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Abstract: This study investigates the dynamical 

behavior and linear stability of the collinear 

Lagrangian point L3L_3L3 in the elliptic 

restricted three-body problem under the 

influence of perturbative parameters including 

the semi-major axis aaa, orbital eccentricity 

eee, and the oblateness A1A_1A1 of the more 

massive primary. For fixed values of A= 0 .01, 

A2 = 0.022, Mb=0.01 and T=0.01, the location 

and stability of L3 were examined numerically 

over varying conditions. Results show that as 

the semi-major axis decreases from 0.90 to 

0.60, the coordinate L3 shifts from –1.06706 to 

–0.964238, with the corresponding increase in 

the instability measure Ωξξ
𝑜  Ωηη

𝑜  from –1.76868 

to –2.25071. A similar trend is observed with 

increasing eccentricity from 0.10 to 0.40, 

where the coordinate of L3 shifts from –1.08021 

to –1.02960, while the instability measure 

increases from –1.58050 to –2.08276. 

Additionally, increasing the oblateness A1 from 

0.0001 to 0.2 causes the position of L3 to shift 

from –1.04760 to –1.09594, while the 

instability product increases significantly from 

–1.79718 to –2.19480. These results confirm 

that L3 is inherently unstable and increasingly 

sensitive to variations in orbital and physical 

parameters. The findings offer essential 

insights for mission planning and the stability 

analysis of celestial systems influenced by such 

perturbations. 
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1 0 Introduction 
 

The elliptic restricted three-body problem 

(ER3BP) describes the motion of an 

infinitesimal mass under the gravitational 

influence of two massive primary bodies 

orbiting their common barycenter in elliptic 

Keplerian orbits. This problem serves as a more 

realistic model than its circular counterpart 

because most celestial bodies in binary systems 

follow elliptic rather than circular orbits. In this 

dynamical system, five classical equilibrium 

points—three collinear (L1,L2, and L3,) two 

triangular (L4 and ,L5)—exist. The collinear 

points lie along the line connecting the two 

primaries, while the triangular points form 

equilateral triangles with the primaries. These 

points play a significant role in space 

dynamics, mission planning, and celestial 

mechanics. However, the collinear points are 

generally linearly unstable, while the triangular 

points may be stable or unstable depending on 

the mass ratio of the primaries. 

Over the years, several researchers have 

extended the classical ER3BP to incorporate 

more realistic factors, such as radiation 

pressure, oblateness of the primaries, and 

additional gravitational potentials. Sahoo and 

Ishwar (2000) studied the ER3BP with a 
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smaller oblate and radiating primary and 

confirmed the instability of the collinear points. 

Singh and Umar (2012, 2014) analyzed the 

system with both primaries being luminous and 

oblate, and showed that while the locations of 

the collinear points are affected by oblateness, 

eccentricity, and radiation pressure, the points 

remain linearly unstable. Similarly, Singh and 

Taura (2013, 2015) incorporated the 

gravitational potential from a circumbinary 

disc and higher-order oblateness (up to the 

zonal harmonic J4J_4J4) and demonstrated that 

new collinear points could emerge under such 

conditions, though most remain unstable. More 

recently, Hussain et al. (2018) examined 

systems like CEN X-4 and PSR J1903+0327 

and reported the influence of triaxiality and 

oblateness on the collinear points in elliptic 

binary systems. 

Circumbinary discs—ring-like distributions of 

material around binary stars—have been 

observed in numerous stellar systems and 

analogously exist in the Kuiper Belt of our own 

solar system (Luu & Jewitt, 2002). The 

gravitational potential generated by such discs 

introduces additional perturbations to the 

dynamical system and can significantly alter 

the number and location of equilibrium points 

(Jiang & Yeh, 2003; Yeh & Jiang, 2006; 

Kushvah, 2008). Therefore, considering the 

presence of a circumbinary disc is crucial in 

gaining deeper insight into the stability 

landscape of the ER3BP. 

Despite the advancements in the literature, 

most existing studies have primarily focused on 

either circular orbits or neglected the combined 

effects of oblateness and circumbinary discs in 

elliptic configurations. Moreover, while 

additional collinear points have been identified 

in earlier models, their stability under the 

influence of both oblateness and disc potential 

in an elliptic frame remains inadequately 

explored. 

This study aims to investigate the influence of 

the oblateness of the primaries and the 

gravitational potential of a surrounding 

circumbinary disc on the locations and linear 

stability of collinear libration points in the 

ER3BP. Specifically, we examine the 

emergence of new collinear equilibrium points 

and assess their dynamical behavior under 

perturbations. The significance of this study 

lies in its potential applications to celestial 

mechanics, particularly in understanding the 

dynamics of dust particles, asteroid belts, or 

spacecraft in binary star systems with extended 

mass distributions. It also contributes to 

theoretical advancements by bridging the gap 

between classical models and real-world 

astrophysical conditions. 
 

1.1  Equations of motion 

The equations of motion of the elliptic 

restricted three - body problem (ER3BP) when 

both primaries are oblate spheroids surrounded 

by a circumbinary disc  in a dimensionless - 

pulsating coordinate system ( ξ, η, ς)  following 

Singh and Umar (2012) and Singh and Taura 

(2014) are: 
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The mean motion, n, is given by 
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(3)         

𝑟𝑖
2 = (ξ − ξi)

2 + η2 + ζ2        𝑖 = 1,2;    𝜉1 = −μ   𝜉2 = 1 − μ 

𝜇 =
𝑚2

𝑚1+𝑚2
                                                                                                                                     (4) 

where 

( )2

1
22

Tr

M

c

b

+

 is the potential due to the 

disc (Miyamoto & Nagai 1975; Singh and 

Taura 2013), where Mb is the total mass of the 

disc, r is the radial distance of the infinitesimal 

body and is given by 222  +=r , dbT += , 

b and d are parameter which determine the 

density profile of the circular cluster of material 

points. The parameter b controls the flatness of 

the profile and is known as the flatness 

parameter. The parameter d controls the size of 

the core of the density profile and is called the 

core parameter when b=d=0, the potential 

equals to the one by a point mass, cr is the radial 

distance of the infinitesimal body in the 

classical restricted and n, a, e, A are the mean 

motion, semi – major axis, eccentricities of the 

orbits, oblateness respectively in 3BP. And the 

prime represents differentiation with respect to 

the eccentric anomaly E which describes the 

position of a particle moving along an elliptic 

keplerian orbit.   

 

2.0 Locations of the Collinear Libration Points 

The positions of the collinear points are the solution of  the first derivative of equation (2) with 

respect to 𝜉, 𝜂 𝑎𝑛𝑑 𝜁 respectively. That is Ω𝜉 = Ω𝜂 = Ω𝜁 = 0 since the collinear points lie only 

on the 𝜉 axis, it implies that 𝜂 = 𝜁 = 0 on the system i.e 

Ω𝜉 =
1

(1−𝑒2)
1
2

[𝜉 −
1

𝑛2 {
(1−𝜇)(𝜉+𝜇)

𝑟1
3 +

𝜇(𝜉+𝜇−1)

𝑟2
3 +

3(1−𝜇)𝐴1(𝜉+𝜇)

2𝑟1
5 +

3𝜇𝐴2(𝜉+𝜇−1)

2𝑟2
5 +

𝑀𝑏𝜉

(𝑟2+𝑇2)
3
2

}] = 0  

Ω𝜂 =
1

(1−𝑒2)
1
2

𝜂 [1 −
1

𝑛2
{

(1−𝜇)

𝑟1
3 +

𝜇

𝑟2
3 +

3(1−𝜇)𝐴1

2𝑟1
5 +

3𝜇𝐴2

2𝑟2
5 +

𝑀𝑏

(𝑟2+ 𝑇2)
3
2

}] = 0  

Ω𝜁 =
1

(1−𝑒2)
1
2

[
−𝜁

𝑛2 {
(1−𝜇)

𝑟1
3 +

𝜇

𝑟2
3 +

3(1−𝜇)𝐴1

2𝑟1
5 +

3𝜇𝐴2

2𝑟2
5 +

𝑀𝑏

(𝑟2+𝑇2)
3
2

}] = 0                                              (5) 

From equation (4), when 𝜂 = 𝜁 = 0 

|𝑟1|2 = |𝜉 + 𝜇|2          |𝑟2|2 = |𝜉 + 𝜇 − 1|2                                                                              (6)       

𝜉𝑛2 −
(1−𝜇)(𝜉+𝜇)

|𝜉+𝜇|3
−

𝜇(𝜉+𝜇−1)

|𝜉+𝜇−1|3
−

3(1−𝜇)𝐴1(𝜉+𝜇)

2|𝜉+𝜇|5
−

3𝜇𝐴2(𝜉+𝜇−1)

2|𝜉+𝜇−1|5
−

𝑀𝑏𝜉

(𝜉2+𝑇2)
3
2

= 0                            (7) 

To locate the straight line solutions on the line joining the primaries, the orbital plane is divided 

into three interval regions ( )132112 ,),,2(,  = LbaiLL i   with respect t the 

primaries. The collinear points )3,,,2,1( baiLi =   lie in the these regions.  

We consider the collinear points Li( i = 1,2,3,a, b)  in their respective  intervals. 
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Case 1: Location of L1  

                     −= 11m                                  =2m  

 

Figure 1: Location of the collinear equilibrium point 1L  

Considering the first interval 21 L , which correspond to the position of  L1 

 From figure 1, we can see ,21  =−L    +=− 111L    11 1  ++= L  

Now, from (6), we have   +=11r   and  =2r  then substituting in equation (7) gives;   

2𝑛2(1 + 𝜌 − 𝜇)(1 + 𝜌)4𝜌4[(1 + 𝜌 − 𝜇)2 + 𝑇2]
3

2 − 2(1 − 𝜇)(1 + 𝜌)2𝜌4[(1 + 𝜌 − 𝜇)2 +

𝑇2]
3

2 − 2𝜇(1 + 𝜌)4𝜌2[(1 + 𝜌 − 𝜇)2 + 𝑇2]
3

2 − 3(1 − 𝜇)𝐴1𝜌4[(1 + 𝜌 − 𝜇)2 + 𝑇2]
3

2 − 3𝜇𝐴2(1 +

𝜌)4[(1 + 𝜌 − 𝜇)2 + 𝑇2]
3

2 − 2𝑀𝑏(1 + 𝜌 − 𝜇)(1 + 𝜌)4𝜌4 = 0                                       (8)                                                                                 

Case 2: Location of Li ( i=2,a,b) 

In the interval ( )21 ),,2(  = baiLi , which correspond to Li ( i=2,a,b) 

 

 

 

Figure  2: Location of the collinear equilibrium point 2L
 

                                                                   

    

 

Figure 3: Location of the collinear equilibrium point aL   

 
                                                                   

    

 

Figure 4: Location of the collinear equilibrium point bL   

From figures 2 - 4, we obtain,  ==− ),,2(2 baiLi   
 −−==−=−= 1),,2(1),,2( 1 baiLbaiL ii  

  Then, from (6) we obtain, −=11r ,
2r =                                                                                                                                                                                                                 

substituting in the above in equation (7) yields  

2𝑛2(1 − 𝜌 − 𝜇)(1 − 𝜌)4𝜌4[(1 − 𝜌 − 𝜇)2 + 𝑇2]
3

2 − 2(1 − 𝜇)(1 − 𝜌)2𝜌4[(1 − 𝜌 − 𝜇)2 +

𝑇2]
3

2 + 2𝜇(1 − 𝜌)4𝜌2[(1 − 𝜌 − 𝜇)2 + 𝑇2]
3

2 − 3(1 − 𝜇)𝐴1𝜌4[(1 − 𝜌 − 𝜇)2 + 𝑇2]
3

2 + 3𝜇𝐴2(1 −

𝜌)4[(1 − 𝜌 − 𝜇)2 + 𝑇2]
3

2 − 2𝑀𝑏(1 − 𝜌 − 𝜇)(1 − 𝜌)4𝜌4 = 0                                         (9)    

Case 2: Location of  3L    )( 31 L                                                                                                                                                     

In the last interval 31 L ,  

       

 

 

Figure 5: Location of the collinear equilibrium point 3L  

  

    0  ( ) ( )0,0,1  −=  ( ) ( )0,10,2  −=  ( )0,1L  

−= 11m  =2m    
( ) ( )0,0,1  −=  0  ( )0,2L  ( ) ( )0,10,2  −=  

−= 11m  =2m  
( ) ( )0,0,1  −=                                               ( ) 00,aL       ( ) ( )0,10,2  −=  

−= 11m  =2m  ( ) ( )0,0,1  −=                                               ( ) 00,bL       ( ) ( )0,10,2  −=  

3L  −= 11m  =2m  1 −  ( )0,3L  0  ( ) ( )0,0,1  −=  ( ) ( )0,10,2  −=  
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From figure: 5 we have;  −=−−=− 2,1 3231 LandL  

 

and from (6), we have  −=−= 2;1 21 rr   
Putting in the above equations in (7) we have; 

2𝑛2(𝜌 − 1 − 𝜇)(1 − 𝜌)4(2 − 𝜌)4[(𝜌 − 1 − 𝜇)2 + 𝑇2]
3

2 + 2(1 − 𝜇)(1 − 𝜌)2(2 − 𝜌)4[(𝜌 − 1 −

𝜇)2 + 𝑇2]
3

2 + 2𝜇(1 − 𝜌)4(2 − 𝜌)2[(𝜌 − 1 − 𝜇)2 + 𝑇2]
3

2 + 3(1 − 𝜇)𝐴1(2 − 𝜌)4[(𝜌 − 1 −

𝜇)2 + 𝑇2]
3

2 + 3𝜇𝐴2(1 − 𝜌)4[(𝜌 − 1 − 𝜇)2 + 𝑇2]
3

2 − 2𝑀𝑏(𝜌 − 1 − 𝜇)(1 − 𝜌)4(2 − 𝜌)4 = 0              

                                                                                                                                                   (10)                                                                                                                                 

3.0 Stability of the collinear equilibrium points 
 

To investigates the stability of the collinear libration points Li (i=1,2,3,a,b); we consider the 

characteristic equation of the system in Singh and Umar (2012) given by  

( ) ( ) 04
20002004 =−+−+−  

                                                                        
(11)

       
Now, we obtain the points corresponding to the collinear by taking the second partial derivatives 

of equation (2), with 0 = . Thus we have
                     

 

( )

( ) ( )

( ) ( ) 































+

+

+

−
−+

+
+

−
+

−+
+

+

−
+

−

=

2

5
22

2

2

3
22

5

2

5

1

332

2

1
2 2

3

21

313

1

12
1

1

1

T

M

T

MAA

n
e

bb




















  

( )

( ) ( )

( ) 































+

+
−+

+
+

−
+

−+
+

+

−
−

−

=

2

3
22

5

2

5

1

332

2

1
2 12

3

2

13

1

11
1

1

1

T

MAA

n
e

b


















 

0==   

0=                                                                                                                                                                   (12)
      

                                            

Since 

( )2
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22

2

2
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T

M b

+


> 

( )2

3
222 T

M b

+

 and the remaining terms are all positive, this implies that 

 
0

 > 0 

3.1 Stability of ( )1 2L    

In this case, we have;   +=1r   
 

 −= 1r    and
  

12 −+= r
                             (13)           

 

With the use of equations (13) in  equation (7) we obtain; 
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Substituting equation (14) in the second equation of (12) gives;  
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Simplifying we have;  
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Thus,
0 0  . Since  

1

2
       𝐴𝑖(𝑖 = 1,2) ≪ 1 ,𝑟1 > 1     and 𝑟2 < 1         

3.2  Stability of ),,2( baiLi =  in the interval ( )21                         

In this interval, we have; 
1 ( )r  = + 1( )r  = − and 2 ( 1)r  = − + − .                        (15)               

Substituting equation (15) in the equation (7) yields
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Substituting equation (16) in the second equation of (12) gives;  
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Which implies that;   
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Thus, 
0 0  ,  Since

1

2
   , ( ) ,12,1 =iAi   11 r  and 12 r  

3.3 Stability of ( ) 13L   

In the last interval, we have; ( ) +−=1r ( ) +−= 1r  and 2 ( 1)r  = − + − .                      (18)             

Substituting equation (18) in the equation (7) yields 
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Substituting equation (19) in the second equation of (12) gives;  
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Simplifying we get; 
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0 0  , Since
1

2
   , ( ) ,12,1 =iAi   11 r  and 12 r  

Clearly, ,00   ,00   and .00 =  

Since, ,0000 −   the discriminant of equation (11) is positive. 

4.0 Results and Discussion 

In this numerical investigation, the influence of 

various dynamical parameters on the collinear 

equilibrium points Li (where i=1,2,3,,a, b) is 

presented in detail through a series of tabulated 

data. These parameters include the oblateness 

of the primary bodies, the semi-major axis, the 

eccentricity of the orbit, and the mass of a 

surrounding belt or disc. The equilibrium 

positions, denoted by ρLi\rho_{L_i}ρLi, and 

the corresponding second-order derivatives of 

the potential function Ω(ξ,η), specifically Ωξξ
𝑜  

and Ωηη
𝑜  are studied to understand their impact 

on the location and linear stability of these 

points.  

Table 1 presents the effect of varying the semi-

major axis on the position and stability of the 

collinear point L1. For a fixed eccentricity 

e=0.3, oblateness coefficients A1 = 0.0025  and 

A2=0.0002, belt mass Mb=0.5 and other 

parameters, the semi-major axis was varied 

from 0.90 to 0.60. 
 

Table1: Effect of semi- major axis on L1 for A1=0.01, A2=0.02, Mb=0.01, T=0.01 and e = 0.3 

 

  a 𝝆𝑳𝟏 𝑳𝟏 𝛀𝝃𝛏
𝟎  𝛀𝜼𝜼

𝟎  𝛀𝝃𝛏
𝟎 𝛀𝜼𝜼

𝟎  
    2,1  4,3  Remark 

0.90 0.54173 1.19173 5.48768 -0.99446 -5.45730  1.61111  1.44998i Unstable 

0.85 0.52889 1.17889 5.57564 -1.02705 -5.72648  1.63798  1.46095i Unstable 

0.80 0.515642 1.16564 5.67210 -1.06246 -6.02639  1.66690  1.47272i Unstable 

0.75 0.501948 1.15195 5.77844 -1.10111 -6.36271  1.69816  1.48540i Unstable 

0.70 0.487762 1.13776 5.89642 -1.14354 -6.74278  1.73213  1.49913i Unstable 
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0.65 0.473032 1.12303 6.02821 -1.19038 -7.17585  1.76925  1.51407i Unstable 

0.60 0.457694 1.10769 6.17664 -1.24245 -7.67418  1.81009  1.53044i Unstable 
 

From Table 1, it is evident that as the semi-

major axis decreases, the value of ρL1 reduces 

progressively, indicating that the collinear 

point L1 shifts inward toward the smaller 

primary. This shift is accompanied by an 

increase in the magnitude of the curvature 

terms Ωξξ
𝑜  and Ωηη

𝑜 , resulting in a stronger 

restoring force in the ξ\ direction and greater 

instability in the η-direction. The roots remain 

purely imaginary throughout, indicating that 

the motion around L1 is unstable under small 

perturbations. Table 2 indicates that increasing 

the oblateness of the bigger primary results in a 

continuous inward shift of the equilibrium 

point L1. Simultaneously, the curvature of the 

potential increases, leading to a more unstable 

configuration, as seen in the higher imaginary 

components of the roots. This implies that the 

flattened shape of the bigger primary enhances 

the gravitational asymmetry in the system. As 

shown in Table 3, increasing the oblateness of 

the smaller primary causes the point L1 to move 

outward from the smaller primary. However, 

the magnitude of the potential’s second 

derivatives decreases, slightly reducing the 

degree of instability, though the roots remain 

imaginary, indicating persistent instability. 

From Table 4, it is clear that as the belt mass 

increases, ρL1 reduces significantly, and the 

potential curvature steepens in both directions. 

The increasing imaginary values of the roots 

confirm that the belt mass induces greater 

gravitational asymmetry and instability near 

L1The data in Table 5 highlight that increasing 

orbital eccentricity also causes an inward shift 

of L1, with a steepening of the potential 

gradient. 
 

Table 2: Effect of oblateness of the bigger primary on L1 for A2=0.02, Mb=0.01, T=0.01, 

a=0.85 and       e = 0.3 
 

A1 𝝆𝑳𝟏 𝑳𝟏 𝛀𝝃𝛏
𝟎  𝛀𝜼𝜼

𝟎  𝛀𝝃𝛏
𝟎 𝛀𝜼𝜼

𝟎  
      2,1  

     4,3  
Remark 

0.0001 0.531408 1.18141 5.55934 -1.02187 -5.68091  1.6332  1.4594i Unstable 

0.001 0.531177 1.18118 5.56083 -1.02234 -5.68508  1.6336  1.4595i Unstable 

0.01 0.528890 1.17889 5.57564 -1.02705 -5.72648  1.6379  1.4609i Unstable 

0.1 0.507919 1.15792 5.71761 -1.07166 -6.12733  1.6791  1.4742i Unstable 

0.2 0.487987 1.13799 5.86345 -1.11654 -6.54680  1.7202  1.4874i Unstable 
 

Table 3: Effect of oblateness of the smaller primary on L1 for A1=0.02, Mb=0.01, T=0.01, 

a=0.90 and       e = 0.25 
 

A2 𝝆𝑳𝟏 𝑳𝟏 𝛀𝝃𝛏
𝟎  𝛀𝜼𝜼

𝟎  𝛀𝝃𝛏
𝟎 𝛀𝜼𝜼

𝟎  

0.0002 0.534442 1.18444 5.05521 -0.97461 -4.92688 

0.002 0.535711 1.18571 5.08779 -0.97367 -4.95385 

0.02 0.547016 1.19702 5.37112 -0.96571 -5.18694 

0.1 0.579802 1.22980 6.14278 -0.94772 -5.82166 

0.2 0.603079 1.25308 6.66849 -0.93992 -6.26787 

 

This leads to higher instability, indicated by 

increasingly large imaginary components of 

the characteristic roots. The investigation also 

covers the behavior of equilibrium point L2, 

summarized in Tables 6 to 9, which similarly 

reflect the impact of varying Mb, A2, A1, and e 
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respectively. The shift in L2 toward the 

barycenter and the rising curvature of the 

potential signify that increased belt mass 

intensifies the instability of L2, as reflected in 

the larger imaginary components of the roots. 

Subsequent tables follow the same pattern of 

interpretation, confirming that increased values 

of oblateness and eccentricity generally 

destabilize the equilibrium points by altering 

the geometry and depth of the gravitational 

potential. From Table 7, as A2 increases, the 

position of L2 moves outward (increase in ρL2 

and closer to the smaller primary (decrease in 

L2. This shift results in significantly increased 

values of the second derivatives of the effective 

potential Ω, reflecting enhanced dynamical 

instability around L2. The product Ωξξ
𝑜  Ωηη

𝑜  

becomes more negative, confirming increased 

sensitivity to perturbations. This table 

examines how varying the oblateness 

coefficient A1A_1A1 of the bigger primary 

affects L2, with parameters A2=0.02, Mb=0.01, 

T=0.01, a=0.85a = 0.85, and e=0.3. The data 

(Table 8) reveals that increasing A1 causes a 

reduction in ρL2 and a corresponding increase 

in L2, signifying that the Lagrangian point 

shifts away from the bigger primary. A stronger 

oblateness effect in the bigger primary 

intensifies the gravitational influence, altering 

the equilibrium point's location and increasing 

instability, as seen from the more negative 

product of the second derivatives. 

Table 4: Effect of belt on L1 for A1=0.01, A2=0.02, T=0.01, a=0.90 and e = 0.3 

 

Mb 𝝆𝑳𝟏 𝑳𝟏 𝛀𝝃𝛏
𝟎  𝛀𝜼𝜼

𝟎  𝛀𝝃𝛏
𝟎 𝛀𝜼𝜼

𝟎  

0.01 0.541730 1.19173 5.48768 -0.99446 -5.45730 

0.1 0.510883 1.16088 5.61603 -1.03695 -5.82355 

0.2 0.483903 1.13390 5.73759 -1.07570 -6.17194 

0.3 0.462135 1.11213 5.84271 -1.10803 -6.47391 

0.4 0.444058 1.09406 5.93525 -1.13557 -6.73990 

0.5 0.428712 1.07871 6.01783 -1.15942 -6.97717 
 

Table 5: Effect of eccentricity on L1 for A1=0.01, A2=0.02, T=0.01, a=0.85 and Mb = 0.01 
 

  e 𝝆𝑳𝟏 𝑳𝟏 𝛀𝝃𝛏
𝟎  𝛀𝜼𝜼

𝟎  𝛀𝝃𝛏
𝟎 𝛀𝜼𝜼

𝟎  

0.10 0.552701 1.20270 5.19304 -0.92795 -4.81889 

0.15 0.548732 1.19873 5.25059 -0.94302 -4.95142 

0.20 0.543338 1.19334 5.33250 -0.96436 -5.14245 

0.25 0.536668 1.18667 5.44015 -0.99224 -5.39790 

0.30 0.528890 1.17889 5.57564 -1.02705 -5.72648 

0.35 0.520187 1.17019 5.74179 -1.06937 -6.14011 

0.40 0.510743 1.16074 5.94246 -1.11998 -6.65543 

 

Table 6: Effect of Circumbinary disk on L2 for A1=0.01, A2=0.02, T=0.01, a=0.90 and e = 0.3 

 

Mb 𝝆𝑳𝟐 𝑳𝟐 𝛀𝝃𝛏
𝟎  𝛀𝜼𝜼

𝟎  𝛀𝝃𝛏
𝟎 𝛀𝜼𝜼

𝟎  

0.01 0.438722 0.211273 17.5034 -6.53984 -114.470 

0.1 0.386552 0.263448 23.3139 -9.22091 -214.975 

0.2 0.356792 0.293208 25.3493 -10.0515 -254.799 
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Table 7: Effect of oblateness of the smaller primary on L2 for A1=0.02, Mb=0.01, T=0.01, 

a=0.90 and       e = 0.25 

 

A2 𝝆𝑳𝟐 𝑳𝟐 𝛀𝝃𝛏
𝟎  𝛀𝜼𝜼

𝟎  𝛀𝝃𝛏
𝟎 𝛀𝜼𝜼

𝟎  

0.0002 0.419424 0.230576 16.3645 -6.38943 -104.560 

0.002 0.420944 0.229056 16.5572 -6.42573 -106.392 

0.02 0.434200 0.215800 18.1888 -6.74659 -122.712 

0.1 0.471657 0.178343 22.3962 -7.70741 -172.617 

0.2 0.499190 0.15081 25.2428 -8.51551 -214.955 
 

 

 

Table 8: Effect of oblateness of the bigger primary on L2 for A2=0.02, Mb=0.01, T=0.01, 

a=0.85 and   e = 0.3 
 

A1 𝝆𝑳𝟐 𝑳𝟐 𝛀𝝃𝛏
𝟎  𝛀𝜼𝜼

𝟎  𝛀𝝃𝛏
𝟎 𝛀𝜼𝜼

𝟎  

0.0001 0.443806 0.206134 16.2169 -6.08139 -98.6212 

0.001 0.443399 0.206601 16.2514 -6.08475 -98.8855 

0.01 0.439469 0.210531 16.5836 -6.11856 -101.468 

0.1 0.409553 0.240447 19.0009 -6.42088 -122.003 

0.2 0.387328 0.262672 20.5627 -6.63975 -136.531 

 

Table 9 shows the dependence of the location 

and stability of L2 on the orbital eccentricity e, 

with fixed values: A1=0.01, A2=0.02, T=0.01, 

a=0.85, and Mb=0.01.Table 9 investigates the 

impact of varying eccentricities (e) on 

L2L_2L2 for a set of fixed parameters 

(A1=0.01, A2=0.02, T=0.01, a=0.85, Mb = 

0.01). The table shows that as the eccentricity 

increases from 0.10 to 0.40, the values of L2 

slightly decrease from 0.211863 to 0.209378, 

indicating a small but noticeable reduction in 

L2 with higher eccentricity. The corresponding 

Ωξξ
𝑜  and Ωηη

𝑜  values also show a trend of 

decreasing magnitudes, with Ωξξ
𝑜  decreasing 

from 17.5566 to 15.9588 and Ωηη
𝑜  dropping 

from -6.62489 to -5.77214. This implies that 

the dynamical behavior of the system, in terms 

of its rotational and precessional motion, is less 

influenced by higher eccentricities. 

Additionally, the productΩξξ
𝑜  Ωηη

𝑜  consistently  

decreases, showing that the interaction between 

the rotational axes weakens with increasing 

eccentricity. 

Table 10 examines how changing the semi-

major axis (a) affects L2 for fixed parameters 

(A1=0.01, A2=0.02, Mb = 0.01, T=0.01, and 

e=0.30). The table illustrates that as the semi-

major axis decreases from 0.90 to 0.60, L2 

progressively decreases from 0.211273 to 

0.205124. The corresponding values of Ωξξ
𝑜  and 

Ωηη
𝑜  also decrease with decreasing semi-major 

axis. For example, Ωξξ
𝑜   decreases from 17.5034 

to 12.0018, while Ωηη
𝑜  decreases from -6.53969 

to -4.01984. This suggests that the orbital 

0.3 0.336810 0.313190 26.2402 -10.3500 -271.587 

0.4 0.321788 0.328212 26.6786 -10.4486 -278.754 

0.5 0.309798 0.340202 26.8995 -10.4568 -281.283 
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dynamics become less intense with a 

decreasing semi-major axis, leading to a 

reduction in the rotational behavior of the 

system. Furthermore, the product Ωξξ
𝑜 Ωηη

𝑜   

consistently reduces, showing weaker 

interactions as the semi-major axis decreases. 

 

Table 9: Effect of eccentricity on L2 for A1=0.01, A2=0.02, T=0.01, a=0.85 and Mb = 0.01 

 

e 𝝆𝑳𝟐 𝑳𝟐 𝛀𝝃𝛏
𝟎  𝛀𝜼𝜼

𝟎  𝛀𝝃𝛏
𝟎 𝛀𝜼𝜼

𝟎  

0.10 0.438137 0.211863 17.5566 -6.62489 -116.311 

0.15 0.438346 0.211654 17.3839 -6.53680 -113.635 

0.20 0.438638 0.211362 17.1556 -6.41938 -110.128 

0.25 0.439013 0.210987 16.8841 -6.27793 -105.997 

0.30 0.439469 0.210531 16.5836 -6.11856 -101.468 

0.35 0.440006 0.209994 16.2697 -5.94774 -96.7682 

0.40 0.440622 0.209378 15.9588 -5.77214 -92.1163 

      

 

 

 

Table 10: Effect of semi- major axis on L2 for A1=0.01, A2=0.02, Mb=0.01, T=0.01 and e = 0.3 

 

a 𝝆𝑳𝟐 𝑳𝟐 𝛀𝝃𝛏
𝟎  𝛀𝜼𝜼

𝟎  𝛀𝝃𝛏
𝟎 𝛀𝜼𝜼

𝟎  

0.90 0.438727 0.211273 17.5034 -6.53969 -114.467 

0.85 0.439469 0.210531 16.5836 -6.11856 -101.468 

0.80 0.440298 0.209702 15.6648 -5.69778 -89.2544 

0.75 0.441229 0.208771 14.7469 -5.27744 -77.8262 

0.70 0.442284 0.207716 13.8303 -4.85760 -67.1821 

0.65 0.443488 0.206512 12.9152 -4.43836 -57.3221 

0.60 0.444876 0.205124 12.0018 -4.01984 -48.2452 

 

Table 11 explores the effect of varying the 

mass of the belt (Mb) on LaL_aLa for a fixed 

set of parameters (A1=0.01, A2 = 0.02, T=0.01, 

a=0.90, e=0.30). As the mass of the belt 

increases from 0.01 to 0.5, the value of 

LaL_aLa becomes increasingly negative, 

starting at -0.000511 for Mb = 0.01 and 

reaching -0.000010 for Mb = 0.5. This suggests 

that the system becomes more "stiff" with 

increasing belt mass, which might indicate 

greater rigidity or resistance to deformation. 

The corresponding angular velocities Ωξξ
𝑜  and 

Ωηη
𝑜  become more negative and larger in 

magnitude as the mass increases. For instance, 

Ωξξ
𝑜  a  drops from -7699.33 to -190638, while 

Ωηη
𝑜  follows a similar trend. This shows that the 

system's dynamics become more intense as the 

belt mass increases, likely due to an increase in 

inertia and rotational resistance. 

Table 12 investigates the influence of the 

oblateness of the smaller primary (A2) on 

LaL_aLa for a set of fixed parameters 

(A1=0.02, Mb = 0.01, T= 0.01, a=0.90, and 

e=0.25). As A2 increases from 0.0002 to 0.2, La 

becomes slightly more negative, and Ωξξ
𝑜   

decrease in magnitude. For example, Ωξξ
𝑜   

decreases from -7920.62 to -6299.20, Ωξξ
𝑜  Ωηη

𝑜  

drops from -8057.49 to -6398.28. This 
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indicates that the oblateness of the smaller 

primary reduces the system's precession and 

rotational motion as its magnitude increases. 

The uct Ωξξ
𝑜 Ωηη

𝑜  also decreases as A2 increases, 

suggesting a weaker interaction between the 

rotational axes as the oblateness of the smaller 

primary grows. 

Table 13 explores how the oblateness of the 

larger primary (A1) affects La for fixed 

parameters (A2=0.02, Mb=0.01, T=0.01, 

a=0.85, and e=0.30). As A1 increases from 

0.0001 to 0.2, the values of La shift from -

0.000445 to -0.001870, indicating a more 

negative La. The angular velocities Ωξξ
𝑜  and Ωηη

𝑜  

also decrease in magnitude as A1 increases, 

with Ωξξ
𝑜  decreasing from -7388.80 to -4988.56 

and Ωηη
𝑜  decreasing from -7470.44 to -5708.03. 

The product Ωξξ
𝑜 Ωηη

𝑜  also decreases, confirming 

that the system's dynamics become less intense 

as the oblateness of the bigger primary 

increases. 

Table 14 examines the effect of eccentricity (e) 

on La for a set of fixed parameters (A1=0.01, 

A2=0.02, T=0.01, a=0.85, Mb = 0.01). The 

values of La remain constant at -0.000511 as 

eccentricity increases from 0.10 to 0.40, 

suggesting that the eccentricity does not 

influence La. However, Ωξξ
𝑜  and Ωηη

𝑜  change as 

eccentricity increases. For instance, Ωξξ
𝑜   

decreases from -7742.08 to -6962.14, and  

Ωηη
𝑜 decreases from -7849.95 to -7059.16. This 

shows that while eccentricity does not affect La

, it does influence the precession and rotational 

motion of the system. 

Finally, Table 15 investigates the effect of 

varying the semi-major axis (a) on La for fixed 

parameters (A1=0.01, A2=0.02, Mb=0.01, 

T=0.01, and e=0.30). As the semi-major axis 

decreases from 0.90 to 0.60, La remains 

constant at -0.000511. However, Ωξξ
𝑜  and Ωηη

𝑜  

decrease in magnitude, with Ωξξ
𝑜  changing from 

-7699.33 to -5132.54 and  Ωηη
𝑜  changing from -

7806.62 to -5204.06. This indicates that 

decreasing the semi-major axis results in 

weaker rotational and precessional motions. 

The product Ωξξ
𝑜  Ωηη

𝑜  also decreases, 

reinforcing the idea that the system's dynamics 

are less intense with a decreasing semi-major 

axis. 

 

Table 11: Effect of belt on La for A1=0.01, A2=0.02, T=0.01, a=0.90 and e = 0.3 
 

 

 

Table 12: Effect of oblateness of the smaller primary on La for A1=0.02, Mb=0.01, T=0.01, 

a=0.90 and       e = 0.25 
 

A2 𝝆𝑳𝒂 𝑳𝒂 𝛀𝝃𝛏
𝟎  𝛀𝜼𝜼

𝟎  𝛀𝝃𝛏
𝟎 𝛀𝜼𝜼

𝟎  

0.0002 0.650583 -0.000583 -7920.62 -8057.49 6.38203×107 

0.002 0.650583 -0.000583 -7902.03 -8038.64 6.35216×107 

0.02 0.650578 -0.000578 -7722.92 -7855.37 6.06664×107 

0.1 0.650554 -0.000554 -7017.35 -7133.11 5.00555×107 

Mb 𝝆𝑳𝒂 𝑳𝒂 𝛀𝝃𝛏
𝟎  𝛀𝜼𝜼

𝟎  𝛀𝝃𝛏
𝟎 𝛀𝜼𝜼

𝟎  

0.01 0.650511 -0.000511 -7699.33 -7806.62 2.22479×1029 

0.1 0.650051 -0.000051 -65534.3 -65578.7 4.29769×109 

0.2 0.650025 -0.000025 -111119 -111153 1.23512×1010 

0.3 0.650017 -0.000017 -144639 -144669 2.09247×1010 

0.4 0.650013 -0.000013 -170326 -170352 2.90153×1010 

0.5 0.650010 -0.000010 -190638 -190661 3.63472×1010 
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0.2 0.650524 -0.000524 -6299.20 -6398.28 4.0304×107 

 

Table 13: Effect of oblateness of the bigger primary on La for A2=0.02, Mb=0.01, T=0.01, 

a=0.85 and   e = 0.3 
 

A1 𝝆𝑳𝒂 𝑳𝒂 𝛀𝝃𝛏
𝟎  𝛀𝜼𝜼

𝟎  𝛀𝝃𝛏
𝟎 𝛀𝜼𝜼

𝟎  

0.0001 0.650445 -0.000445 -7388.80 -7470.44 5.51976×107 

0.001 0.650451 -0.000451 -7378.14 -7461.50 5.5052×107 

0.01 0.650511 -0.000511 -7271.54 -7372.86 5.3612×107 

0.1 0.651125 -0.001125 -6203.03 -6543.55 4.05899×107 

0.2 0.65187 -0.001870 -4988.56 -5708.03 2.84748×107 
 

Table 14: Effect of eccentricity on La for A1=0.01, A2=0.02, T=0.01, a=0.85 and Mb = 0.01 
 

e 𝝆𝑳𝒂 𝑳𝒂 𝛀𝝃𝛏
𝟎  𝛀𝜼𝜼

𝟎  𝛀𝝃𝛏
𝟎 𝛀𝜼𝜼

𝟎  

0.10 0.650511 -0.000511 -7742.08 -7849.95 6.0775×107 

0.15 0.650511 -0.000511 -7659.15 -7765.88 5.948×107 

0.20 0. 650511 -0.000511 -7549.23 -7654.42 5.77849×107 

0.25 0. 650511 -0.000511 -7417.87 -7521.23 5.57915×107 

0.30 0. 650511 -0.000511 -7271.54 -7372.86 5.3612×107 

0.35 0. 650511 -0.000511 -7117.20 -7216.37 5.13604×107 

0.40 0. 650511 -0.000511 -6962.14 -7059.16 4.91469×107 

 

Table 15: Effect of semi- major axis on La  for A1=0.01, A2=0.02, Mb=0.01, T=0.01 and e = 

0.3 
 

a 𝝆𝑳𝒂 𝑳𝒂 𝛀𝝃𝛏
𝟎  𝛀𝜼𝜼

𝟎  𝛀𝝃𝛏
𝟎 𝛀𝜼𝜼

𝟎  

0.90 0.650511 -0.000511 -7699.33 -7806.62 6.01057×107 

0.85 0.650511 -0.000511 -7372.54 -7372.86 5.3612×107 

0.80 0.650511 -0.000511 -6843.74 -6939.10 4.74894×107 

0.75 0.650511 -0.000511 -6415.94 -6505.34 4.17378×107 

0.70 0.650511 -0.000511 -5988.14 -6071.58 3.63575×107 

0.65 0.650511 -0.000511 -5560.34 -5637.82 3.13482×107 

0.60 0.650511 -0.000511 -5132.54 -5204.06 2.67101×107 
 

The data from these tables provide important 

insights into the orbital and dynamical behavior 

of the system as different parameters are 

varied. From the above, it is evidence that,  

(i) Eccentricity and semi-major axis have 

significant effects on L2, with higher 

eccentricities and smaller semi-major 

axes leading to a decrease in L2 and a 

corresponding reduction in the 

dynamical intensity. 

(ii) Increasing the mass of the belt and the 

oblateness of the primary bodies 

significantly affects La, leading to a 

more negative La and a stronger 

interaction between the rotational axes. 

(iii) The influence of eccentricity on La 

appears to be minimal, as La remains 

constant despite changes in 

eccentricity. 

These results provide useful information for 

understanding the dynamics of the system 
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under various orbital and physical 

configurations. 

Table 16 shows how the value of Lb changes 

with varying Mb (belt mass). As the value of Mb 

increases, both ρLb and Lb exhibit a steady 

increase. The angular velocities Ωξξ
𝑜  and Ωηη

𝑜   

exhibit varying trends, with Ωξξ
𝑜  decreasing 

slightly as Mb increases, while Ωηη
𝑜  decreases 

significantly. This suggests that the impact of 

increasing belt mass is primarily felt in the 

reduction of angular velocity terms. Table 17: 

Effect of Oblateness of the Smaller Primary on 

Lb  for A1=0.02, Mb=0.01, T=0.01T = 0.01, 

a=0.90 , and e=0.25.  Table 17shows results for 

the investigation of  the effect of the oblateness 

of the smaller primary (controlled by A2) on Lb

. As A2 increases, both ρLb show a very small 

increase. This indicates that the oblateness of 

the smaller primary has a minimal effect on the 

linear size Lb. The angular velocities Ωξξ
𝑜  and 

Ωηη
𝑜  show a decrease with increasing A2, with 

Ωξξ
𝑜   decreasing more significantly than Ωηη

𝑜  . 

Table 18: Effect of Oblateness of the Bigger 

Primary on Lb for A2 = 0.02, Mb = 0.01, 

T=0.01T = 0.01, a=0.85, and e=0.3/ Table 18 

explores the effect of the oblateness of the 

bigger primary on Lb. As A1 increases, ρLb and 

Lb both show a decreasing trend, indicating that 

increasing the oblateness of the bigger primary 

reduces the values of these parameters. The 

angular velocities Ωξξ
𝑜  and Ωηη

𝑜  show significant 

increases with increasing A1, particularly with 

Ωξξ
𝑜   , which increases substantially when A1 

reaches higher values. 

Table 19: Effect of Eccentricity on Lb for A1 = 

0.01, A2=0.02, T=0.01, a = 0.85, and Mb = 0.01. 

Table 19 shows the effect of eccentricity (e) on 

Lb. As eccentricity increases, both ρLb and Lb 

remain almost constant, with only very slight 

changes observed. The angular velocities Ωξξ
𝑜  

and Ωηη
𝑜   decrease steadily as eccentricity 

increases, suggesting that increasing 

eccentricity results in a gradual decrease in the 

overall angular velocities. Table 20: Effect of 

Semi-Major Axis on Lb for A1 = 0.01, A2 = 

0.02, Mb = 0.011T=0.01, and e=0.3. Table 20 

examines the influence of the semi-major axis 

(aaa) on LbL_bLb. As the semi-major axis 

decreases from 0.90 to 0.60, both ρLb and Lb 

show a minimal decrease. The angular 

velocities Ωξξ
𝑜  and Ωηη

𝑜   decrease substantially 

with a decrease in the semi-major axis, 

especially Ωξξ
𝑜 , which decreases significantly as 

the semi-major axis becomes smaller. 

Table 21: Effect of Oblateness of the Smaller 

Primary on L3 for A1 = 0.02, Mb = 0.01, 

T=0.01T = 0.01, a = 0.90, and e=0.25.  Table 

21 investigates the effect of the oblateness of 

the smaller primary on L3. As A2 increases, 

both ρL3 exhibit a small but steady increase. 

This suggests that the oblateness of the smaller 

primary has a moderate effect on the size of L3

. The angular velocities Ωξξ
𝑜  and Ωηη

𝑜   also show 

a slight increase with increasing A2, though the 

effect is not as pronounced. Table 22: Effect of 

Belt on L3  for A1 = 0.01, A2 = 0.02, T=0.01,  a 

= 0.90 , and e=0.3. Table 22 analyzes the 

impact of the belt mass (Mb) on L3.  As Mb 

increases, both ρL3 and L3 show a clear 

increase. This suggests that a higher belt mass 

leads to an increase in the size of L3. The 

angular velocities Ωηη
𝑜   show small fluctuations 

as Mb increases, with Ωξξ
𝑜    remaining largely 

unaffected and Ωξξ
𝑜  and Ωηη

𝑜   displaying a slight 

increase as the belt mass increases. In 

summary, the data in Tables 16 to 22 show that 

the parameters Lb_ and L3 are influenced by 

several factors, including the mass of the belt, 

the oblateness of the primaries, eccentricity, 

and the semi-major axis. In general, the 

increase in belt mass leads to an increase in 

both Lb and L3, while other factors such as 

eccentricity and oblateness have varying 

effects, generally resulting in minor to 

moderate changes in these values. 
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Table 16: Effect of belt on Lb  for A1=0.01, A2=0.02, T=0.01, a=0.90 and e = 0.3 
 

 

Table 17: Effect of oblateness of the smaller primary on Lb for A1=0.02, Mb=0.01, T=0.01, 

a=0.90 and   e = 0.25 
 
 

A2 𝝆𝑳𝒃 𝑳𝒃 𝛀𝝃𝛏
𝟎  𝛀𝜼𝜼

𝟎  𝛀𝝃𝛏
𝟎 𝛀𝜼𝜼

𝟎  

0.0002 0.683741 -0.033741 381.957 -206.91 -79030.8 

0.002 0.68375 -0.033750 380.874 -206.294 -78571.9 

0.02 0.683839 -0.033839 370.344 -200.311 -74184.2 

0.1 0.684242 -0.034242 328.875 -176.767 -58134.4 

0.2 0.684757 -0.034757 286.883 -152.971 -43884.8 
 

Table 18: Effect of oblateness of the bigger primary on Lb for A2=0.02, Mb=0.01, T=0.01, 

a=0.85 and   e = 0.3 
 

A1 𝝆𝑳𝒃 𝑳𝒃 𝛀𝝃𝛏
𝟎  𝛀𝜼𝜼

𝟎  𝛀𝝃𝛏
𝟎 𝛀𝜼𝜼

𝟎  

0.0001 0.688921 -0.038921 244.415 -131.268 -32083.9 

0.001 0.688637 -0.038637 248.996 -133.696 -33289.9 

0.01 0.686117 -0.036117 294.167 -158.089 -46504.8 

0.1 0.673703 -0.023703 701.366 -420.000 -294574 

0.2 0.667697 -0.017697 1045.40 -750.655 -784735 

 

Table 19: Effect of eccentricity on Lb for A1=0.01, A2=0.02, T=0.01, a=0.85 and Mb = 0.01 
 

  e 𝝆𝑳𝒃 𝑳𝒃 𝛀𝝃𝛏
𝟎  𝛀𝜼𝜼

𝟎  𝛀𝝃𝛏
𝟎 𝛀𝜼𝜼

𝟎  

0.10 0.686129 -0.036129 312.866 -168.293 -52653.1 

0.15 0.686127 -0.036127 309.569 -166.496 -51542.0 

0.20 0.686125 -0.036125 305.187 -164.105 -50082.5 

0.25 0.686121 -0.036121 299.978 -161.264 -48375.6 

0.30 0.686117 -0.036117 294.167 -158.089 -46504.8 

0.35 0.686111 -0.036111 288.069 -154.757 -44580.6 

0.40 0.686105 -0.036105 281.942 -151.401 -42686.2 
 

Table 20: Effect of semi- major axis on Lb for A1=0.01, A2=0.02, Mb=0.01, T=0.01 and e = 0.3 

 

a 𝝆𝑳𝒃 𝑳𝟐 𝛀𝝃𝛏
𝟎  𝛀𝜼𝜼

𝟎  𝛀𝝃𝛏
𝟎 𝛀𝜼𝜼

𝟎  

0.90 0.686124 -0.036124 311.281 -167.372 -52099.6 

Mb 𝝆𝑳𝒃 𝑳𝒃 𝛀𝝃𝛏
𝟎  𝛀𝜼𝜼

𝟎  𝛀𝝃𝛏
𝟎 𝛀𝜼𝜼

𝟎  

0.01 0.686124 -0.036124 311.281 -167.372 -52099.6 

0.1 0.742462 -0.092462 234.970 -111.653 -26235.1 

0.2 0.765962 -0.115962 228.642 -105.790 -24188.1 

0.3 0.780691 -0.130691 225.687 -102.548 -23143.7 

0.4 0.791414 -0.141414 223.456 -100.071 -22361.5 

0.5 0.799813 -0.149813 221.565 -98.0087 -21715.3 
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0.85 0.686117 -0.036117 294.167 -158.089 -46504.8 

0.80 0.686108 -0.036108 277.072 -148.820 -41233.7 

0.75 0.686099 -0.036099 259.959 -139.537 -36274.2 

0.70 0.686089 -0.036089 242.841 -130.253 -31630.7 

0.65 0.686077 -0.036077 225.73 -120.972 -27307.1 

0.60 0.686063 -0.036063 208.619 -111.692 -23301.1 

 

Table 21: Effect of oblateness of the smaller primary on L3 for A1=0.02, Mb=0.01, T=0.01, 

a=0.90 and  e = 0.25 

 

A2 𝝆𝑳𝟑 𝑳𝟑 𝛀𝝃𝛏
𝟎  𝛀𝜼𝜼

𝟎  𝛀𝝃𝛏
𝟎 𝛀𝜼𝜼

𝟎  

0.0002 0.263321 -1.08668 4.07243 -0.414368 -1.68749 

0.002 0.263946 -1.08605 4.07356 -0.414749 -1.68951 

0.02 0.270090 -1.07991 4.08482 -0.418520 -1.70958 

0.1 0.295199 -1.05480 4.13293 -0.434472 -1.79564 

0.2 0.322383 -1.02762 4.18912 -0.452782 -1.89675 

 

Table 22: Effect of belt on L3 for A1=0.01, A2=0.02, T=0.01, a=0.90 and e = 0.3 

 

 

As shown in Table 23, a decrease in the semi-

major axis aaa from 0.90 to 0.60 leads to an 

increase in the distance ρL3, indicating that the 

libration point L3 shifts away from the system's 

barycenter. Concurrently, the x-coordinate of 

L3 becomes less negative, suggesting a shift 

toward the origin. The radial curvature of the 

potential, represented by Ωξξ
𝑜   increases with 

decreasing a, while the transverse curvature 

Ωηη
𝑜  becomes more negative. This divergence 

results in a more negative product Ωξξ
𝑜 Ωηη

𝑜 , 

reflecting increased instability at L3. These 

results imply that a shorter orbital path, 

corresponding to a smaller semi-major axis, 

exacerbates the disparity in potential curvature 

and leads to greater dynamical instability at the 

libration point. 

In Table 24, the effect of varying orbital 

eccentricity eee from 0.10 to 0.40 is presented. 

As e increases, the value of ρL3 also increases, 

showing that L3 moves farther away from the 

barycenter. The coordinate L3 becomes less 

negative, again indicating a drift toward the 

central mass. The parameter Ωξξ
𝑜  increases with 

increasing eccentricity, while Ωηη
𝑜  becomes 

increasingly negative. Consequently, the 

product Ωξξ
𝑜 Ωηη

𝑜  becomes more negative, 

further confirming that greater orbital 

eccentricity enhances the instability of L3. This 

suggests that higher orbital eccentricity 

introduces more asymmetry in the force 

Mb 𝝆𝑳𝟑 𝑳𝟑 𝛀𝝃𝛏
𝟎  𝛀𝜼𝜼

𝟎  𝛀𝝃𝛏
𝟎 𝛀𝜼𝜼

𝟎  

0.01 0.282937 -1.06706 4.09109 -0.432326 -1.76868 

0.1 0.316156 -1.03384 4.10160 -0.435122 -1.78470 

0.2 0.345076 -1.00492 4.10661 -0.435455 -1.78824 

0.3 0.368284 -0.98172 4.10698 -0.433912 -1.78207 

0.4 0.387447 -0.96255 4.10420 -0.431147 -1.76951 

0.5 0.403621 -0.94638 4.09900 -0.427572 -1.75273 
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distribution around L3, leading to reduced 

stability. 

Table 25 explores the effect of the oblateness 

of the bigger primary body, represented by A1, 

on the location and stability of L3. As A1 

increases from 0.0001 to 0.2, the value of ρL3 

decreases, indicating that the libration point 

shifts closer to the barycenter. Simultaneously, 

the x-coordinate of L3 becomes more negative, 

signifying a shift toward the larger primary. 

The radial curvature Ωξξ
𝑜   shows a substantial 

increase, while the transverse curvature and 

Ωηη
𝑜  becomes slightly less negative. The 

product and Ωηη
𝑜  becomes increasingly 

negative with higher oblateness, suggesting 

that the perturbing influence of the larger 

primary's shape intensifies the instability of the 

libration point. This indicates that greater 

oblateness amplifies the perturbative forces 

acting on the system, drawing L3 closer to the 

larger mass and enhancing its dynamical 

instability. 

Taken together, the results from Tables 23 to 

25 confirm that the position and stability of the 

collinear libration point L3 are highly sensitive 

to variations in semi-major axis, eccentricity, 

and the oblateness of the larger primary. In all 

scenarios, L3 remains an unstable equilibrium 

point, as evidenced by the consistently negative 

values of Ωηη
𝑜  and the increasingly negative 

product Ωξξ
𝑜 Ωηη

𝑜 . These findings are important 

for understanding the dynamic environment 

around L3 and for assessing its suitability for 

potential applications such as spacecraft 

positioning. 

 

Table 23: Effect of semi- major axis on L3 for A1=0.01, A2=0.02, Mb=0.01, T=0.01 and e = 0.3 

 

a 𝝆𝑳𝟑 𝑳𝟑 𝛀𝝃𝛏
𝟎  𝛀𝜼𝜼

𝟎  𝛀𝝃𝛏
𝟎 𝛀𝜼𝜼

𝟎  

0.90 0.282937 -1.067060 4.09109 -0.432326 -1.76868 

0.85 0.298399 -1.051600 4.11907 -0.444185 -1.82963 

0.80 0.314440 -1.035560 4.14960 -0.457063 -1.89663 

0.75 0.331121 -1.018880 4.18310 -0.471116 -1.97073 

0.70 0.348510 -1.001490 4.22008 -0.486540 -2.05324 

0.65 0.366690 -1.983310 4.26118 -0.503577 -2.14583 

0.60 0.385762 -0.964238 4.30726 -0.522540 -2.25071 

 

Table 24: Effect of eccentricity on L3 for A1=0.01, A2=0.02, T=0.01, a=0.85 and Mb = 0.01 

 

e 𝝆𝑳𝟑 𝑳𝟑 𝛀𝝃𝛏
𝟎  𝛀𝜼𝜼

𝟎  𝛀𝝃𝛏
𝟎 𝛀𝜼𝜼

𝟎  

0.10 0.269788 -1.08021 3.90048 -0.405206 -1.58050 

0.15 0.274538 -1.07546 3.93317 -0.411124 -1.61702 

0.20 0.281005 -1.06900 3.97980 -0.419509 -1.66957 

0.25 0.289023 -1.06098 4.04133 -0.430475 -1.73969 

0.30 0.298399 -1.05160 4.11907 -0.444185 -1.82963 

0.35 0.308927 -1.04107 4.21488 -0.460873 -1.94253 

0.40 0.320396 -1.02960 4.33127 -0.480865 -2.08276 

 

Table 25: Effect of oblateness of the bigger primary on L3 for A2=0.02, Mb=0.01, T=0.01, 

a=0.85 and  e = 0.3 
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A1 𝝆𝑳𝟑 𝑳𝟑 𝛀𝝃𝛏
𝟎  𝛀𝜼𝜼

𝟎  𝛀𝝃𝛏
𝟎 𝛀𝜼𝜼

𝟎  

0.0001 0.302401 -1.04760 4.03717 -0.445160 -1.79718 

0.001 0.302024 -1.04798 4.04489 -0.445066 -1.80024 

0.01 0.298399 -1.05160 4.11907 -0.444185 -1.82963 

0.1 0.271999 -1.07800 4.65725 -0.438893 -2.04403 

0.2 0.254059 -1.09594 5.02791 -0.436500 -2.19480 

 

As e increases, the location ρL2  gradually 

increases while L2 decreases, signifying a small 

yet consistent outward drift. The decreasing 

product of Ωξξ
𝑜  a Ωηη

𝑜  indicates a reduction in 

instability, highlighting the stabilizing effect of 

higher eccentricity in this model configuration. 

Furthermore, as illustrated in Tables 10 to 14, 

varying the oblateness coefficients and the semi-

major axis causes distinct changes in the 

second-order derivatives and the effective 

potential, which further contribute to the 

stability of the system. These effects underscore 

the intricate interplay between various 

parameters in determining the overall stability 

of the libration points in the restricted three-

body system, and thus have important 

implications for celestial mechanics and orbital 

dynamics in systems with similar 

configurations. The findings presented in Tables 

8 to 14 highlight that perturbations from various 

sources (such as increased belt mass, 

eccentricity, and oblateness) have a profound 

impact on the position and stability of the 

libration points, with clear trends of 

destabilization for extreme values of these 

parameters. The sensitivity of the system to 

these perturbations must be considered for 

practical applications in celestial navigation, 

satellite placement, and understanding the 

dynamics of multi-body systems. 

The four subplots in the provided figure visually 

present how the position of collinear Lagrangian 

points L1, L2, and L3 responds to variations in 

three key system parameters: eccentricity eee, 

oblateness A1, and semi-major axis aaa. The 

horizontal axis in all plots denotes the x-

coordinate ξ\xiξ of the collinear points, while 

the vertical axes represent the changing 

parameters under study. Each Lagrange point is 

marked using a distinct color and symbol for 

clarity: blue circles for L1, red stars for L2, 

yellow circles for L3, and green circles for L2 in 

some plots (possibly redundant labeling of L2, 

unless it refers to the retrograde motion or 

another configuration). 

Fig. 1a shows how the x-coordinate ξ\xiξ of 

each Lagrange point shifts as the eccentricity 

eee increases from 0.10 to 0.45. The points shift 

rightward on the x-axis, indicating an outward 

movement from the barycenter for all three 

collinear points. The trend is most pronounced 

for L (yellow), which moves significantly with 

increasing eccentricity. This observation is 

consistent with Table 24, which shows that ρL3 

increases and the x-coordinate of L3 becomes 

less negative with increasing e, indicating that 

the point shifts farther from the barycenter. The 

effect of increasing oblateness A1 from 0.0001 

to 0.20 on the x-position of collinear points is 

illustrated in Fig. 1b 
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As A11 increases, L3 (yellow) clearly shifts 

leftward (toward the larger primary), as shown 

by a more negative x-coordinate. This is 

consistent with the trend in Table 25, where 

increasing oblateness draws L3 closer to the 

barycenter, with a corresponding decrease in 

ρL3 and more negative x-coordinates. 

Interestingly, L1 and L2 also appear to shift 

slightly, but their movements are more stable 

compared to L3.Here, the vertical axis 

represents the semi-major axis a, ranging from 

0.60 to 0.90. As a decreases, L3 (yellow) moves 

farther from the origin, with its x-coordinate 

becoming less negative. This implies that for 

tighter orbits (smaller a), the collinear point 

shifts outward. This trend matches the data in 

Table 23, where decreasing aaa corresponds to 

increased ρL3 and x-values that approach zero, 

again indicating outward drift of L3. This 

behavior reflects the increased dominance of 

the centrifugal force in more compact orbits. 

This subplot reiterates the impact of A1 on the 

collinear points. The trends match those in the 

top right figure and Table 25. The x-coordinate 

of L3 becomes more negative with increasing 

A1, confirming the tendency of the point to 

 

 

(a)                                                                                                   (b) 

 

Fig. 1 Effects of eccentricity (a) and oblateness (b) on the collinear libration points𝑳𝒊(𝒊 =
𝟏, 𝟐, 𝟑, 𝒂, 𝒃). 

 

   (a)                                                                                   (b) 

Fig. 2: Effects of semi-major axis (a) and oblateness (b) on the collinear libration 

points𝑳𝒊(𝒊 = 𝟏, 𝟐, 𝟑, 𝒂, 𝒃) 
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move closer to the more oblate primary. The 

clear and consistent leftward shift of L3 under 

increasing oblateness emphasizes its sensitivity 

to the shape of the primary mass, a key finding 

also supported numerically in the table. 

Across all four subplots, L3 consistently 

exhibits the most significant positional shifts in 

response to changes in orbital and system 

parameters, confirming its inherently unstable 

nature. This is backed by the tabular results, 

where the product Ωξξ
𝑜 Ωηη

𝑜  becomes 

increasingly negative with changes in aaa, eee, 

and A1, reinforcing the notion of growing 

instability. Visually, the consistent outward or 

inward migration of L3L_3L3 across 

parameters further illustrates the numerical 

trends. 

In contrast, L1 and L2 appear more stable, with 

minor positional changes despite parameter 

variations. This reflects their relatively more 

balanced force environments. In conclusion, 

the visual and tabular data are in strong 

agreement: L3 is most sensitive to changes in 

semi-major axis, eccentricity, and oblateness, 

and consistently displays behavior that aligns 

with increasing dynamical instability. These 

findings have practical implications for 

spacecraft mission planning and modeling of 

perturbed celestial systems. 

 
Fig. 2: Effects of circumbinary disk on the collinear libration points𝑳𝒊(𝒊 = 𝟏, 𝟐, 𝟑, 𝒂, 𝒃) 

Fig. 2 provides similar information to those 

shown in in the Tables.  
 

5.0 Conclusion 
 

The study revealed that the positions and 

stability of the collinear Lagrangian point L3 

are highly sensitive to variations in the semi-

  

(a) (b) 

  

(c) (d) 
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major axis aaa, eccentricity e, and oblateness 

A1 of the primaries. As the semi-major axis 

decreases, the x-coordinate of L3 becomes less 

negative, indicating a shift away from the 

barycenter, which corresponds to an increase in 

distance and instability. Similarly, as the 

eccentricity increases, L3 moves farther away, 

further indicating sensitivity to orbital 

elongation. In contrast, an increase in 

oblateness of the primary leads to a reduction 

in the x-coordinate of L3, drawing it closer to 

the more oblate body and also enhancing its 

instability. The product Ωξξ
𝑜 Ωηη

𝑜 , which serves 

as an indicator of local stability, becomes more 

negative with increasing perturbations in these 

parameters, confirming that L3 is inherently 

unstable under such dynamical conditions. On 

the other hand, L1 and L2 showed minor 

variations in position and remained relatively 

stable in comparison to L3. 

Based on the results, it can be concluded that 

the dynamical behavior of collinear 

equilibrium points in the circular restricted 

three-body problem is significantly affected by 

orbital and physical perturbations, with L3 

being the most sensitive and unstable among 

them. These variations in behavior under 

changing conditions highlight the importance 

of accurate modeling in trajectory planning for 

space missions, especially those involving 

station-keeping near L3 or in systems with 

pronounced oblateness and eccentricity. 

It is recommended that further investigations 

should focus on the combined effects of 

additional perturbative forces such as radiation 

pressure and triaxiality, especially for systems 

with small mass ratios where such forces can 

be more prominent. Future studies should also 

explore non-linear stability analysis using 

Lyapunov exponents and extend the analysis to 

three-dimensional models to gain deeper 

insights into the motion around the collinear 

points. For mission design, it is advisable to 

avoid placing spacecraft at or near L3 in 

systems where significant oblateness or 

eccentricity is present, and instead consider 

alternative configurations or stabilization 

techniques. 
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