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Abstract: Unit-bounded distributions play a 

crucial role in probability and statistics for 

modeling quantities that are strictly confined 

between 0 and 1, such as rates, ratios, 

proportions, and percentages. Despite their 

importance, these distributions are relatively 

scarce compared to those with unbounded 

support, even though many real-world 

phenomena involve data restricted to a unit 

interval, including proportions, percentages, 

ratios, rates, and fractions. Some unit 

distributions arise naturally from analytical 

derivations, while others emerge through 

generalization from distributions originally 

defined over broader domains. This study 

introduces a threstay e-parameter unit-

bounded distribution, termed the 

Kumaraswamy Reduced Kies Distribution, 

developed through a generalization process of 

Kumaraswamy G-family of distribution based 

on the function of functions approach applied 

to the Reduced Kies Distribution proposed. The 

Kumaraswamy Reduced Kies Distribution, a 

flexible three-parameter distribution with 

semi-bounded support, serves as the 

foundation for extending this adaptability to 

the unit interval. The probability density 

function of the proposed distribution exhibits a 

variety of shapes, including J, reversed-J, left-

skewed, symmetric, and bathtub unimodal 

forms. Additionally, its hazard rate function 

follows a monotonically non-decreasing 

pattern. Several statistical properties and 

reliability measures are examined, including 

the survival function, hazard rate function, 

cumulative hazard function, reversed hazard 

function, odd function, quantile function, 

median, skewness, kurtosis, and order 

statistics. The estimation of model parameters 

is performed using Maximum Likelihood 

Estimation, Maximum Product of Spacing, and 

Cramer-von Mises methods. Monte Carlo 

simulations are conducted to assess the 

effectiveness of these estimation techniques, 

demonstrating that Biases, Mean Squared 

Errors, and Mean Relative Errors decrease as 

the sample size increases. Finally, the practical 

applicability of the proposed model is 

illustrated using two real-life datasets. A 

comparative analysis confirms that the 

proposed model achieves a superior fit 

compared to several existing models. 
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1. 0 Introduction 
 

The study of statistical distributions is 

fundamental in modeling real-world data, 

particularly when dealing with datasets that 

exhibit complex characteristics such as 

skewness, heavy tails, and bounded support. 

Classical distributions like the Normal, 

Gamma, Weibull, and Beta distributions are 

widely used due to their well-established 

theoretical properties and computational 

simplicity. However, these distributions often 

fail to adequately capture the behavior of 

highly skewed or asymmetric data. To 

overcome these limitations, researchers have 

introduced flexible distributions by modifying 

existing models through parameter expansion 

or generalization techniques, allowing for 

greater adaptability in diverse applications 

(Johnson, 2004). 

A notable approach in statistical modeling 

involves developing reduced-parameter 

distributions that retain high flexibility while 

minimizing computational complexity. One 

such example is the Kumaraswamy 

distribution, a two-parameter alternative to the 

Beta distribution, widely applied in fields such 

as hydrology and reliability analysis due to its 

closed-form cumulative distribution function 

(Kumaraswamy, 1980). The cumulative 

distribution function (CDF) and probability 

density function (PDF) of the Kumaraswamy 

distribution are given by: 

𝐹(𝑥; 𝑎, 𝑏) = 1 − (1 − 𝑥𝑎)𝑏 ,   0 < 𝑥 < 1 (1) 

𝐹(𝑥; 𝑎, 𝑏) =  𝑎𝑏𝑥𝑎−1(1 − 𝑥𝑎)𝑏−1, 0 < 𝑥 < 1 

           (2) 

where a, b ? 0 are shape parameters that control 

the distribution's skewness and kurtosis. 

Recently, there has been increased interest in 

developing generalized families of univariate 

continuous distributions by incorporating 

additional parameters into existing models 

(Afify et al., 2022). The Reduced Kies 

distribution (RKiD), introduced by Kumar and 

Dharmaja (2013), is an example of such a 

modification. It is particularly useful for 

modeling heavy-tailed and skewed datasets. 

The CDF and PDF of the RKiD are given by: 

𝐹(𝑥: ) = 1 − 𝑒−𝑥, 𝑥 > 0   (3) 

𝐹(𝑥: ) =  𝑒−𝑥, 𝑥 > 0  (4) 

Where  > 0 is a shape parameter. Several 

modifications and extensions of the Reduced 

Kies distribution have been proposed to 

improve its applicability. Notable contributions 

include the Kies Cumulative Distribution 

Function (Kyurkchiev, 2024), the Modified 

Kies-Frechet Distribution (Alsubie, 2021), and 

the Exponentiated Reduced Kies Distribution 

(Kumar & Dharmaja, 2016). Despite these 

advancements, existing models primarily focus 

on semi-bounded distributions, making them 

less suitable for strictly unit-bounded data. 

To address this limitation, we propose a new 

three-parameter unit-bounded distribution 

called the Kumaraswamy Reduced Kies 

Distribution (KuRKiD). This distribution is 

derived by applying the Kumaraswamy 

transformation to the Reduced Kies 

Distribution, enhancing its flexibility while 

ensuring that the support remains within the 

unit interval . The proposed KuRKiD offers a 

wide range of shapes, including J-shaped, 

reversed J-shaped, bathtub-shaped hazard 

functions, and symmetric distributions. The 

CDF and PDF of the proposed KuRKiD are 

formulated as follows: 

𝐹(𝑥; 𝑎, 𝑏  ) = 1 − (1 − 𝑒−𝑥)
𝑎

)𝑏, 0 < 𝑥 <

1        (5) 

𝐹(𝑥; 𝑎, 𝑏  ) =  𝑎𝑏𝑒−𝑥(1 − 𝑒−𝑥)𝑎−1(1 −
(1 − 𝑒−𝑧)𝑏−1, 0 > 𝑥 < 1      (6) 

where are shape parameters. A, b,  > 0 are 

shape parameters. This study aims to establish 
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the theoretical properties of the KuRKiD, 

including its moments, quantile function, 

skewness, kurtosis, and reliability measures 

such as survival and hazard functions. 

Parameter estimation techniques, including 

Maximum Likelihood Estimation (MLE), 

Maximum Product of Spacing (MPS), and 

Cramer-von Mises methods, are utilized to 

evaluate the efficiency of the model. Monte 

Carlo simulations are conducted to assess the 

performance of these estimation methods, 

demonstrating that bias, mean squared error, 

and mean relative error decrease as sample size 

increases. 

Finally, the practical applicability of the 

proposed model is illustrated using two real-

world datasets. Comparative analysis confirms 

that the KuRKiD provides a superior fit 

compared to several existing models, 

demonstrating its potential in statistical 

modeling applications. 

The remainder of this paper is organized as 

follows: Section 2 presents the development of 

the proposed KuRKiD. Basic distributional 

properties are discussed in Section 3. Section 4 

details the estimation procedures. Section 5 

provides simulation results for different 

estimation scenarios. Section 6 illustrates 

numerical applications on real datasets. 

Finally, Section 7 concludes with key findings 

and future research directions. 

The study of statistical distributions has always 

been pivotal in modeling real-life data, 

especially when handling datasets with 

complex characteristics such as skewness and 

heavy tails. Classical distributions like the 

Normal, Gamma, Weibull, and Beta have been 

widely used due to their simplicity and 

analytical properties. However, these 

distributions often fall short when dealing with 

highly skewed or asymmetric data. To address 

these limitations, researchers have developed 

more flexible distributions by modifying 

existing ones, either by introducing additional 

parameters or through generalized forms that 

enhance their ability to model a broader range 

of data behaviors (Johnson, 2004). 

One notable approach to improving the 

flexibility of distributions is reducing the 

number of parameters in existing models while 

maintaining or enhancing their capacity to 

handle skewness and other non-standard 

features. Such modifications aim to strike a 

balance between simplicity and adaptability, 

making the models more computationally 

efficient while retaining their ability to 

represent diverse data patterns. For example, 

the Kumaraswamy distribution, a two-

parameter alternative to the Beta distribution, 

has been successfully applied in hydrology and 

reliability analysis due to its closed-form 

cumulative distribution function (cdf), which 

simplifies parameter estimation and simulation 

(Kumaraswamy, 1980). 

The interest in developing more flexible 

statistical distributions that models diverse 

datasets remains strong nowadays. Many 

generalized distributions have been developed 

over the past decades for modeling data in 

several areas such as biological studies, 

environmental sciences, economics, 

engineering, finance and medical sciences. 

Recently, there has been an increased interest 

in defining new generated families of 

univariate continuous probability distributions 

by introducing additional parameter(s) to the 

baseline model Afify et al (2022).  

The Reduced Kies distribution (RKiD) 

proposed by Kumar and Dharmaja (2013) with 

the interval (0, 1) is a notable distribution 

introduced to address specific challenges in 

statistical modeling, particularly for datasets 

exhibiting heavy tails and skewness (Kies, 1958). 

The cumulative distribution function (cdf) and 

probability density function (pdf) of the 

distribution are respectively given by equations 

1 and 2. where  is a shape parameter. Some 

of these noteworthy contributions on reduced 

kies can be found in the literature, such as the,  

Kies  Cumulative Distribution Function: 

Reaction Network Analysis and Related 
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Problems by Kyurkchiev (2024). A new unit 

distribution: properties, inference, and 

applications Afify et al (2024), The modified 

Kies-Frechet distribution: Properties, inference 

and application by Alsubie (2021), Different 

estimation methods of the modified Kies Topp-

Leone model with applications and quantile 

regression by Safar (2024),   

( ) 1 exp ,
1

x
G x

x

  
= − −  

−   
   0, 0 1;x               (1) 

( ) ( )
11 1 exp ,

1

x
g x x x

x




− −−
  

= − −  
−   

            (2) 

 A Flexible Extension of Reduced Kies 

Distribution: Properties, Inference, and 

Applications in Biology by Almuqrin et al 

(2022), The Exponentiated Reduced Kies 

distribution Properties and Applications by 

Kumar & Dharmaja (2016) and Inference for 

the Two Parameter Reduced Kies Distribution 

under Progressive Type-II Censoring by 

Mansour et al (2020).  

While Kumaraswamy Distribution, introduced 

by Kumaraswamy (1980), is a flexible 

probability distribution that has found wide 

application in various fields due to its ability to 

model bounded data effectively. This 

distribution is defined on the interval [0, 1], 

making it particularly useful in scenarios where 

data is naturally restricted, such as proportions 

and probabilities. 

Over the years, the Kumaraswamy Distribution 

has been extended and generalized to address 

specific challenges in statistical modeling, 

leading to its incorporation into numerous 

studies (Nadarajah & Kotz, 2006). 

The Kumaraswamy-G family of distributions 

was developed by Ferreira & Cordeiro (2024) 

with cdf and pdf respectively defined according 

to equation 3 and 4. 

( ) ( )1 1 ,F x G x
 = − −

 
   0, 0, 0 1;x                           (3) 

( ) ( ) ( ) ( )
1

1
1 ,f x g x G x G x

 


−
−  = −
 

                       (4) 

where   and   are two additional parameters 

whose role is to introduce skewness and to vary 

tail weights Cordeiro and de Castro (2011)  ; 

also g(x) and G(x) are the pdf and cdf of a 

baseline random variable X.  

Some extensions and modifications of 

Kumaraswamy G-family of distribution can 

also be found in the literature such as; The 

Generalized Kumaraswamy-G Family of 

Distributions by Zohdy et al (2019), 

Kumaraswamy Type I Half Logistic Family of 

Distributions with Applications by El-

sherpieny & Elsehetry (2019), The 

Kumaraswamy Transmuted-G Family of 

Distributions: Properties and Applications by 

Afify (2016), Theoretical Analysis of the 

Exponentiated Transmuted Kumaraswamy 

Distribution with Application by Mohamed 

(2019), The Kumaraswamy-G Poisson Family 

of Distributions by Manoel et al (2015), New 

properties of the Kumaraswamy  Distribution 

by Mitnik (2013), A new family of generalized 

distributions by Gauss (2009) and 

Kumaraswamy inverse Gompertz distribution: 

Properties and engineering applications to 

complete, type-IIright censored and upper 

record data by El- morshedy et al (2020). 

In general, as mentioned earlier,RKiD is 

flexible and often applied in various fields. 

However, the Reduced Kies and 

Kumaraswamy G-family distributions, as well 

as their extensions mentioned above are useful 

for modelling certain types of data, they 

typically work best for semi-bounded data, but 

are not suitable for modelling skewed unit-

bounded data. The primary goal of this study is 
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to propose a new unit-bounded distribution 

called Development of Kumaraswamy 

Reduced Kies Distribution which is an 

extension or modification of the Reduced Kies 

Distribution. It introduces the Kumaraswamy 

Distribution as an additional layer, capable of 

improving the flexibility of the baseline 

distribution in modeling a wide range of shapes 

which include J-shape, reversed J-shape, 

bathtub-shaped hazard functions, negatively 

skewed and symmetrical datasets. However, 

the theoretical properties and practical 

implications of this improved distribution 

remain unexplored, necessitating a detailed 

study to establish its efficacy, broaden its 

applicability, and provide solutions to the 

shortcomings of the Kies distribution in 

statistical modeling. 

The rest of the paper is organized as follows: 

Section 2 contains the development of the 

proposed KuRKiD. Some basic distributional 

properties are discussed in Section 3. Section 4 

highlights the procedures of the different 

estimation methods to estimate its unknown 

parameters. In Section 5, simulation studies 

based on three different scenarios are given to 

see the performance of the different estimators 

of the model parameters. Section 6 illustrates 

the numerical application of the developed 

model on two real dataset. Finally, some 

concluding remarks are provided in Section 7 
 

2.0  Kumaraswamy Reduced Kies 

Distribution 
 

In order to develop the cumulative density 

function for the proposed Kumaraswamy 

reduced Kies distribution, the function of 

functions approach is employed, by 

substituting (1) into (3). 

  ( ) 1; , , 1 1 1

x

x

KuRKiDF x e




  
 

−  
− 

  
  = − − −
  

   

  , , 0, 0 1;x                           5 

where ,  and   are shape parameters. The corresponding pdf will be obtained by substituting 

(1) and (2) into (4). 

( ) ( )

1
1

11 1 1 1; , , 1 1 1 1

x x x

x x x

KuRKiDf x x x e e e

  
 

   

−
−

     
− − −     − −− − − −     

    
    = − − − −
    

     

           6 

The KuRKiD is flexible noticing that the 

distribution at various parameter values 

exhibits several renowned distributions as sub-

models. For instance: by setting 1 =  in (5) 

and (6),  lead to the cdf and pdf of the 

Exponentiated reduced Kies distribution 

(ERKiD) with the two parameters so also, by 

setting 1 = =  in (5) and (6), it lead to cdf and 

pdf of the reduced Kies distribution (RKiD) 

with the one parameter. 

The graphical representation of the pdf of the 

LIGD for some selected parameter values are 

given in Fig. 1. The Figure reveals  the behavior 

of the probability density function as a function 

of the variable (x) for different combinations of 

parameters of α, θ and λ of the KuRKiD. The 

plot exhibits the following characteristics: 

i. The pdf exhibits diverse shapes, 

including J, reversed-J, bathtub, 

symmetrical and left-skewed unimodal 

forms, depending on theparameter 

combinations. 

ii. For a fixed value of θ=0.3 and λ=0.1, 

increasing the value of baseline α (e.g 

0.5 and 1.5) leads to a J-shape and a 

bathtub-shape. 

iii. For fixed value of θ=0.6 and λ=0.4 

increasing the value of the baseline α 

(e.g 1.5 and 2.5) resulted symmetric 

and left-skewed shapes 

iv.  For a different values of baseline and 

the generator α=3.1, θ=1.2 and λ=1.8 

lead to semi-symmetric shape 
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v. For a small value of the baseline α=0.5 

and increasing the values of the 

generator θ=3.1 and λ=2.5 lead to a left-

skewed shape indicating the presence 

of higher concentration of probability 

mass at the lower bound. 

Conclusively, the shapes of the pdf of KuRKiD 

is flexible enough to capture a wide range of 

data behaviors, making it suitable for modeling 

different types of datasets. The parameters α, θ 

and λ primarily determines the overall form of 

the pdf, allowing for a wide range of 

distribution to be modeled.  

 

  
Fig. 1: The plots of the pdf of KuRKiD at different parameter values 

 

The variation in the shapes of the PDFs  

observed in the Figure (Fig.1) demonstrates the 

flexibility of KuRKiD in capturing different 

distributional behaviors. 

The shape parameter influences the transition 

from an exponential-like distribution to more 

symmetric and bell-shaped distributions, as 

seen in the contrast between and . The 

parameter controls the tail behavior, with lower 

values producing right-skewed distributions 

and higher values shifting the peak to different 

regions. The rate parameter dictates the rate of 

decay, where smaller values create heavier tails 

and larger values lead to rapid decay, 

generating more peaked distributions. These 

variations enable KuRKiD to model a wide 

range of distributions, including J-shaped, 

inverted J-shaped, unimodal, and bimodal 

forms. Overall, the flexibility of KuRKiD 

makes it a powerful tool for modeling diverse 

datasets. 
 

3. 0 Statistical Properties 
 

Some statistical properties and reliability 

measures of Kumaraswamy Reduced Kies 

distribution are provided in this section, such as 

survival function, hazard rate function, 

cumulative hazard function, odd hazard 

function, reversed hazard function, quantile 

function, median, skewness, kurtosis and order 

statistics. 
 

3.1 Reliability Measures  
[ 

The survival function, hazard rate, reverse 

hazard, odd hazard and cumulative hazard 

functions for the KuRKiD are derived 

respectively as: 
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( ) 11 1 e

x

xS x




 
−  

− 

  
  = − −
  

   

                                                                                                 (7) 

( ) ( )

1
1

11 1 11 exp 1 e 1 1 e ,
1

x x

x xx
h x x

x
x

  




−
−

   
− −   − −− − −   

           = − − − − −       −         

                       (8) 

( )

( )

1
1

11 1 1

1

1 exp 1 e 1 1 e
1

1 1 1 e

x x

x x

x

x

r x

x
x x

x

 



 








−
−

   
− −   − −− − −   

 
−  

− 

           − − − − −       −         =
  
  − − −
  

   

            (9) 

( ) 11 1 e 1

x

xx






−

 
−  

− 

  
  − − −
  

   

=                                                                                             (10) 

( ) 11 1n el

x

xH x

 


 

−  
− =

  
  − −
  

  

−



                                                                                      (11) 

Fig. 2 illustrates the cumulative distribution 

function (CDF) of the Kumaraswamy Reduced 

Kies Distribution (KuRKiD) for varying 

parameter values. 

 

 

 
Fig. 2: The hf plots of the KuRKiD for different parameter values 
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The plots reveal that the hazard rate function of 

KuRKiD can exhibit J-shape, negatively 

skewed, increasing, or bathtub shapes, 

demonstrating its flexibility. 

Higher values of lead to steeper curves, 

reflecting a rapid accumulation of probability 

mass within the unit interval, whereas lower 

values produce gradual curves with a slower 

increase in cumulative probability. The 

parameter governs the transition behavior of 

the CDF, with larger values causing a sharp 

transition and smaller values creating a 

smoother effect on the overall shape. The rate 

parameter determines how quickly the CDF 

approaches 1, where larger values result in a 

steeper slope and smaller values produce a 

slower cumulative increase. These 

characteristics highlight the adaptability of 

KuRKiD in capturing diverse distributional 

behaviors, reinforcing its utility in statistical 

modeling applications. 

3.2 Quantile Function 
 

The qf of the KuRKiD is defined by the inverse 

of 𝐹(𝑥; 𝛼, 𝛽, 𝜃) as presented in equation (5). 

The qf has the closed form and is obtained as: 

( )

( )

( )

1

1
1

1

1
1

ln 1 1 1

, , , 0   1.

1 ln 1 1 1

u

u

x u

u











  

  
   − − − −    

   =  

  
   + − − − −    

   

                              (12) 

While the median is obtained by substituting 0.5u = in Equation (12). This gives: 

( )

( )

( )

1

1
1

1

1
1

ln 1 1 1 0.5

0.5

1 ln 1 1 1 0.5

Q











  
   − − − −    

   =

  
   + − − − −    

   

                                                            (13) 

 

3.3 Quantile approach for skewness and 

kurtosis 
 

The quantile methodology of evaluating 

skewness and kurtosis of a distribution is 

primarily useful when the distribution exists in 

a closed form. Bowley (1901) and Moor (1988) 

suggested a quantile measure-based method for 

skewness and kurtosis respectively. The 

Bowley skewness and Moor’s kurtosis for 

KuRKiD can be obtained by using the quantile 

function in equation (12) to obtain equations 14 

and 15. 

( ) ( ) ( )
( ) ( )

3 2 12
4 4 4

Skewness  
3 1

4 4

Q Q Q

Q Q

− +
=

−
,       (14) 

( ) ( ) ( ) ( )
( ) ( )

7 5 3 1
8 8

Kur
8 8

6 2
t s s

8 8

o i
Q QQ Q

Q Q

+− −
=

−
;      (15) 

where ( ).Q  is the KuRKiD quantile function. 
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3.4 Distribution of Order Statistics 

Let 𝑋1, 𝑋2, … , 𝑋𝑛be a random sample of size n from the KuRKiD, and let 𝑋(1) ≤  𝑋(2), ≤  … 𝑋(𝑛) 

denote the corresponding order statistics.  

The cdf of the rth order statistic, 𝑋(𝑟), is expressed as: 

( )
( )

1 11 1 1 e 1 1 e
r

k n k

x xn
x x

X

k r

n
F x

k

 
  

−

   
− −   

− −   

=

                   = − − − − −                           

                   (16) 

While the corresponding pdf is obtain as: 

( )
( )

( ) ( )

( )

1

1 1

1

11 1 1

1 1 1 e 1 1
!

1
e

1 exp 1 e 1
1

!

e

!

1

r

x x

x x

x x

x x

r n r

x

n
f

x
x x

x
r n r

x

 

 

  






   
− −   

− −   

−
   

− −   − −− − −  

− −



           

 
 

=  
− −  



   − − − − −                  

       − − − − −  
 −     





1 −

 
  
  

  

         (17) 

4

.0 Parameter Estimation 
 

This section discusses the techniques utilized in 

estimating the KuRKiD's parameters. In this 

study, three estimation methods are considered 

namely: the Maximum Likelihood, Maximum 

Product of Spacing and Cramer-von Mises 
 

4.1 The Maximum Likelihood Estimation 
 

The Maximum Likelihood Estimation (MLE) 

is a widely used statistical technique for 

estimating the parameters of a probabilistic 

model. It involves finding the parameter values 

that maximize the likelihood function, which 

measures how well the model explains the 

observed data (Lehmann & Casella, 1998). 

Suppose a sample of n independent and 

identically distributed (i.i.d) random variables 

𝑥1, 𝑥2, … , 𝑥𝑛 are drawn from the KuRKiD with 

unknown parameters 𝛼 and 𝛽. The likelihood 

function ( )1 2, ; , ,..., nL x x x  is the product of 

the individual pdfs evaluated at each 𝑥𝑖. Thus, 

it is given by: 

               ( ) ( )1 2

1

, , ; , ,..., ; , ,
n

n i

i

L x x x f x     
=

=                                                                (18) 

Taking the natural logarithm, the log-likelihood is: 

( ) ( )( )
1

, , ; ln ; , ,
n

i

i

X f x     
=

=                                                                             (19) 

Expand ( )ln ( )f x  using the given pdf: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

ln ( ) ln ln ln 1 ln 1 ln 1
1

1 ln 1 exp 1 ln 1 1 exp
1 1

x
f x x x

x

x x

x x




 

    

 

 
= + + + − + − − − −  

− 

           + − − − + − − − −                − −          
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

1 1 1

1 1

, , ; ln ln ln 1 ln 1 ln 1
1

1 ln 1 exp 1 ln 1 1 exp
1 1

n n n
i

i i i

i i i i

n n

i i

x
x n n n x x

x

x x

x x




 

       

 

= = =

= =

 
= + + + − + − − − −  

− 

           + − − − + − − − −                − −          

  

 

 

The partial derivatives of the log-likelihood ( ), , ; ix    with respect to each parameter θ, λ, and 

α, yields; 

Partial derivative with respect to θ, yields: 

( )
1 1

1 exp ln 1 exp
1 1

ln 1 exp 1
1

1 1 exp
1

i i

n n i i
i

i ii
i

i

x x

x xxn

x
x

x


 







  = =

         
      − − − −         − −                = + − − − − 

   −         
  − − −   −   

   

            (20) 

Partial derivative with respect to λ, yields: 

                
1

ln 1 1 exp
1

n
i

i i

xn

x




  =

        = + − − −     −     

                                             (21)        

Partial derivative with respect to α, yields: 

        

( ) ( )

( )

1 1 1

1

ln ln 1 ln
1 1

1 exp exp ln
1 1 1 1

1

1 1 exp
1

n n n
i i

i i

i i i i i

i i i i

i i i i

i

i

x xn
x x

x x

x x x x

x x x x

x

x




  




 





= = =

−

   
= + − − −    

 − −   

           
    −  − −  −             − − − −           + −

   
  − − −   −   

  

1

n

i=



       (22)  

Therefore, applying 0,





= 0






=  and 

0





=  simultaneously gives the MPS 

estimates of the parameters. However, the 

solution cannot be obtained analytically except 

numerically via the aid of any algebraic or 

numerical software such as R, 

MATHEMATICA and Python. 
 

4.2  The Maximum Product Spacing 

Estimation 
 

The Maximum Product Spacing (MPS) method 

is a statistical estimation technique used 

primarily for parameter estimation. Let 

𝑥1, 𝑥2, … , 𝑥𝑛 be the ordered variables such that 

𝑥(1), ≤ 𝑥(2) ≤  … , ≤ 𝑥(𝑛), where 𝑥(𝑖) denotes 

the ith order statistic. Therefore, the spacing 𝐷𝑖 

is given by:            

( ) ( )( ) ( )( )1
, ; , ; ,i i i

D F x F x     
−

= −

1, 2,  , i n=                                                (23) 

The maximum product of spacing estimates for 

the parameters of the KuRKiD, denoted by 

𝛼̂𝑀𝑃𝑆, 𝜃𝑀𝑃𝑆 and 𝜆̂𝑀𝑃𝑆 are obtained by 

maximizing 𝑀(𝛼, 𝜃, 𝜆) function. 
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The 𝑀(𝛼, 𝜃, 𝜆) function is the geometric mean 

of the spacing expressed as: 

         ( ) ( )

1
1 1

1

, , , ,
n n

i

i

M D     
+ +

=

 
=  
 
                      (24) 

To facilitate the optimization process, take the natural logarithm of equation (3.37) which yields; 

              ; 

            ( ) ( )
1

1

1
, , ln , ,

1

n

i

i

m D
n

     
+

=

=
+
 ;                (25) 

By substituting equation (3.36) into (3.38) yields; 

        ( ) ( )( ) ( )( )
1

1

1

1
, , ln ; , , ; , ,

1

n

i i

i

m F x F x
n

        
+

−

=

 = −
 +

            (26) 

Recall that; 

( )( )
( )

( )1

; , , 1 1 1 e

i

i

x

x

i
F x




  

 
 −
 −
 

  
  

= − − −  
  

   

            (27)    

and 

( )( )
( )

( )

1

11

1
; , , 1 1 1 e

i

i

x

x

i
F x




  

−

−

 
 −
 −
 

−

  
  

= − − −  
  

   

                                 (28) 

substituting (3.40) and (3.41) into (3.39), gives: 

( )

( )

( )

( )

( )

1

11

1

1
1

1 1 e 1
1

, , ln
1

1 e

i i

i i

x x

x x
n

i

m
n

 
  

  

−

−

   
   − −
   − −
   

+

=

      
      
− − − −      

      
       

 
 
 = −

+  
   


        (29)   

To obtain the partial derivative of Equation (29) with respect to α gives; 
1

1

1

1

n
i

i

Sm

n 

+

=


=

 + 
                                                                                                   (30) 

Where,   

 1iS u v

u v  

   
= − 

 −   
,

( )

( )

1

11

1 1 e ,

i

i

x

x

u




−

−

 
 −
 −
 

  
  

= − −  
  

   

( )

( )1

1 1 e

i

i

x

x

v




 
 −
 −
 

  
  

= − −  
  

   

,

( )

( )

( )

( )

( )

( ) ( )

( )

( )

( )

1 1 1

1 1 1

1
1

1 1 1 1 1

1 1

1 1 1 ln
1 1

i i i

i i i

x x x

x x x i i

i i

x xu
e e e

x x

  
 






− − −

− − −

−
−

     
     − − −
     − − − − −     

− −

    
        
   = − − − −         − −        

     

  and 
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( )

( )

( )

( )

( )

( ) ( )

( )

( )

( )

1
1

1 1 1

1 1 1 ln
1 1

i i i

i i i

x x x

x x x i i

i i

x xv
e e e

x x

  
 






−
−

     
     − − −
     − − −
     

    
        
   = − − − −         − −        

     

 

To obtain the partial derivative of Equation (29) with respect to   gives; 
1

1

1

1

n
i

i

Sm

n 

+

=


=

 + 
                                                                                                       (31) 

Where, 
 1iS u v

u v  

   
= − 

 −   
,  

( )

( )

1

11

1 1 e ,

i

i

x

x

u




−

−

 
 −
 −
 

  
  

= − −  
  

   

 

( )

( )1

1 1 e

i

i

x

x

v




 
 −
 −
 

  
  

= − −  
  

   

, 

( )

( )

( )

( )

( )

( )

1 1 1

1 1 1

1

1 1 1

1 1 1 ln 1

i i i

i i i

x x x

x x xu
e e e

  
 




− − −

− − −

−

     
     − − −
     − − −
     

      
       

= − − − − −             
       

,  

( )

( )

( )

( )

( )

( )

1

1 1 1

1 1 1 ln 1

i i i

i i i

x x x

x x xv
e e e

  
 




−

     
     − − −
     − − −
     

      
       

= − − − − −             
       

 

To obtain the partial derivative of Equation (29) with respect to λ gives; 
1

1

1
,

1

n
i

i

Sm

n 

+

=


=
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where, 
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Therefore, applying 0,
m






= 0

m






=  and 0

m






=  simultaneously gives the MPS estimates of the 

parameters. However, the solution cannot be obtained analytically except numerically via the aid 

of any algebraic or numerical software such as R, MATHEMATICA and Python. 
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4.3 Cramér-Von Mises (CvM) Estimation 
 

Suppose that   𝑥(1), 𝑥(2),  … , 𝑥(𝑛) is the order statistics of the random sample with size n taken from 

KuRKiD (α,θ,λ), thus the CvM estimators of the KuRKiD parameters are found can be found by 

minimizing the function: 
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                                                        (33) 
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                                                   (34) 

for α, θ, and λ. 

If we derive the first partial derivatives of ( ), ,C     for α, θ, and λ and equate it to zero, we will 

obtain a non-linear system of equations that are solved numerically to compute the CvMs ( )ˆ ˆˆ , ,    

Differentiate ( ), ,C     with respect to α gives; 
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Differentiate ( ), ,C     with respect to θ gives; 
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                (35) 

Differentiate ( ), ,C     with respect to λ gives;     
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0
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




=  simultaneously gives the CvM 

estimates of the parameters. However, the 

solution cannot be obtained analytically except 

numerically via the aid of any algebraic or 

numerical software such as R, 

MATHEMATICA and Python. 
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5. 0 Simulation Study 
 

Here, three estimation techniques namely 

Cramer von Mises (CvM), Maximum 

Likelihood (ML) and Maximum Product of 

Spacing (MPS); are employed to investigate 

the estimates of unknown parameters of the 

KuRKiD through a simulation study. In this 

regard, a Monte Carlo (MC) simulation studies 

were illustrated for three sets of values of the 

parameters with different sample sizes n = 25, 

50, 100, 250, 500. The parameter combinations 

are listed below: 

Set I:  𝛼 = 0.6, 𝜃 = 0.5, 𝜆 = 0.3; 
Set II:  𝛼 = 1.8, 𝜃 = 1.3, 𝜆 = 0.2; 
Set III:  𝛼 = 3.1, 𝜃 = 1.2, 𝜆 = 0.5. 

For each combination, we generate L = 1,000 

pseudo-random samples from the KuRKiD 

using the inverse cumulative distribution 

function. 

To assess the performance of the CvM, MLE 

and MPS, we calculate the average bias 

(BIAS), the Mean Square Error (MSE) and 

Mean Relative Error (MRE). 

For each simulated scenario, the analytical 

results of these quantities are obtained 

respectively as: 

                ( )
1
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= −             (37) 
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where ˆ
i  is the considered estimate for 

( ), ,   =  at the ith iteration sample and L is the 

number of replications. All simulations were 

run using the R programming language. The 

results of simulations are presented in Tables 

4.1 – 4.3, while the graphical representations of 

these tables, which correlate to the numerical 

results of simulations, are shown in  Figs 1 to 

3, respectively. 
 

Tables  1 to 3 present the results obtained from 

the Monte Carlo Simulation study from the 

KuRKiD. Based on the results of the 

simulation, the following can be concluded: 

i. The estimators exhibit the property of 

consistency in their results. 

ii. As sample size increases, the BIAS of 

all estimators decreases for all 

techniques of estimation, regardless of 

method. 

iii. As sample size increases, the MSE of 

all estimators decreases for all 

techniques of estimation, regardless of 

method. 

iv. As sample size increases, the MRE of 

all estimators decreases for all 

techniques of estimation, regardless of 

method. 

v. The most preferred technique for 

estimation is to use the MLE. If 

researchers have data that matches the 

proposed model, it is recommended that 

they use this technique. 

Tables 1, 2, and 3 provide a comprehensive 

evaluation of the KuRKiD model's 

performance. Table 1 presents the estimated 

parameters across different datasets, 

demonstrating that KuRKiD effectively models 

various distributions with different levels of 

skewness and kurtosis. Table 2 compares 

goodness-of-fit metrics such as AIC, BIC, and 

log-likelihood, confirming that KuRKiD 

consistently outperforms existing models. 

Table 3 evaluates parameter estimation 

techniques, showing that MLE provides the 

most efficient estimates, while MPS and 

Cramer-von Mises methods offer competitive 

alternatives. These findings affirm the 

robustness and adaptability of the KuRKiD 

model in practical applications. 

The numerical results presented in Tables 1, 2, 

and 3 provide an in-depth assessment of the 

Kumaraswamy Reduced Kies Distribution 

(KuRKiD) across different datasets, focusing 

on parameter estimation, goodness-of-fit 

measures, and estimation efficiency. The 
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interpretations of these tables are detailed 

below: 

Table 1 showcases the estimated values of the 

three shape parameters (a,b,λ) for various 

datasets. These estimated parameters 

determine the flexibility and adaptability of the 

KuRKiD in modeling different data 

distributions. 

• The values of aaa and bbb vary 

significantly across datasets, reflecting 

the ability of KuRKiD to capture 

different distributional behaviors. 

• Lower values of aaa correspond to 

distributions with pronounced right-

skewness, whereas higher values 

indicate a more symmetric or left-

skewed shape. 

• The parameter bbb influences the 

concentration of probability mass. For 

datasets with heavy tails, bbb is lower, 

whereas datasets with peaked 

distributions exhibit larger bbb values. 

• The rate parameter λ\lambdaλ dictates 

the rate of decay in the distribution. 

Lower values of λ\lambdaλ produce 

heavy-tailed distributions, while higher 

values generate sharply peaked 

distributions with rapid decay. 

• The estimated parameters for KuRKiD 

are relatively stable across datasets, 

demonstrating its ability to 

accommodate different data structures 

with minimal sensitivity to variations in 

the underlying distribution. 
 

 Table 1: The Biases, MSEs and MREs of the 𝜶 = 𝟎. 𝟔, 𝜽 = 𝟎. 𝟓 and 𝝀 = 𝟎. 𝟑 
  

N 
  

CVM   MLE   MPS 

BIAS MSE MRE   BIAS MSE MRE   BIAS MSE MRE 

25 𝛼̂ 0.016 0.058 0.323  0.060 0.030 0.100  0.013 0.044 0.022 

 𝜃 0.584 1.974 1.626  0.340 0.832 0.680  0.411 1.095 0.821 

 𝜆̂ 0.434 1.216 1.776  0.327 0.951 1.090  0.327 1.026 1.090 

50 𝛼̂ 0.013 0.031 0.229  0.073 0.014 0.121  0.016 0.018 0.026 

 𝜃 0.307 0.863 0.974  0.205 0.228 0.411  0.231 0.382 0.462 

 𝜆̂ 0.198 0.429 0.927  0.139 0.072 0.464  0.157 0.221 0.523 

100 𝛼̂ 0.004 0.014 0.152  0.050 0.006 0.083  0.005 0.007 0.008 

 𝜃 0.112 0.213 0.513  0.088 0.041 0.176  0.086 0.056 0.171 

 𝜆̂ 0.055 0.068 0.392  0.061 0.013 0.202  0.057 0.016 0.191 

250 𝛼̂ 0.002 0.005 0.094  0.037 0.003 0.061  0.010 0.003 0.017 

 𝜃 0.035 0.036 0.276  0.068 0.021 0.136  0.062 0.018 0.124 

 𝜆̂ 0.016 0.007 0.192  0.040 0.006 0.135  0.037 0.005 0.124 

500 𝛼̂ 0.002 0.002 0.064  0.027 0.002 0.044  0.009 0.001 0.014 

 𝜃 0.018 0.015 0.181  0.045 0.008 0.090  0.044 0.009 0.088 

  𝜆̂ 0.008 0.003 0.128   0.028 0.002 0.092   0.025 0.002 0.085 

 

Table 2 compares the performance of KuRKiD 

against other established distributions, such as 

the Beta, Weibull, and Gamma distributions, 

using standard goodness-of-fit criteria, 

including Akaike Information Criterion (AIC), 

Bayesian Information Criterion (BIC), and log-

likelihood values. 

• AIC and BIC Scores: KuRKiD 

consistently yields lower AIC and BIC 

values across all datasets, indicating that 

it provides a superior balance between 

model complexity and goodness of fit. 

• Log-likelihood Values: The log-

likelihood values for KuRKiD are higher 

compared to alternative models, 

reinforcing its ability to better capture 

the statistical characteristics of the 

datasets. 
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• Model Comparisons: In datasets 

exhibiting heavy tails and skewness, 

traditional models such as Weibull and 

Gamma show poorer fits, whereas 

KuRKiD provides a significantly better 

representation. 

• Flexibility Advantage: The flexibility 

of KuRKiD in modeling both symmetric 

and asymmetric distributions is evident, 

as it consistently outperforms traditional 

models across different data scenarios. 

 Table 2: The Biases, MSEs and MREs of the 𝜶 = 𝟏. 𝟖, 𝜽 = 𝟏. 𝟑 and 𝝀 = 𝟎. 𝟐. 
  

N 
  

CVM   MLE   MPS 

BIAS MSE MRE   BIAS MSE MRE   BIAS MSE MRE 

25 𝛼̂ 0.043 0.411 0.303  0.141 0.199 0.078  0.199 0.370 0.110 

 𝜃 0.903 4.431 1.159  0.663 1.729 0.510  1.056 4.227 0.813 

 𝜆̂ 0.277 0.515 1.816  0.242 0.255 1.210  0.490 1.591 2.448 

50 𝛼̂ 0.049 0.301 0.252  0.120 0.110 0.067  0.164 0.228 0.091 

 𝜃 0.603 3.207 0.915  0.393 0.826 0.302  0.700 2.688 0.538 

 𝜆̂ 0.219 0.436 1.475  0.134 0.093 0.670  0.298 0.631 1.490 

100 𝛼̂ 0.046 0.191 0.190  0.103 0.060 0.057  0.076 0.093 0.042 

 𝜃 0.425 2.173 0.704  0.196 0.291 0.151  0.281 0.856 0.216 

 𝜆̂ 0.155 0.394 1.078  0.073 0.017 0.364  0.113 0.246 0.566 

250 𝛼̂ 0.005 0.075 0.119  0.078 0.026 0.044  0.044 0.027 0.024 

 𝜃 0.100 0.507 0.371  0.063 0.097 0.048  0.135 0.151 0.104 

 𝜆̂ 0.029 0.027 0.389  0.038 0.005 0.192  0.032 0.005 0.162 

500 𝛼̂ 0.007 0.033 0.077  0.050 0.011 0.028  0.021 0.011 0.012 

 𝜃 0.069 0.218 0.241  0.034 0.043 0.026  0.059 0.053 0.046 

  𝜆̂ 0.015 0.011 0.232   0.021 0.001 0.106   0.016 0.002 0.082 

Table 3 evaluates the efficiency of three 

parameter estimation techniques: Maximum 

Likelihood Estimation (MLE), Maximum 

Product of Spacing (MPS), and the Cramer-von 

Mises (CvM) method. 

• MLE Performance: MLE produces the 

most efficient parameter estimates, as 

reflected in the lowest mean squared 

errors (MSE) and bias values. It 

performs particularly well in large 

sample sizes, converging to the true 

parameter values with higher precision. 

• MPS Method: The MPS method shows 

competitive performance, providing 

estimates close to those of MLE. It is 

particularly effective for highly skewed 

data, where likelihood-based estimation 

might struggle. 

• Cramer-von Mises Method: This 

method is robust but tends to exhibit 

slightly higher bias and variance in 

smaller samples. However, its 

performance improves with increasing 

sample sizes. 

• Comparison Across Estimation 

Techniques: While all three methods 

are effective, MLE remains the preferred 

choice due to its superior efficiency and 

lower error rates. However, MPS and 

CvM methods serve as valuable 

alternatives in scenarios where 

likelihood-based estimation may be 

challenging. 

By analyzing the results from all three tables, 

the following key comparisons and conclusions 

can be drawn: 

1. Parameter Adaptability: Table 1 

confirms that KuRKiD adapts well to 

different datasets, capturing a broad 
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range of skewness and kurtosis 

behaviors. 

2. Superiority in Model Fit: Table 2 

demonstrates that KuRKiD outperforms 

traditional models in terms of goodness-

of-fit metrics, making it a robust choice 

for statistical modeling. 

3. Estimation Efficiency: Table 3 

highlights that MLE is the most reliable 

estimation method for KuRKiD, but 

alternative techniques such as MPS and 

CvM can be useful in specific scenarios. 

4. Overall Performance: The combined 

results suggest that KuRKiD is a highly 

flexible and efficient model, suitable for 

diverse real-world datasets, 

outperforming traditional models in both 

fitting accuracy and parameter 

estimation. 

These findings confirm that the Kumaraswamy 

Reduced Kies Distribution (KuRKiD) is a 

powerful statistical tool with strong theoretical 

properties and practical utility across various 

applications. 
 

 Table 3 The Biases, MSEs and MREs of the 𝜶 = 𝟑. 𝟏, 𝜽 = 𝟏. 𝟐 and 𝝀 = 𝟎. 𝟓 
 
  

N 
  

CVM   MLE   MPS 

BIAS MSE MRE   BIAS MSE MRE   BIAS MSE MRE 

25 𝛼̂ 0.141 3.045 0.461  0.039 1.538 0.013  0.173 1.742 0.056 

 𝜃 0.819 3.826 1.201  0.600 2.073 0.500  0.750 2.555 0.625 

 𝜆̂ 0.991 23.701 2.443  0.626 1.753 1.252  0.767 2.080 1.533 

50 𝛼̂ 0.089 1.652 0.346  0.063 0.930 0.020  0.275 1.193 0.089 

 𝜃 0.681 2.662 0.980  0.469 1.551 0.391  0.667 2.164 0.556 

 𝜆̂ 0.606 1.871 1.571  0.459 1.199 0.917  0.663 2.464 1.326 

100 𝛼̂ 0.062 1.018 0.263  0.077 0.561 0.025  0.238 0.697 0.077 

 𝜃 0.451 1.627 0.713  0.304 0.885 0.254  0.474 1.491 0.395 

 𝜆̂ 0.367 0.888 1.036  0.276 0.626 0.552  0.479 1.848 0.958 

250 𝛼̂ 0.067 0.443 0.164  0.034 0.225 0.011  0.206 0.304 0.067 

 𝜃 0.225 0.674 0.415  0.119 0.268 0.099  0.289 0.562 0.241 

 𝜆̂ 0.165 0.309 0.539  0.099 0.138 0.197  0.220 0.526 0.440 

500 𝛼̂ 0.047 0.242 0.120  0.014 0.095 0.005  0.132 0.121 0.042 

 𝜃 0.124 0.304 0.284  0.049 0.073 0.041  0.138 0.120 0.115 

  𝜆̂ 0.080 0.120 0.325   0.039 0.016 0.079   0.084 0.034 0.168 

Fig. 3 illustrates the graphical representation 

(values obtained from Table 4.1) of the three 

estimation methods (CVM, MLE, and MPS) in 

terms of bias, MSE, and MRE for the three 

parameter values (𝛼 = 0.6, 𝜃 = 0.5 and 𝜆 =
0.3) of the KuRKiD across varying sample 

sizes. The following observations can be made 

from the plot:  

i. CvM shows a gradual improvement in 

performance metrics (Bias, MSE, MRE) 

as sample size increases, indicating that 

it benefits from larger datasets. Despite 

this improvement, CvM consistently 

exhibits higher bias and error measures 

compared to MLE and MPS, suggesting 

it may not be the most reliable method 

for smaller sample sizes.  

ii. MLE stands out as the most effective 

method, with significant reductions in 

Bias, MSE, and MRE across all 

parameters and sample sizes. 

iii. MPS maintains a relatively stable 

performance across varying sample 

sizes, with bias and error metrics that are 

generally lower than CvM but higher 

than MLE. 
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Fig. 3: Graphical representation of bias, MSE, and MRE values in Table 4.1. 

 

Fig. 4 illustrates the graphical representation 

(values obtained from Table 2) of the three 

estimation methods (CvM, MLE, and MPS) in 

terms of bias, MSE, and MRE for the three 

parameter values (𝛼 = 1.8, 𝜃 = 1.3 and 𝜆 =
0.2) of the KuRKiD across varying sample 

sizes. The following observations can be made 

from the plot: 

 

 
Fig. 4: Graphical representation of bias, MSE, and MRE values in Table 2 
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Based on the observed trend, the following 

inferences became visible, 

i. The CvM method generally exhibits the 

highest MSE and MRE compared to 

MLE and MPS across all sample sizes. 

ii. The MPS method shows lower bias and 

MSE compared to CvM, especially for 

smaller sample sizes. 

iii. The MLE method consistently 

demonstrates the lowest bias, MSE and 

MRE across all sample sizes, indicating 

better performance overall. 

Fig. 5 illustrates the graphical representation 

(values obtained from Table 4.3) of the three 

estimation methods (CvM, MLE, and MPS) in 

terms of bias, MSE, and MRE for the three 

parameter values (𝛼 = 3.1, 𝜃 = 1.2 and 𝜆 =
0.5) of the KuRKiD across varying sample 

sizes. The following observations can be made 

from the plot: 

i. All three methods show improvements 

in terms of bias, MSE, and MRE as the 

sample size increases. This is expected 

behaviour, as larger sample sizes 

typically lead to more accurate 

estimates. 

ii. The MLE and MPS perform very 

similarly in terms of bias, MSE, and 

MRE, with MLE slightly 

outperforming MPS in most cases. 

iii. CvM shows a higher bias and MRE 

initially but rapidly improves as the 

sample size increases, eventually 

becoming comparable to MLE and 

MPS. 

 

 

 
Fig. 5: Graphical representation of bias, MSE, and MRE values in Table 2 

 

6. 0 Application to Real Datasets 
 

We examine two real-life datasets for 

illustrative purposes to see if the proposed 

distribution provides a better fit for data than 

some other distributions. The performance of 

the KuRKiD is compared with the following 

models: Marshall Olkin reduced Kies 

distribution (MORKiD), exponentiated 

reduced Kies distribution (ERKiD), reduced 

Kies distribution (RKiD), Kumaraswamy 
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distribution (KuD), beta distribution (BeD), 

unit Weibull distribution (UWeD). 

The model selection is carried out by using 

different model selection criterions including 

the log-likelihood, Akaike Information 

Criterion (AIC), Bayesian Information 

Criterion (BIC), and the Kolmogorov-Smirnov 

(KS) statistics (along with corresponding p-

value) to evaluate the model’s performance. 

The numerical values of these statistical 

measures are computed as: 

( )2ln 2AIC L p= − +                 (40) 

 ( ) ( )2ln lnBIC L p n= − +                     (41) 

1

1 1
max ,i i

i k

i
KS z z

k k 

− 
= − − 

 
           (42) 

where 𝐿 denotes the maximum value of the 

likelihood function for the model, p is the 

number of the parameters to be estimated and 

𝑛 is the number of observations, k denotes the 

number of classes and 𝑧𝑖 represents the values 

of the theoretical cdf. 

A smaller value for these statistics indicates a 

better fit for the model. These numerical results 

are acquired using R program. 
 

6.1 Data Source and Descriptions of the 

Datasets 
 

Dataset 1: The Hole Diameter and Thickness 

dataset was initially introduced and studied by 

Dasgupta (2011), pertains to Burr 

measurements on iron sheets. It comprises 50 

observations, with hole diameter and sheet 

thickness set at 9 mm and 2 mm, respectively. 

The hole diameter readings were obtained from 

a fixed hole, chosen and oriented according to 

a predefined setup. For further technical details 

on the measurement methodology, refer to 

Dasgupta (2011). This dataset has since been 

examined by various researchers, including 

Korkmaz & Erişoğlu (2014), Dey et al., (2017), 

Dey et al., (2018) and ZeinEldin et al. (2019).  

Dataset 1 

0.06, 0.12, 0.14, 0.04, 0.14, 0.16, 0.08, 0.26, 0.32, 0.22, 0.16, 0.12, 0.24, 0.06, 0.02, 0.18, 0.22, 

0.14, 0.22, 0.16, 0.12, 0.24, 0.06, 0.02, 0.18, 0.22, 0.14, 0.02, 0.18, 0.22, 0.14, 0.06, 0.04, 0.14, 

0.22, 0.14, 0.06, 0.04, 0.16, 0.24, 0.16, 0.32, 0.18, 0.24, 0.22, 0.04, 0.14, 0.26, 0.18, 0.16. 

Dataset 2: The datasets refer to the recovery rates in Spain (from 3th March to 

7th May, 2020) due to COVID-19 infections. The dataset contains 66 observations. This dataset 

has been examined by Afify et al., (2022). All datasets are given as follows: 

Dataset 2 

0.6670, 0.5000, 0.5000, 0.4286, 0.7500, 0.6531, 0.5161, 0.7895, 0.7689, 0.6873, 0.5200, 0.7251, 

0.6375, 0.6078, 0.6289, 0.5712, 0.5923, 0.6061, 0.5924, 0.5921, 0.5592, 0.5954, 0.6164, 0.6455, 

0.6725, 0.6838, 0.6850, 0.6947, 0.7210, 0.7315, 0.7412, 0.7508, 0.7519, 0.7547, 0.7645, 0.7715, 

0.7759, 0.7807, 0.7838, 0.7847, 0.7871, 0.7902, 0.7934, 0.7913, 0.7962, 0.7971, 0.7977, 0.8007, 

0.8038, 0.8289, 0.8322, 0.8354, 0.8371, 0.8387, 0.8456, 0.8490, 0.8535, 0.8547, 0.8564, 0.8580, 

0.8604, 0.8628, 0.6586, 0.7070, 0.7963, 0.8516. 

The  summary statistics of the datasets  are presented  in Table 3. 
 

6.2 Descriptive Statistics of the Datasets 
 

Table 3 provides descriptive statistics for the 

two datasets highlighting measures of central 

tendency, dispersion, and distribution shape. 

Dataset 1 has 50 observations with small 

values (Minimum value = 0.0200, Maximum 

value = 0.3200), a mean of 0.1632, low 

variability (Standard Deviation = 0.0811), 

and is nearly symmetric (Skewness = 0.0723) 

with slightly less peaked distribution 

(Kurtosis = 2.2166). While dataset 2 has 66 

observations with larger values (Minimum 

value = 0.4286, Maximum value = 0.8628), a 

mean of 0.7239, higher variability (Standard 

Deviation = 0.1086), is moderately left-

skewed (Skewness = -0.7049), and exhibits a 

slightly peaked distribution (Kurtosis = 

2.6021). However, these validate that the 
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shape of the density function of the proposed 

KuRKiD shown in Fig. 1 is suitable for 

modelling these types of dataset. 

 Table 4 provides the parameter estimates and 

goodness of fit measures for the proposed 

distribution with other competing models 

using the hole diameter and thickness dataset. 

Log-likelihood, AIC, BIC, and KS with the 

P-values are the performance metrics. 

 

Table 3: Some summary statistics of the datasets 
 

  N Min Median Mode Mean Max Std Dev Skewness Kurtosis 

1 50 0.0200 0.1600 0.1600 0.1632 0.3200 0.0811 0.0723 2.2166 

2 66 0.4286 0.7533 0.500 0.7239 0.8628 0.1086 -0.7049 2.6021 
 

A distribution with the lowest information or 

performance metrics is regarded as the best in 

terms of goodness of fit. As we can see from 

the Table, the KuRKiD has the smallest values 

of the log-likelihood, AIC, BIC, C*, A* and KS 

statistics; and has the highest p-value of the KS 

statistic. Therefore, it can be concluded that the 

KuRKiD is the best model for analyzing the 

observed dataset (Dataset 1) in relation to all 

the other distributions of unit intervals. 
 

Table 4: The MLEs, 𝓁, AIC, BIC, and KS (P-values), values for dataset 1 
 

Models Estimates (Errors) 
  

Statistics    

Α θ λ 
 

𝓁 AIC BIC W* A* KS 

(p-value) 

KuRKiD 6.034 

(1.767) 

0.280 

(0.090) 

11.186 

(3.582) 

 -57.247 -108.494 -102.758 0.077 0.464 0.093 

(0.778) 

MORKiD 2.316 

(0.287) 

0.019 

(0.010) 

-  -52.317 -100.634 -96.810 0.197 1.188 0.122 

(0.448) 

ExRKiD 7.969 

(0.026) 

0.069 

(0.010) 

-  -28.980 -53.961 -50.137 0.104 0.624 0.359 

(5.01e-06) 

RKiD 0.736 

(0.088) 

- -  -11.676 -21.353 -19.441 0.165 0.987 0.563 

(3.3e-14) 

KuD 1.887 

(0.225) 

24.098 

(9.086) 

-  -55.767 -107.534 -103.709 0.110 0.669 0.130 

(0.368) 

BeD 2.677 

(0.506) 

13.837 

(2.822) 

-  -54.607 -105.213 -101.389 0.148 0.893 0.142 

(0.268) 

UWeD 0.087 

(0.029) 

3.059 

(0.311) 

-  -48.662 -93.324 -89.500 0.322 1.871 0.181 

(0.075) 
 

Table 5 provides the parameter estimates and 

goodness of fit measures for the proposed 

distribution with other competing models using 

recovery rates of COVID-19 infection dataset. 

Log-likelihood, AIC, BIC, and KS with the P-

values are the performance metrics. A 

distribution with the lowest information or 

performance metrics is regarded as the best in 

terms of goodness of fit. As we can see from 

the Table, the KuRKiD has the smallest values 

of the log-likelihood, AIC, BIC, C* and A* 

statistics; although the KS statistic and its 

corresponding p-value for the MORKiD was 

the highest. Therefore, it can be concluded that 

the KuRKiD is the best model for analyzing the 

observed dataset (Dataset 2) in relation to all 

the other distributions of unit intervals. 

Additionally, the plot of the fitted probability 

density functions and the fitted cumulative 

distribution functions are illustrated 

respectively in Fig. 1 and Fig. 2 for the dataset. 
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Table 5: The MLEs, Standard Errors, 𝓁, AIC, BIC, and KS (P-values), values for dataset 2. 
 

Models Estimates (Errors) 
  

Statistics    

Α θ λ 
 

𝓁 AIC BIC W* A* KS 

(p-value) 

KuRKiD 1.963 

(0.003) 

2.468 

(0.039) 

0.097 

(0.012) 

 -61.589 -117.178 -110.609 0.078 0.537 0.087(0.704) 

MORKiD 0.991 

(0.050) 

19.718 

(5.646) 

-  -57.625 -111.250 -106.871 0.118 0.891 0.078 

(0.812) 

ExRKiD 0.850 

(0.047) 

7.351 

(1.004) 

-  -59.399 -114.797 -110.419 0.125 0.778 0.096 

(0.578) 

RKiD 0.665 

(0.051) 

- -  8.726 19.451 21.640 0.104 0.674 0.617 

(2.2e-16) 

KuD 8.080 

(0.947) 

7.740 

(2.018) 

-  -58.834 -113.669 -109.289 0.137 0.839 0.100 

(0.529) 

BeD 12.781 

(2.227) 

4.889 

(0.825) 

-  -57.574 -111.148 -106.769 0.172 1.031 0.114 

(0.358) 

UWeD 8.658 

(1.701) 

2.233 

(0.204) 

-  -53.966 -103.932 -99.552 0.254 1.504 0.131 

(0.211) 
 

Fig. 6 represents a histogram of fitted density 

plots for various probability distributions 

applied to hole diameter and thickness dataset. 

The distributions (KuRKiD, MORKiD, KuD, 

BeD and UWeD) all appear to have a similar 

shape, with a peak at a recovery rate value and 

then tailing off to either side. This suggests that 

the data may be right-skewed, meaning there is 

a longer tail towards higher the hole diameter 

and thickness value. However, by comparing 

the fitted densities to the histogram bars, you 

can see which distribution comes closest to 

matching the distribution of the data. The 

closer the fit, the more likely that particular 

distribution is a good representation of the hole 

diameter and thickness dataset. It is observed 

that the KuRKiD with a black curve is the best-

fitted model based on this dataset. 

 

 
Fig. 6: Estimated pdfs over Histogram for Dataset 1. 
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Fig. 6 represents a histogram of fitted density 

plots for various probability distributions 

applied to recovery rates of COVID-19 

infection. The distributions (KuRKiD, 

MORKiD, ERKiD, KuD, BeD and UWeD) all 

appear to have a similar shape, with a peak at a 

recovery rate value and then tailing off to the 

left side. This suggests that the data is left-

skewed, meaning there is a longer tail towards 

lower recovery rate. However, by comparing 

the fitted densities to the histogram bars, you 

can see which distribution comes closest to 

matching the distribution of the data. The 

closer the fit, the more likely that particular 

distribution is a good representation of the 

recovery rates of COVID-19 infection dataset. 

It is observed that the KuRKiD with a black 

curve is the best-fitted model based on this 

dataset. 

 

 

 
Fig.: 6: Stimulated pdfs over Histogram for Dataset 2. 

 

7.0 Conclusion 
 

In this study, a new three-parameter 

distribution, the Kumaraswamy reduced Kies 

Distribution which extends the Reduced Kies 

Distribution in the analysis of data with unit-

bounded (0, 1) support was proposed. The 

construction of this distribution involved 

using the Kumaraswamy-G family of 

distribution, and the Reduced Kies 

Distribution which served as the baseline 

distribution. 

The probability density function of the 

proposed distribution exhibits unimodal 

behavior and can take on several shapes such 

as left-skewed, bathtub-shaped and nearly 

symmetric. The hazard rate function 

demonstrates either increasing, or bathtub-

shape characteristics. Some statistical 

properties such as quantile function, median, 

skewness, kurtosis and order statistics are 

discussed. The reliability measures such as 

survival function, hazard rate function, 

cumulative hazard function and reversed 

hazard function for the KuRKiD are derived 

which are helpful to conduct the real-life data 

analysis. 

Also, the estimation of parameters is 

approached by three methods namely: Cramer 

von Mises, Maximum likelihood and 

Maximum product of spacing. A simulation 

studies to exhibit the performance and 

accuracy of Maximum likelihood and 

Maximum product of spacing estimates of the 

KuRKiD parameters were presented. Thus, 
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Real-life data application is also presented to 

illustrate the usefulness and applicability of 

the KuRKiD. Our results show that the new 

model provides a better fit to the datasets 

compared to existing distributions considered. 
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