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Abstract: In this paper, investment in a 

defined contributory (DC) pension fund 

system with a return clause of premium and 

proportional administrative charges is studied 

under geometric Brownian motion (GBM) and 

Weilbull mortality force function. To actualize 

this, an investment portfolio with a risk-free 

asset and a risky asset which follows the GBM 

model is considered such that the returned 

premium is with interest from an investment in 

a risk-free asset and the Weilbull force 

function is used to determine the mortality rate 

of members during accumulation phase. 

Furthermore, the game-theoretic technique is 

applied to obtain an optimization problem 

from the extended Hamilton Jacobi Bellman 

equation. By using the mean-variance utility 

and variable separation technique, an 

investment strategy (IS) is obtained for the 

risky asset comprising of the risk-free interest 

rate, instantaneous volatility, administrative 

charges, the appreciation rate of the risky 

asset and the mortality force function was 

obtained together with the efficient frontier 

which gives the relationship between the 

investment expectation and the risk 

involvement in the investment. Furthermore, 

some numerical simulations were obtained to 

study the impact of some sensitive parameters 

of the IS. It was observed that the 

administrative charges and the mortality rate 

affect the IS to be adopted. Therefore, an 

insight into how these parameters behave is 

very essential in the development of an IS. 
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1.0  Introduction 
 

The global economic downturn that has 

negatively affected the world financial 

market, the stock market in particular via-a-vis 

investment portfolios has provoked so many 

reviews of the existing economic models 

(Witbooi et al, 2011; Li et al, 2013; Njoku et 

al, 2017, Osu et al, 2017; Akpanibah et al, 

2017; Wang et al, 2018; Akpanibah and Osu, 

2018; Njoku and Osu, 2019a; Njoku and Osu, 

2019b; Osu et al, 2019a;  Osu et al, 2019b; 

Njoku et al, 2019; Osu et al, 2020a; Osu et al, 

2020b; Ini et al, 2021; Akpanibah and Ini, 

2021; Njoku and Akpanibah, 2022; Njoku et 

al, 2022). 

Continuous review of these economic models 

vis-à-vis the investment strategies has become 

very necessary since in the DC pension 

scheme, the tone of the investment returns 

solely depends on how good the investment 

strategies by the PFAs are Njoku and Osu, 

(2019b). More so, because one of the 

importance of setting up a pension scheme is 

to help manage the income of retirees Antolin 

et al, (2010). Currently, there are two types of 

pension systems in which an employee can be 

enrolled; the defined benefit system (DB) 

(Haberman and Sung 1994; JosaFombellida 

2001a, 2004b) and the defined contribution 

(DC) system (Zhang and Rong, 2013; Wu and 

Zeng, 2015; Sun et al, 2016; Akpanibah et al., 

2019; Lai et al., 2021). 
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.In a DB pension scheme, members’ benefits 

are predetermined based on age, years in 

service and salary histories and their benefits 

after retirement depend mostly on the 

contributions of the employers. However, in 

the DC pension scheme, members contribute a 

percentage of their income into their RSA, as 

stipulated by the Pension Reform Act of 2006, 

as amended, and these funds are kept by the 

pension fund custodians (PFCs) and managed 

by the PFAs, to maximi the expected returns 

of its members. Furthermore, in DC plan, 

contributions are predetermined while the 

benefits solely depend on investment returns 

during the accumulation period. However, 

PFAs must have a good investment model 

since most of these assets for example; stock 

and zero coupon bonds in the market are 

highly risky (Wu and Zeng, 2015). This has 

led to the study of IS which explains how 

investment portfolios are managed for optimal 

expected returns.  

There are many papers in the literature about 

optimal investment management of portfolios 

whose risky assets are modelled by GBM 

process with constant volatility as in the 

Black-Scholes model; these include (Chang et 

al, 2003; Deelstra et al, 2003; Cairns et al, 

2006; Xu et al, 2007; Delong et al, 2008; 

Cortois et al, 2015; Njoku et al, 2017; 

Akpanibah et al, 2020). 

. With the extension of the GBM model, 

another volatility model known as the constant 

elasticity of variance (CEV) model has been 

used by some authors to model the stock 

market prices. These include but not limited to 

Xiao et al (2007) and Gao (2009). Over the 

years, a good number of literature on the study 

of OIS for DC plans under stochastic interest 

rate where the interest rate was of Vasicek and 

affine structure have been published. They 

include but are not limited to (Boulier et al, 

2001; Deelstra et al, 2003; Battocchio and 

.Menoncin, 2004; Zhang and Rong 2013; 

Njoku et al, 2017).  

The studies of OIS with return of premium 

have been carried out in recent years aiming at 

protecting the rights of members and their 

families in case of mortality during the 

accumulation period. This was done by 

introducing the mortality force functions such 

as Abraham De Moivre model in (He and 

Liang, 2013; Sheng and Rong, 2014; Li et al, 

2017) and Weillbull force function in Chávez, 

(2016) and Lai et al. (2021) into the wealth 

function.  He and Liang (2013) and Sheng and 

Rong (2014), studied OIS with return of 

premium under GBM model and Heston 

volatility model respectively using the mean-

variance utility. Li et al, (2017) and Wang et 

al, (2018), studied OIS with a return of 

premium under CEV model and Jump 

diffusion model respectively using the mean-

variance utility. In each of the cases above, the 

mortality force function used was the 

Abraham De Moivre model. Chávez, (2016) 

and Lai et al. (2021) studied OIS with a return 

of premium using Exponential utility and 

mean-variance utility respectively when the 

mortality force function followed the Weibull 

process. Most recently, the OIS with a return 

of premium with predetermined interest have 

also been studied by Akpanibah and Osu 

(2018) and Akpanibah et al, (2020); in their 

work, they assumed the returned premiums are 

with predetermined interest from investment 

on risk-free asset.  

So far, from the knowledge of the literature, 

no work combines the return clause of 

premium with interest during the 

accumulation phase and administrative 

charges under Weilbull mortality force 

function and mean-variance utility to obtain 

OIS. Hence, the main contribution of this very 

work is the introduction of a return clause of 
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premium with predetermined interest rate and 

administrative charges into the work of Njoku 

and Akpanibah (2022) and He and Liang 

(2013). Also, the mortality force function used 

here is the Weilbull model different from the 

Abraham De Moivre model under GBM 

model. Furthermore, we maximize the 

members’ portfolios by solving for an 

efficient and robust investment strategy for the 

risky asset and the efficient frontier. 
 

2.0 Pension Wealth Formulation with 

Return Clause and Administrative Charges 
 

Let 𝐷𝑡(𝑡) represents the price of the risk free 

asset and its price process follows the 

following dynamics 
𝑑𝐷𝑡(𝑡)

𝐷𝑡(𝑡)
= 𝑟𝑑𝑡, 𝐷𝑡(0) = 1  (1) 

where 𝑟 > 0 is the predetermined interest rate 

of the risk free asset. 

Similarly, the pension fund administrator may 

also be willing to invest in a risky asset (stock) 

modelled by the geometric Brownian motion 

whose price process is given as follows 

 
𝑑𝒮𝑡(𝑡)

𝒮𝑡(𝑡)
= 𝜇𝑑𝑡 + 𝜗𝑑𝑀𝑡,  𝒮𝑡(0) = 𝓈0 (2) 

 

where 𝜇is the expected appreciation rate of 

𝒮𝑡(𝑡), 𝜗 is the volatility of the stock market 

price and 𝑀𝑡 is the Brownian motion 

generating the available information in the 

market represented by ℱ𝑡 called the filtration 

in a complete probability space (Ω,ℱ𝑡, 𝒫), 
where Ω, is a  real space and 𝒫 a probability 

measure. 

Next, we consider 𝑃(𝑡) to be the fraction of 

the accumulated wealth to be invested in risky 

asset and 1 − 𝑃(𝑡), the fraction to be invested 

in a risk-free asset.   

Let 𝑎 be the monthly contributions at a given 

time by the pension member, 𝜑0 the initial age 

during the accumulation phase, T the 

accumulation phase period,and 𝜑0 + 𝑇 is the 

terminal age of the member. 𝑅𝑖,𝜑0+𝑡 is the 

mortality rate from time 𝑡 to 𝑡 + 𝑖, 𝑡𝑎 is the 

accumulated contributions at time t, 𝑡𝑎𝑅𝑖,𝜑0+𝑡  

is the returned contributions to the dead 

members’ families within the accumulation 

period and  

(1 − 𝑃(𝑡))𝒳(𝑡)
𝐷𝑡+𝑖

𝐷𝑡
𝑅𝑖,𝜑0+𝑡 is returned 

interest from risk free assets during the 

accumulation period. 

Corresponding to investment strategy 

𝑃(𝑡) and the accumulation phase period 

[𝑡, 𝑡 + 𝑖], the differential form associated 

with the fund size based on He and Liang 

(2013)  is given as:  

𝒳(𝑡 + 𝑖) = [
𝒳(𝑡) ((1 − 𝑃(𝑡))

𝐷𝑡+𝑖

𝐷𝑡
+ 𝑃(𝑡)

𝒮𝑡+𝑖

𝒮𝑡
) + 𝑎𝑖

−(1 − 𝑃(𝑡))𝒳(𝑡)
𝐷𝑡+𝑖

𝐷𝑡
𝑅𝑖,𝜑0+𝑡 − 𝑡𝑎𝑅𝑖,𝜑0+𝑡

] (
1

1−𝑅𝑖,𝜑0+𝑡
)   (3) 

 

𝒳(𝑡 + 𝑖) =

[
 
 
 
 
𝒳(𝑡) (

1 + (1 − 𝑃(𝑡)) (
𝐷𝑡+𝑖

𝐷𝑡
−
𝐷𝑡

𝐷𝑡
) (1 − 𝑖𝑅𝜑0+𝑡)

+𝑃(𝑡) (
𝒮𝑡+𝑖

𝒮𝑡
−
𝒮𝑡

𝒮𝑡
)

)

+𝑎𝑖 − (1 − 𝑃(𝑡))𝒳(𝑡)𝑅𝑖,𝜑0+𝑡 − 𝑡𝑎𝑅𝑖,𝜑0+𝑡 ]
 
 
 
 

(1 +
𝑅𝑖,𝜑0+𝑡

1−𝑅𝑖,𝜑0+𝑡
) (4) 

 

𝒳(𝑡 + 𝑖) − 𝒳(𝑡) =

[
 
 
 
 
𝒳(𝑡) (

(1 − 𝑃(𝑡)) (
𝐷𝑡+𝑖

𝐷𝑡
−
𝐷𝑡

𝐷𝑡
) (1 − 𝑖𝑅𝜑0+𝑡)

+𝑃(𝑡) (
𝒮𝑡+𝑖

𝒮𝑡
−
𝒮𝑡

𝒮𝑡
)

)

+𝑎𝑖 − (1 − 𝑃(𝑡))𝒳(𝑡)𝑅𝑖,𝜑0+𝑡 − 𝑡𝑎𝑅𝑖,𝜑0+𝑡 ]
 
 
 
 

(1 +
𝑅𝑖,𝜑0+𝑡

1−𝑅𝑖,𝜑0+𝑡
) (5) 
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{
  
 

  
 𝑅𝑖,𝜑0+𝑡 = 1 − Exp {−∫ 𝐴(𝜑0 + 𝑡 + 𝑒)𝑑𝑒}

𝑖

0
= 𝐴(𝜑0 + 𝑡)𝑖 + 𝑂(𝑖),

𝑅𝑖,𝜑0+𝑡

1−𝑅𝑖,𝜑0+𝑡
= 𝐴(𝜑0 + 𝑡)𝑖 + 𝑂(𝑖)

𝑖 → 0, 𝑅𝑖,𝜑0+𝑡 = 𝐴(𝜑0 + 𝑡)𝑑𝑡,
𝑅𝑖,𝜑0+𝑡

1−𝑅𝑖,𝜑0+𝑡
= 𝐴(𝜑0 + 𝑡)𝑑𝑡,

𝑎𝑖 → 𝑎𝑑𝑡,
𝐷𝑡+𝑖

𝐷𝑡
−
𝐷𝑡

𝐷𝑡
→

𝑑𝐷𝑡(𝑡)

𝑉𝑡(𝑡)
,
𝒮𝑡+𝑖−𝒮𝑡

𝒮𝑡
→

𝑑𝒮𝑡(𝑡)

𝒮𝑡(𝑡)

   (6) 

 

Substituting (2.6) into (2.5) we have 

𝑑𝒳(𝑡) =

[
 
 
 
 
 
𝒳(𝑡)(

𝑃(𝑡)
𝑑𝒮𝑡(𝑡)

𝒮𝑡(𝑡)

+(1 − 𝐴(𝜑0 + 𝑡)𝑑𝑡)(1 − 𝑃(𝑡))
𝑑𝐷𝑡(𝑡)

𝐷𝑡(𝑡)

)

+𝑎𝑑𝑡 − 𝑡𝑎𝐴(𝜑0 + 𝑡)𝑑𝑡

−(1 − 𝑃(𝑡))𝒳(𝑡)𝐴(𝜑0 + 𝑡)𝑑𝑡 ]
 
 
 
 
 

(1 + 𝐴(𝜑0 + 𝑡)𝑑𝑡) (7) 

Where 𝐴(𝑡)is the force function and 𝜗 is the maximal age of the life table and are related as 

follows according to equation (3) in He and Liang (2013). 

𝐴(𝑡) = 𝑘𝑡𝑛   0 ≤ 𝑡 < 𝑇         

  

This implies that 

𝐴(𝜑0 + 𝑡) = 𝑘(𝜑0 + 𝑡)
𝓃        (8) 

 

Substituting (1), (2) and (8) into (7), we have 

 

𝑑𝒳(𝑡) = [
{
𝒳(𝑡) (

𝑃(𝑡)(𝜇 − 𝑟 + 𝑘(𝜑0 + 𝑡)
𝓃)

+𝑟
)

+𝑎(1 − 𝑡𝑘(𝜑0 + 𝑡)
𝓃)

} 𝑑𝑡 + 𝒳(𝑡)𝑃(𝑡)𝜗𝑑𝑀𝑡

𝒳(0) = 𝑥0

]  (9) 

 

Let 𝜌 be a fee which is dependent on the value of the assets under the management of the 

pension fund administrators (PFA). According to Lai et al, (2021), the fee which is termed 

charge on balance is a percentage of the value of assets. Under this assumption, our optimal 

problem becomes 

𝑑𝒳(𝑡) =

[
 
 
 
{
𝒳(𝑡) (

𝑃(𝑡)(𝜇 − 𝑟 + 𝑘(𝜑0 + 𝑡)
𝓃)

+(𝑟 − 𝜌)
)

+𝑎(1 − 𝑡𝑘(𝜑0 + 𝑡)
𝓃)

}𝑑𝑡 + 𝒳(𝑡)𝑃(𝑡)𝜗𝑑𝑀𝑡

𝒳(0) = 𝑥0 ]
 
 
 

  (10) 

 

3. 0 Maximization of Pension Wealth and Investment Strategy 
 

In this section, the wealth function involving the return clause and the administrative charges 

in (10) will be maximized subject to mean-variance utility function as stated in Bjork and 

Murgoci (2010), given as 

 

𝑈(𝑡, 𝓍) = sup
𝑃
{𝐸𝑡,𝓍𝒳

𝑃(𝑇) − 𝑉𝑎𝑟𝑡,𝓍𝒳
𝑃(𝑇)} ,     (11) 
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Following the game theoretic approach in (He and Liang, 2013; Sheng and Rong, 2014; Li et 

al, 2017), the mean variance utility in (11) is similar to the following Markovian time 

inconsistent stochastic optimal control problem with value function 𝑈(𝑡, 𝓍) 
 

{
 
 

 
 𝑉(𝑡, 𝓍, 𝑃) = 𝐸𝑡,𝓍[𝒳

𝑃(𝑇)] −
𝛾

2
𝑉𝑎𝑟𝑡,𝓍[𝒳

𝑃(𝑇)]

= (𝐸𝑡,𝓍[𝒳
𝑃(𝑇)] −

𝛾

2
(𝐸𝑡,𝓍[𝒳

𝑃(𝑇)2] − (𝐸𝑡,𝓍[𝒳
𝑃(𝑇)])2)) 

𝑈(𝑡, 𝓍)  = sup
𝑃
𝑉(𝑡, 𝓍, 𝑃)

    (12) 

 

Following He and Liang, (2013), the optimal investment strategy𝑃∗ satisfies: 

𝑈(𝑡, 𝓍) = sup
𝑃
𝑉(𝑡, 𝓍, 𝑃∗)        (13) 

where 𝑞 is the risk-aversion coefficient of the pension fund manager 

Let 𝑢𝑃(𝑡, 𝓍) = 𝐸𝑡,𝓍[𝒳
𝑃(𝑇)],𝑣𝑃(𝑡, 𝓍) = 𝐸𝑡,𝓍[𝒳

𝑃(𝑇)2], then  

𝑈(𝑡, 𝓍)   = sup
𝑃
𝑒(𝑡, 𝓍,  𝑢𝑃(𝑡, 𝓍), 𝑣𝑃(𝑡, 𝓍)),  

where  

𝑒(𝑡, 𝓍, 𝑢, 𝑣) = 𝑢 −
𝛾

2
(𝑢 − 𝑣2)        (14) 

 

Theorem 3.1 (verification theorem) If there exists three real functions 𝐸, 𝑓, 𝐺:[0, 𝑇] ×
ℜ → ℜ satisfying  

the following EHJB equations: 

 

{
 
 

 
 

sup
𝑃

{
 
 

 
 
𝐸𝑡 − 𝑒𝑡 + (𝐸𝑥 − 𝑒𝑥) [

𝑥 (
𝑃(𝑡)(𝜇 − 𝑟 + 𝑘(𝜑0 + 𝑡)

𝓃)

+(𝑟 − 𝜌)
)

+𝑎(1 − 𝑡𝑘(𝜑0 + 𝑡)
𝓃)

]

+
1

2
𝑃2𝑥2𝜗2(𝐸𝑥𝑥 −𝒩𝑥𝑥) }

 
 

 
 

= 0

𝐸(𝑇, 𝓍) =  𝑒(𝑇, 𝑥, 𝑥2)

  (15) 

 

where: 

𝒩𝑥𝑥 = 𝑞𝐹𝑥
2,          (16) 

  

{
 

 
{𝐹𝑡 + 𝐹𝑥 [

𝑥 (
𝑃(𝑡)(𝜇 − 𝑟 + 𝑘(𝜑0 + 𝑡)

𝓃)

+(𝑟 − 𝜌)
)

+𝑎(1 − 𝑡𝑘(𝜑0 + 𝑡)
𝓃)

] +
1

2
𝑃2𝑥2𝜗2𝐹𝑥𝑥} = 0

𝐹(𝑇, 𝓍) =  𝑥

   (17) 

 

{
 

 
{𝐺𝑡 + 𝐺𝑥 [

𝑥 (
𝑃(𝑡)(𝜇 − 𝑟 + 𝑘(𝜑0 + 𝑡)

𝓃)

+(𝑟 − 𝜌)
)

+𝑎(1 − 𝑡𝑘(𝜑0 + 𝑡)
𝓃)

] +
1

2
𝑃2𝑥2𝜗2𝐺𝑥𝑥} = 0

𝐺(𝑇, 𝓍) =  𝑥2

   (18) 

 

Then𝑈(𝑡, 𝓍) = 𝐸(𝑡, 𝓍), 𝑢𝑃
∗
= 𝐹(𝑡, 𝓍), 𝑣𝑃

∗
= 𝐺(𝑡, 𝓍)for the optimal investment strategy 



Communication in Physical Sciences, 2023, 10(1): 14-30 19 

 

 

𝑃∗. 
Proof: The details of the proof can be found in (He and Liang, 2009; Liang and Huang, 

2011; Zeng and Li, 2011 ). 

 

Proposition 1 

The optimal investment strategy for the stock market price is given as 

𝑃(𝑡)∗ =
(𝜇 − 𝑟 + 𝑘(𝜑0 + 𝑡)

𝓃)𝑒(𝑟−𝜌)(𝑡−𝑇)

𝛾𝑥𝜗2
 

Proof 

Also, Recall from (14),  

𝑓(𝑡, 𝓍, 𝑢, 𝑣) = 𝑢 −
𝑞

2
(𝑣 − 𝑢2)  

𝑒𝑡 = 𝑒𝑥 = 𝑒𝑥𝑥=𝑒𝑥𝑢 = 𝑒𝑥𝑣 = 𝑒𝑢𝑣 = 𝑒𝑣𝑣 = 0, 𝑒𝑢 = 1 + 𝛾𝑢, 𝑒𝑢𝑢 = 𝛾, 𝑒𝑣 = −
𝛾

2
 (19) 

Substituting (19) into (15) and differentiating it with respect to 𝑃(𝑡), we have 

𝑃(𝑡)∗ = − [
(𝜇−𝑟+𝑘(𝜑0+𝑡)

𝓃)𝐸𝑥

(𝐸𝑥𝑥−𝛾𝐹𝑥
2)𝑥𝜗2

]        (20) 

Substituting (20) into (15) and (17), we have 

[
𝐸𝑡 + 𝐸𝑥 [

(𝑟 − 𝜌)𝑥

+𝑎(1 − 𝑡𝑘(𝜑0 + 𝑡)
𝓃)
]

−
(𝐸𝑥)

2

2(𝐸𝑥𝑥−𝛾𝐹𝑥
2)
(
(𝜇−𝑟+𝑘(𝜑0+𝑡)

𝓃)2

𝜗2
)
] = 0      (21) 

[
𝐹𝑡 + 𝐹𝑥 [

(𝑟 − 𝜌)𝑥

+𝑎(1 − 𝑡𝑘(𝜑0 + 𝑡)
𝓃)
]

−
𝐸𝑥𝐹𝑥

(𝐸𝑥𝑥−𝛾𝐹𝑥
2)
(
(𝜇−𝑟+𝑘(𝜑0+𝑡)

𝓃)2

𝜗2
) +

𝐹𝑥𝑥

2
[
(𝜇−𝑟)2(𝒫𝑥)

2

(𝐸𝑥𝑥−𝛾𝐹𝑥
2)𝜗2

]
] = 0    (22) 

 

 

To solve equation (21) and (22), we suppose a solution for 𝐸(𝑡, 𝓍)and 𝐹(𝑡, 𝓍)as follows: 

{
𝐸(𝑡, 𝑥) = 𝑥𝑙1(𝑡) +

1

𝛾
𝑚1(𝑡), 𝑙1(𝑇) = 1,𝑚1(𝑇) = 0,

𝐸𝑡 = 𝑙1𝑡𝑥 +
𝑚1𝑡

𝛾
, 𝐸𝑥 = 𝑙1, 𝐸𝑥𝑥 = 0

    (23) 

 

{
𝐹(𝑡, 𝑥) = 𝑥𝑙2(𝑡) +

1

𝛾
𝑚2(𝑡), 𝑙2(𝑇) = 1,𝑚2(𝑇) = 0,

𝐹𝑡 = 𝑙2𝑡𝑥 +
𝑚2𝑡

𝛾
, 𝐹𝑥 = 𝑙2, 𝐹𝑥𝑥 = 0

    (24) 

 

Substituting (23) and (24) into (21) and (22), we have: 

 

{
 
 

 
 
{
𝑙1𝑡𝑥 +

𝑚1𝑡

𝛾
+ 𝑙1(𝑡) [

(𝑟 − 𝜌)𝑥

+𝑎(1 − 𝑡𝑘(𝜑0 + 𝑡)
𝓃)
]

+
𝑙1
2

2𝛾𝑙2
2 (

(𝜇−𝑟+𝑘(𝜑0+𝑡)
𝓃)2

𝜗2
)

} = 0

𝑙1(𝑇) = 1,𝑚1(𝑇) = 0,

     (25) 
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{
 
 

 
 
{
𝑙2𝑡𝑥 +

𝑚2𝑡

𝛾
+ 𝑙2(𝑡) [

(𝑟 − 𝜌)𝑥

+𝑎(1 − 𝑡𝑘(𝜑0 + 𝑡)
𝓃)
]

+
𝑙1

𝛾𝑙2
(
(𝜇−𝑟+𝑘(𝜑0+𝑡)

𝓃)2

𝜗2
)

} = 0

𝑙2(𝑇) = 1,𝑚2(𝑇) = 0

     (26) 

 

Simplifying (25) and (26), we have 

{
1

𝛾

𝑥(𝑙1𝑡 + (𝑟 − 𝜌)𝑙1) = 0

(𝑚1𝑡 + 𝑎(1 − 𝑘𝑡(𝜑0 + 𝑡)
𝑛)𝑙1 +

𝑙1
2

2𝛾𝑙2
2 (

(𝜇−𝑟+𝑘(𝜑0+𝑡)
𝓃)2

𝜗2
)) = 0

   (27) 

{

𝑥(𝑙2𝑡 + (𝑟 − 𝜌)𝑙2) = 0

1

𝛾
(𝑚2𝑡 + 𝑎(1 − 𝑘𝑡(𝜑0 + 𝑡)

𝑛)𝑙2 +
𝑙1

𝛾𝑙2
(
(𝜇−𝑟+𝑘(𝜑0+𝑡)

𝓃)2

𝜗2
)) = 0

   (28) 

Since𝑥 ≠ 0 and 
1

𝛾
≠ 0, (27) and (28) can be written as; 

{
𝑙1𝑡 + (𝑟 − 𝜌)𝑙1 = 0

𝑙1(𝑇) = 1
         (29) 

{
𝑚1𝑡 + 𝑎(1 − 𝑘𝑡(𝜑0 + 𝑡)

𝑛)𝑙1 +
𝑙1
2

2𝛾𝑙2
2 (

(𝜇−𝑟+𝑘(𝜑0+𝑡)
𝓃)2

𝜗2
) = 0

𝑚1(𝑇) = 0
    (30) 

{
(𝑙2𝑡 + (𝑟 − 𝜌)𝑙2) = 0

𝑙2(𝑇) = 1
         (31) 

{
𝑚2𝑡 + 𝑎(1 − 𝑘𝑡(𝜑0 + 𝑡)

𝑛)𝑙2 +
𝑙1

𝛾𝑙2
(
(𝜇−𝑟+𝑘(𝜑0+𝑡)

𝓃)2

𝜗2
)

𝑚2(𝑇) = 0
    (32) 

 

Solving (29) – (32), we have the following solutions 

 

 

𝑙1(𝑡) = 𝐸𝑋𝑃[(𝑟 − 𝜌)(𝑇 − 𝑡)]       (33) 

𝑚1(𝑡) =

(

 
 

𝑎 ∫ (1 − 𝑘𝑡(𝜑0 + 𝜏)
𝑛)𝑒(𝑟−𝜌)(𝑇−𝜏)𝑑𝜏

𝑇

𝑡

+
1

2𝛾𝜗2
[
(𝜇 − 𝑟)2(𝑇 − 𝑡) +

2𝑘(𝜇−𝑟)

𝑛+1
((𝜑0 + 𝑇)

𝑛+1 − (𝜑0 + 𝑡)
𝑛+1)

+
𝑘2

2𝑛+1
((𝜑0 + 𝑇)

2𝑛+1 − (𝜑0 + 𝑡)
2𝑛+1)

]

)

 
 

  

            (34) 

𝑙2(𝑡) = 𝐸𝑋𝑃[(𝑟 − 𝜌)(𝑇 − 𝑡)]       (35) 

𝑚2(𝑡) =

(

 
 

𝑎∫ (1 − 𝑘𝑡(𝜑0 + 𝜏)
𝑛)𝑒(𝑟−𝜌)(𝑇−𝜏)𝑑𝜏

𝑇

𝑡

+
1

𝛾𝜗2
[
(𝜇 − 𝑟)2(𝑇 − 𝑡) +

2𝑘(𝜇−𝑟)

𝑛+1
((𝜑0 + 𝑇)

𝑛+1 − (𝜑0 + 𝑡)
𝑛+1)

+
𝑘2

2𝑛+1
((𝜑0 + 𝑇)

2𝑛+1 − (𝜑0 + 𝑡)
2𝑛+1)

]

)

 
 

 (36) 

Next, we put (33) and (34) into (23). Similarly, we put (35) and (36) into (24), we will have  
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𝐸(𝑡, 𝑥) =

(

 
 
 

𝑥𝑒(𝑟−𝜌)(𝑇−𝑡)

+

(

 
 

𝑎 ∫ (1 − 𝑘𝑡(𝜑0 + 𝜏)
𝑛)𝑒(𝑟−𝜌)(𝑇−𝜏)𝑑𝜏

𝑇

𝑡

+
1

2𝛾𝜗2
[
(𝜇 − 𝑟)2(𝑇 − 𝑡) +

2𝑘(𝜇−𝑟)

𝑛+1
((𝜑0 + 𝑇)

𝑛+1 − (𝜑0 + 𝑡)
𝑛+1)

+
𝑘2

2𝑛+1
((𝜑0 + 𝑇)

2𝑛+1 − (𝜑0 + 𝑡)
2𝑛+1)

]

)

 
 

)

 
 
 

 

            (37) 

𝐹(𝑡, 𝑥) =

(

 
 
 

𝑥𝑒(𝑟−𝜌)(𝑇−𝑡)

+

(

 
 

𝑎 ∫ (1 − 𝑘𝑡(𝜑0 + 𝜏)
𝑛)𝑒(𝑟−𝜌)(𝑇−𝜏)𝑑𝜏

𝑇

𝑡

+
1

𝛾𝜗2
[
(𝜇 − 𝑟)2(𝑇 − 𝑡) +

2𝑘(𝜇−𝑟)

𝑛+1
((𝜑0 + 𝑇)

𝑛+1 − (𝜑0 + 𝑡)
𝑛+1)

+
𝑘2

2𝑛+1
((𝜑0 + 𝑇)

2𝑛+1 − (𝜑0 + 𝑡)
2𝑛+1)

]

)

 
 

)

 
 
 

 

            (38) 

 

Substituting 𝐸𝑥, 𝐸𝑥𝑥, 𝐹𝑥, into (20) we have𝑃(𝑡)∗ which complete the proof. 

 

Proposition 2 

The efficient frontier of the pension fund is given as  

𝐸𝑡,𝓍[𝒳
𝑃(𝑡)] =

(

 
 
 
 
 

𝑥𝑒(𝑟−𝜌)(𝑇−𝑡)

+

(

 
 
 
 

𝑎 ∫ (1 − 𝑘𝑡(𝜑0 + 𝜏)
𝑛)𝑒(𝑟−𝜌)(𝑇−𝜏)𝑑𝜏

𝑇

𝑡

+𝜗√

[
 
 
 (𝜇 − 𝑟)2(𝑇 − 𝑡) +

2𝑘(𝜇−𝑟)

𝑛+1
(
(𝜑0 + 𝑇)𝑛+1

−(𝜑0 + 𝑡)𝑛+1
)

+
𝑘2

2𝑛+1
(
(𝜑0 + 𝑇)2𝑛+1

−(𝜑0 + 𝑡)2𝑛+1
)

]
 
 
 

𝑉𝑎𝑟𝑡,𝑥[𝒳𝑃∗(𝑡)]

)

 
 
 
 

)

 
 
 
 
 

 (39) 

Proof  

Recall that 𝒳𝑃∗ 

𝑉𝑎𝑟𝑡,𝑥[𝒳
𝑃∗(𝑡)] = 𝐸𝑡,𝑥[𝒳

𝑃∗(𝑡)2] − (𝐸𝑡,𝑥[𝒳
𝑃∗(𝑡)])2 

𝑉𝑎𝑟𝑡,𝑥[𝒳
𝑃∗(𝑡)] =

2

𝛾
(𝐹(𝑡, 𝑥) − 𝐸(𝑡, 𝑥))      (40) 

Substituting (37) and (38) into (40), we have 

𝑉𝑎𝑟𝑡,𝑥[𝒳
𝑃∗(𝑡)] =

1

𝜗2𝛾2
[
(𝜇 − 𝑟)2(𝑇 − 𝑡) +

2𝑘(𝜇−𝑟)

𝑛+1
((𝜑0 + 𝑇)

𝑛+1 − (𝜑0 + 𝑡)
𝑛+1)

+
𝑘2

2𝑛+1
((𝜑0 + 𝑇)

2𝑛+1 − (𝜑0 + 𝑡)
2𝑛+1)

]  

            (41) 
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1

𝛾
= 𝜗

(

 
 
 
 

√

𝑉𝑎𝑟𝑡,𝑥[𝒳𝑃∗(𝑡)]

[
 
 
 
 (𝜇−𝑟)2(𝑇−𝑡)+

2𝑘(𝜇−𝑟)

𝑛+1
(
(𝜑0+𝑇)𝑛+1

−(𝜑0+𝑡)𝑛+1
)

+
𝑘2

2𝑛+1
(
(𝜑0+𝑇)2𝑛+1

−(𝜑0+𝑡)2𝑛+1
)

]
 
 
 
 

)

 
 
 
 

      (42) 

𝐸𝑡,𝑥[𝒳
𝑃∗(𝑡)] =  𝐹(𝑡, 𝑥)        (43) 

Substituting (38) into (43), we have 

𝐸𝑡,𝑥[𝒳
𝑃∗(𝑡)] =

(

 
 
 
 

𝑥𝑒(𝑟−𝜌)(𝑇−𝑡)

+

(

 
 
 

𝑎 ∫ (1 − 𝑘𝑡(𝜑0 + 𝜏)
𝑛)𝑒(𝑟−𝜌)(𝑇−𝜏)𝑑𝜏

𝑇

𝑡

+
1

𝛾𝜗2

[
 
 
 
 (𝜇 − 𝑟)2(𝑇 − 𝑡) +

2𝑘(𝜇−𝑟)

𝑛+1
(
(𝜑0 + 𝑇)

𝑛+1

−(𝜑0 + 𝑡)
𝑛+1)

+
𝑘2

2𝑛+1
(
(𝜑0 + 𝑇)

2𝑛+1

−(𝜑0 + 𝑡)
2𝑛+1) ]

 
 
 
 

)

 
 
 

)

 
 
 
 

 (44) 

Substitute (42) in (44), we have (39). 

4. 0 Numerical Simulations and Discussion 

In this section, we present some numerical simulations to illustrate the impact of some 

sensitive parameters on the optimal strategy. To achieve this, proposition 1 and 2  were used 

as our focus equations with the following parameters: 𝜇 = 0.2, 𝑟 = 0.1, 𝑥 = 1, 𝜗 = 0.6, 

𝜌 = 0.05, 𝜑0 = 20, 𝑇 = 40, 𝑘 = 0.01, 𝓃 = 0.001, 𝛾 = 0.05 

 
Fig. 1 Impact of proportional administrative charges on investment strategy 
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Fig. 2 Relationship between variance and expectation 

 
Fig 3 Impact of risk free interest rate of investment strategy 
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Fig. 4 Impact of risk averse coefficient on investment strategy 

 

 
Fig 5 Impact of Initial fund size on investment strategy 

 

Fig.1, presents the relationship between the 

optimal investment strategy and the 

proportional administrative charges. It was 

observed that the optimal investment strategy 

developed by the fund administratorsis a 

decreasing function of the proportional 
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administrative charges. The implication of the 

graph in Fig.1 is that, the higher the 

administrative charges on investment of the 

risky asset, the more likelihood for the members 

of the scheme to be discouraged from investing 

more in risky assets and may invest more if 

otherwise 

From Fig. 2, the graph presents the relationship 

between the variance and expectation at the end 

of the accumulation phase. It describes an 

efficient frontier which gives a relationship 

between the expectation and the variance. It is 

observed that the risk involved in investing in 

the risky assets is an increasing function of the 

members’ expectations; the consequence of this 

is that members with a higher proportion of 

investment in risky assets have higher 

probabilities of having more returns at the end 

of the investment period and vice versa.  

Also, Fig. 3 presents a graph of the optimal 

investment strategy against the risk-free interest 

rate. It is observed that the optimal investment 

strategy is a decreasing function of the risk-free 

interest rate. This simply indicates that 

members will likely want to invest in risky 

assets when the interest rate from the risk-free 

asset is not attractive. However, if the risk-free 

interest rate is attractive enough, PPM members 

may be advised by their fund administrators to 

invest more in the risk-free asset, thereby 

reducing their investment in the risky asset.  

Fig. 4, presents the impact of the risk-averse 

coefficient on the investment strategy and we 

observed that the optimal control strategy for 

the risky asset is inversely proportional to the 

risk aversion coefficient parameter. What we 

deduced from the graph in Fig. 4 is that 

members with a higher risk aversion 

coefficient may invest a lesser percentage of 

their wealth in the risky asset (stock) while 

members with a lower risk aversion coefficient 

may invest a higher percentage of their wealth 

in the risky assets while reducing investment 

in the risk-free asset.  

Fig. 5, presents the impact of the initial fund 

size on the optimal investment strategy. It was 

observed that the optimal investment strategy 

for the stock market price is a decreasing 

function of the initial fund size parameter of 

the pension member. The implication of Fig. 5 

is that if the initial fund size at the time of 

investment is much, members may be 

discouraged from taking more risks thereby 

reducing the proportion of their wealth to be 

invested in the risky asset and may invest more 

if otherwise. 
 

5.0 Conclusion 
 

In conclusion, this paper investigated how 

investment in a defined contributory (DC) 

pension fund system with a return clause of 

premium and proportional administrative 

charges are determined and the factors to be 

considered while venturing into investment in 

a risky asset. It also helps in determining the 

proportion of members’ wealth required to be 

invested in the two assets under consideration 

during the accumulation period considering 

the mortality risk involved. To achieve this, an 

investment portfolio with a risk-free asset and 

a risky asset which follows the GMB model 

was considered and the returned premium was 

with interest from an investment in a risk-free 

asset. Also, the Weibull force function was 

used to describe the mortality risk of members 

during the accumulation phase. Furthermore, 

the game-theoretic technique is applied to 

obtain an optimization problem from the 

extended Hamilton Jacobi Bellman equation. 

By using the mean-variance utility and 

variable separation technique, an investment 

strategy (IS) is obtained for the risky asset 

comprising of the risk-free interest rate, 

instantaneous volatility, administrative 

charges, appreciation rate of the risky asset and 

the mortality force function together with the 

efficient frontier which gives the relationship 

between the investment expectation and the 

risk involvement in the investment. 

Furthermore, some numerical simulations 

were obtained to study the impact of some 

sensitive parameters of the IS. It was observed 

that the administrative charges and the 
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mortality rate affect the IS to be adopted. 

Therefore, an insight into how these 

parameters behave is essential in the 

development of an IS. 
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