00533262 0.01528590 0.03394280  
0.100 0.00954151 0.02803410 0.06484380  
0.125 0.01502970 0.04559670 0.11063400  
0.150 0.02185120 0.06897380 0.17270100 

3s 0.025 -0.0041073 -0.0179788 -0.0509571  
0.050 -0.0163670 -0.0706082 -0.1731530  
0.075 -0.0365967 -0.1541860 -0.3087040  
0.100 -0.0645045 -0.2632130 -0.4209770  
0.125 -0.0997071 -0.3912050 -0.5026540  
0.150 -0.1417510 -0.5315370 -0.5608120 

3p 0.025 -0.000710 -0.004210 -0.014063  
0.050 -0.002810 -0.016942 -0.056250  
0.075 -0.006211 -0.038510 -0.126563  
0.100 -0.010772 -0.069464 -0.225000  
0.125 -0.016304 -0.110625 -0.351563  
0.150 -0.022585 -0.163153 -0.506250 

3d 0.025 0.002192 0.006157 0.013983  
0.050 0.008819 0.025621 0.063501  
0.075 0.020033 0.061630 0.182128  
0.100 0.036070 0.120562 0.501875  
0.125 0.057232 0.213978 -2.300780  
0.150 0.083863 0.363202 -1.126600 

 

. 



Communication in Physical Sciences, 2023, 9(4): 483-499 492 
 

 

In Figure 8, we show here the energy spectra 

of q deformed-MMSP versus   when 

1q = − . Again, the same trend is noticed. In 

Figure 9, we show the energy spectra of q 

deformed-MMSP versus q  when 0q  . The 

energy decreases as the deformation 

parameter increases 

 
Fig.  1: Energy spectra versus potential strength 1V  when 1q = . 

 

 

 
Fig.  2: Energy spectra versus potential strength 1V  when 1q = −  

. 



Communication in Physical Sciences, 2023, 9(4): 483-499 493 
 

 

 
Fig. 3: Energy spectra versus potential strength A  when 1q =  

 

 
Fig.  4: Energy spectra versus potential strength A  when 1q = −  

 
Fig.  5: Energy spectra versus potential strength B  when 1q =  
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Fig. 6: Energy spectra versus potential strength B  when 1q = −  

 

 

 
Fig.  7: Energy spectra versus screening parameter   when 1q =  

 

 
Fig.  8: Energy spectra versus screening parameter   when 1q = −  
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Fig.  9: Energy spectra versus q  when 0q   

4.0  Conclusion  
 

In work, we solve the Schrodinger equation 

with the q-deformed Modified Mobuis Square 

potential using the Nikiforov-Uvarov method 

to obtain the wave function and energy of the 

system respectively. The energy spectra are 

numerically and graphically analysed to show 

the effects of the potential and deformation 

parameters on the energy spectra of the system. 

These findings on this system would provide a 

much broader understanding of molecular 

interactions.  
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