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Abstract Accurate short-term load forecasting 

(STLF) is critical for efficient energy 

management, especially in regions like 

Nigeria, where electricity demand fluctuates 

due to climatic and socio-economic factors. 

This study proposes a hybrid model combining 

Social Spider Optimisation (SSO) and African 

Vulture Optimisation Algorithm (AVOA) to 

optimise Artificial Neural Networks (ANN) for 

improved STLF accuracy. The model was 

trained and validated using actual load data 

from the Nigerian grid for February, March, 

May, and June 2021. Quantitative evaluation 

using Mean Absolute Percentage Error 

(MAPE), Mean Absolute Error (MAE), Root 

Mean Square Error (RMSE), Pearson 

Correlation Coefficient, and Coefficient of 

Determination (R²) showed superior 

performance of the SSO-AVOA model. The 

most stable results were recorded in May 2021, 

with MAPE of 0.202%, MAE of 8.47 MW, 

RMSE of 28.83 MW, and R² of 0.999, indicating 

nearly perfect forecasting. February and June 

periods showed relatively higher errors (e.g., 

MAPE up to 1.043% in February), reflecting 

the difficulty of forecasting during seasonal 

transitions. Findings confirm the robustness 

and adaptability of the hybrid model, which 

consistently maintains high correlation 

between actual and forecasted loads. However, 

error patterns during volatile periods suggest 

potential for improvement. Future work should 

integrate weather and socio-economic 

indicators, apply dynamic seasonal 

adaptations, and validate the model across 

Nigeria’s geopolitical zones. This study 

demonstrates that hybrid bio-inspired 

algorithms like SSO-AVOA are practical, high-

performing tools for real-world load 

forecasting in dynamic and complex 

environments. 
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1.0 Introduction 
 

Short-term load forecasting (STLF) is a critical 

component of modern power system operation 

and planning, playing a vital role in ensuring 

economic and reliable electricity supply. 

Accurate STLF enhances load management, 

resource allocation, and system reliability 

while reducing operational costs and energy 

losses (Smith, 2019). With increasing energy 

demands, grid complexity, and the integration 

of renewable energy sources, the need for 

improved forecasting models has intensified 
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(Johnson & Lee, 2016; Wang, Wang, & Liu, 

2015). 

Traditional statistical methods such as 

autoregressive integrated moving average 

(ARIMA) have been widely employed for 

STLF due to their simplicity and 

interpretability. However, these models often 

struggle to capture the nonlinear and 

nonstationary behavior of real-world power 

loads, particularly under varying climatic, 

economic, and consumer behavior conditions 

(Davis, 2016; Patel & Sharma, 2016). 

Consequently, artificial intelligence (AI) 

techniques such as artificial neural networks 

(ANNs), support vector machines, and 

ensemble learning have emerged as promising 

alternatives, demonstrating superior 

performance in capturing complex patterns in 

load data (Gupta, Srivastava, & Singh, 2018; 

Kumar & Singh, 2019).  

To further enhance the predictive capabilities 

of ANN-based models, various metaheuristic 

optimization algorithms have been explored for 

the tuning of hyperparameters and network 

weights. Among these, nature-inspired 

algorithms such as genetic algorithms (GAs), 

particle swarm optimization (PSO), ant colony 

optimization (ACO), and more recently, the 

African Vulture Optimization Algorithm 

(AVOA), have gained attention for their 

robustness and flexibility in global 

optimization problems (Thompson & Wilson, 

2020; Adams, Smith, & Johnson, 2021; Zhang 

& Liu, 2022; Wang & Zhao, 2021; Patel & Lee, 

2022). 

The African Vulture Optimization Algorithm is 

a relatively new swarm-based algorithm 

inspired by the foraging behavior and 

intelligence of African vultures. It has shown 

strong global convergence properties and 

competitive performance compared to other 

algorithms in solving complex, high-

dimensional problems (Chen & Li, 2019; 

Abdollahzadeh, Gharehchopogh, & Mirjalili, 

2021; Sahu & Patnaik, 2019). Applications of 

AVOA have been extended to parameter tuning 

in deep learning models, scheduling, and 

engineering design (Lee & Wang, 2022; Brown 

& Clarke, 2021; Cuevas, Cienfuegos, Zaldívar, 

& Pérez, 2014). 

In the context of neural network training, the 

integration of AVOA has opened new avenues 

for developing self-adaptive learning systems 

that improve generalization and reduce training 

errors (Han et al., 2021; Al-Betar et al., 2023; 

Kowalski, Kucharczyk, & Mańdziuk, 2025). 

Recent advances in hybrid metaheuristics 

combining AVOA with other algorithms such 

as simulated annealing and Harris hawks 

optimization have shown promising results for 

constrained optimization and probabilistic 

neural network learning (Heidari et al., 2020; 

Madadi & Correia, 2023; Cuevas, Zaldívar, & 

Pérez-Cisneros, 2014). This study aims to 

explore the integration of AVOA into neural 

network models for short-term load 

forecasting, leveraging its powerful 

optimization capabilities to enhance 

forecasting accuracy and model robustness.. 
 

1.1 Literature review 
 

Short-term load forecasting (STLF) refers to 

the prediction of electricity demand over a 

short time frame, usually ranging from several 

hours to a few days. This type of forecasting 

plays a critical role in the efficient operation 

and planning of power systems, particularly in 

regions like Nigeria, where electricity demand 

is heavily influenced by weather conditions, 

time of day, and seasonal variations (Smith, 

2019; Davis, 2016). 

Traditional statistical techniques such as 

autoregressive integrated moving average 

(ARIMA) and exponential smoothing have 

historically been employed in STLF. However, 

these models often struggle to capture the 

nonlinear and dynamic nature of load demand 

data (Wang, Wang, & Liu, 2015; Patel & 

Sharma, 2016). As the complexity of modern 

power systems increases, particularly with the 

growing integration of renewable energy 

sources, there is a need for more robust 

forecasting models. 
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To address these challenges, researchers have 

explored various advanced methods, including 

machine learning techniques and metaheuristic 

optimisation algorithms (Adams, Smith, & 

Johnson, 2021; Kumar & Singh, 2019). 

Metaheuristics are especially well-suited for 

STLF due to their adaptability to nonlinear, 

stochastic, and high-dimensional optimisation 

tasks. Algorithms such as Genetic Algorithms 

(GAs), Firefly Algorithm (FA), and Particle 

Swarm Optimisation (PSO) have demonstrated 

effectiveness in tuning forecasting models 

(Brown & Clarke, 2021; Zhang & Liu, 2022). 

GAs mimic the principles of natural selection 

and genetic evolution to explore large solution 

spaces (Brown & Clarke, 2021), while FA uses 

the luminescent attraction mechanism of 

fireflies to perform local search operations 

(Zhang & Liu, 2022). PSO, inspired by the 

social behaviour of bird flocks, excels in 

refining candidate solutions through 

cooperative learning among particles (Wang & 

Zhao, 2021). Nonetheless, these algorithms 

often face limitations such as premature 

convergence and entrapment in local optima, 

particularly in complex search landscapes 

(Patel & Lee, 2022). 

In response to these limitations, the African 

Vulture Optimisation Algorithm (AVOA) has 

emerged as a novel metaheuristic inspired by 

the cooperative and scavenging behaviours of 

African vultures. AVOA demonstrates a 

superior balance between exploration and 

exploitation phases, enhancing its applicability 

in complex and high-dimensional forecasting 

problems like STLF (Chen & Li, 2019; 

Abdollahzadeh, Gharehchopogh, & Mirjalili, 

2021). While AVOA shows strong global 

search capabilities, its exploitation efficiency 

during the final stages of optimisation may 

sometimes be less pronounced (Sahu & 

Patnaik, 2019). arallel, Artificial Neural 

Networks (ANNs) have been widely adopted 

for STLF due to their ability to model intricate, 

nonlinear relationships within large datasets. 

ANNs are especially effective in learning 

temporal patterns from historical data and 

providing reliable forecasts, which is 

particularly valuable in regions with significant 

load variability, such as Nigeria (Gupta, 

Srivastava, & Singh, 2018). 
 

3. 0 Materials and Methods 

3.1  Social Spider Optimisation (SSO) 
 

 Spiocial Spider Optimisation (SSO) is a 

nature-inspired optimisation algorithm 

developed by Cuevas et al. (2013), which 

draws inspiration from the cooperative 

foraging behaviour exhibited by social spiders. 

This algorithm simulates the way spiders 

interact and share information about the 

location of prey within a colony. Through these 

interactions, the algorithm achieves a dynamic 

balance between exploration of the search 

space and exploitation of the best-found 

solutions, making it highly suitable for 

optimising complex models such as artificial 

neural networks (ANNs). 

SSO has been effectively applied to a wide 

range of optimisation problems, including 

function optimisation, parameter tuning of 

machine learning algorithms, and various tasks 

in engineering design. Despite its versatility, 

SSO, like other population-based 

metaheuristics, may suffer from premature 

convergence, particularly when navigating 

high-dimensional search spaces. This 

drawback can hinder its performance by 

causing the algorithm to settle on suboptimal 

solutions. 

The fundamental workings of SSO involve 

several interdependent components and steps. 

The optimisation process begins with the 

random initialisation of a population of spiders, 

each representing a candidate solution. Once 

the population is set, each spider’s fitness is 

evaluated using an objective function, denoted 

as f(xi)), where xi represents the position of the 

ith spider. This fitness value indicates the 

quality of the solution at that particular 

position.  
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Following the fitness evaluation, the algorithm 

calculates a weight for each spider using the 

equation 1 

𝑤𝑖 = 
𝑓(𝑥𝑖)

∑ 𝑓(𝑥𝑗)
𝑛
𝑗=1

                                 (1)       

Here, wi is the normalised weight assigned to 

the ith spider, and n is the total number of 

spiders in the population. These weights are 

crucial as they influence how each spider 

updates its position in the search space. Also, 

the position of a spider is updated based on a 

combination of social learning and 

communication with other members of the 

colony. The general position update rule is 

given by equation 2 

𝑥𝑖(𝑡 + 1)

=  𝑥𝑖(𝑡) +  𝜙∑𝑤𝑗 ((𝑥𝑗(𝑡)– 𝑥𝑖(𝑡)))

𝑛

𝑗=1

   (2) 

In this equation, ϕ\phiϕ is a random weight 

factor that introduces stochasticity, wj 

represents the weight of the jth spider, and 

𝑥𝑗(𝑡)is the position of the jth spider at iteration 

t. The spiders also communicate by evaluating 

the collective position of the colony, excluding 

themselves. This communication term is 

defined by equation 3 

𝑣𝑖(𝑡 + 1) =  
1

𝑛 − 1
∑ 𝑓 (𝑥𝑗(𝑡))

𝑛

𝑗=1,𝑗 ≠ 𝑖

      (3) 

This term represents the mean fitness of all 

other spiders and contributes to the colony-

wide information sharing that guides each 

spider's behaviour.  Finally, the enhanced 

position update incorporates both the weighted 

social learning and the communication term, 

resulting in the updated rule: 

𝑥𝑖(𝑡 + 1) =  𝑥𝑖(𝑡)

+  𝜙∑𝑤𝑗 (𝑥𝑗(𝑡) − 𝑥𝑖(𝑡))

𝑛

𝑗=1

 

+  𝑣𝑖(𝑡 + 1)                       (4) 
This equation ensures that each spider's 

movement is influenced by both its interactions 

with others and the global context of the 

colony. 

The algorithm progresses iteratively through 

several steps: initialisation, fitness evaluation, 

weight calculation, position updating, 

communication term calculation, and looping 

through these steps until convergence criteria 

are met. The final output is the best solution 

found during the iterations, which is often a 

near-optimal parameter configuration for the 

targeted model. Social Spider Optimisation 

(SSO) is a nature-inspired optimisation 

algorithm based on the social behaviour of 

spiders introduced by Cuevas et al. (2014). The 

algorithm models the process of cooperative 

foraging, where spiders share information 

regarding the location of prey. The individuals 

in the spider population interact to find food, 

leading to an effective balance between 

exploration and exploitation. This process 

makes SSO an ideal candidate for optimising 

complex models such as ANNs. 

SSO has been applied to various optimisation 

problems, including function optimisation, 

parameter tuning of machine learning models, 

and engineering design. However, like most 

population-based algorithms, SSO can struggle 

with premature convergence, which can limit 

its effectiveness in high-dimensional search 

spaces. 

The following sections describe the key 

components and mathematical formulation of 

the SSO algorithm. 

Key Components 

1. Population Initialization  

2. Fitness Evaluation  

3. Weight Calculation  

4. Position Update  

5. Communication through Web 

The Mathematical Formulation for SSO are: 

1. Fitness Evaluation: 

   𝑓(𝑥𝑖)  
=  objective function value at position 𝑥𝑖 

where𝑓(𝑥𝑖) is the fitness of the 𝑖 − 𝑡ℎ spider at 

position 𝑥𝑖 . 
2. Weight Calculation: 

𝑤𝑖 = 
𝑓(𝑥𝑖)

∑ 𝑓(𝑥𝑗)
𝑛
𝑗=1

                           (1) 
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where 𝑤𝑖 is the weight of the 𝑖 − 𝑡ℎ spider, and 

𝑛 is the total number of spiders. 

3. Spider Position Update: 

The position of each spider is updated based on 

social learning and communication 

mechanisms: 

𝑥𝑖(𝑡 + 1)

=  𝑥𝑖(𝑡) +  𝜙 ∑𝑤𝑗 ((𝑥𝑗(𝑡)– 𝑥𝑖(𝑡)))

𝑛

𝑗=1

  (2) 

where 𝜙 is a random weight factor, 𝑤𝑗 is the 

weight of the 𝑗 − 𝑡ℎ spider, and 𝑥𝑗(𝑡) is the 

position of the 𝑗 − 𝑡ℎ spider and n is the 

number of spiders. 

4. Communication Term: 

The communication term represents the mean 

position of all other spiders, influencing each 

spider's position update: 

𝑣𝑖(𝑡 + 1)

=  
1

𝑛 − 1
∑ 𝑓 (𝑥𝑗(𝑡))

𝑛

𝑗=1,𝑗 ≠ 𝑖

                      (3) 

where𝑣𝑖(𝑡 + 1) is the mean position of all 

spiders except the 𝑖 − 𝑡ℎ spider, representing 

the collective information of the colony. 

5. Enhanced Position Update: 

The position of each spider is updated by 

integrating the social learning and 

communication terms: 

𝑥𝑖(𝑡 + 1) =  𝑥𝑖(𝑡)

+  𝜙∑𝑤𝑗 (𝑥𝑗(𝑡) − 𝑥𝑖(𝑡))

𝑛

𝑗=1

 

+  𝑣𝑖(𝑡 + 1)                   (4) 
Steps Involved 

1. Initialisation 2. Fitness Evaluation 3. Weight 

Calculation 4. Position Update 5. 

Communication Term Calculation 6. Iteration 

and 7. Output 

3.2.1. Social Spider Optimization (SSO) 

The Social Spider Optimization algorithm is 

inspired by the social behavior of spiders. It is 

a swarm intelligence algorithm where each 

spider (agent) in the population represents a 

solution. The objective is to find the optimal or 

near-optimal solution by mimicking the 

spiders' social behavior. 

Mathematical formulation: 

Let 𝑆𝑖(𝑡) represent the position of the 𝑖 − 𝑡ℎ 

spider (solution). The update rule for the 

position of each spider in SSO is given by: 

𝑆𝑖(𝑡 + 1) = 𝑆𝑖(𝑡) + 𝑐1 ⋅ (𝑃𝑏𝑒𝑠𝑡𝑖  – 𝑆𝑖(𝑡)) + 𝑐2

⋅ (𝐺𝑏𝑒𝑠𝑡 − 𝑆𝑖(𝑡)) + 𝜀             (5) 
where 𝑆𝑖(𝑡) is the current position of the spider 

at time step 𝑡, 𝑃𝑏𝑒𝑠𝑡𝑖 is the personal best 

position of the spider 𝑖, 𝐺𝑏𝑒𝑠𝑡 is the global best 

position (best solution found so far), 𝑐1 and 

𝑐2 are constants controlling the impact of 

personal and global bests and 𝜀 is a random 

perturbation to introduce diversity. 

In the context of STLF using ANN, 𝑆𝑖(𝑡) 
would represent the weights and biases of the 

neural network model. 
 

3.2 African Vulture Optimisation Algorithm 

(AVOA) 
 

The African Vulture Optimisation Algorithm 

(AVOA) is a metaheuristic inspired by the 

scavenging behavior of vultures 

(Abdollahzadeh, Gharehchopogh, & Mirjalili, 

2021). In nature, vultures glide across vast 

areas to locate carcasses, which they scavenge 

and consume. This behavior is effectively 

modeled in AVOA through two core phases: 

exploration, which involves the global search 

for potential solutions across the entire search 

space, and exploitation, where the search 

focuses on refining solutions near promising 

areas. AVOA has demonstrated significant 

success in addressing a variety of optimisation 

challenges, including those found in machine 

learning, engineering design, and power 

systems (Chen & Li, 2019; Sahu & Patnaik, 

2019; Adams, Smith, & Johnson, 2021). Its 

adaptive switching mechanism between 

exploration and exploitation phases allows it to 

efficiently optimise Artificial Neural Network 

(ANN) parameters in tasks such as short-term 

load forecasting. By emulating the foraging 

and cooperative strategies of African vultures, 

AVOA presents a powerful nature-inspired 

algorithm that balances search diversity and 
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convergence. The mathematical formulations 

that describe this optimization process are 

presented in detail in the literature 

(Abdollahzadeh et al., 2021). 

i. Vulture Position Update 

The position update of a vulture in AVOA is 

influenced by three main factors: 

• The position of the current vulture. 

• The best position found so far (global 

best). 

• The movement towards the food source 

(target position). 

The general update equation for the position of 

the 𝑖𝑡ℎ vulture in iteration 𝑡 is given by: 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝛼 ⋅ (𝑓𝑏𝑒𝑠𝑡(𝑡) − 𝑥𝑖(𝑡)) +

𝛽 ⋅ 𝑟𝑎𝑛𝑑𝑜𝑚(0,1)                               (6) 

where 𝑥𝑖(𝑡): Position of the 𝑖𝑡ℎ vulture at 

iteration 𝑡, 𝑓𝑏𝑒𝑠𝑡(𝑡): Best-known position (food 

source) found by the vultures at iteration 𝑡. 𝛼 

=Exploration coefficient controlling the search 

behaviour (larger 𝛼 promotes exploration) , 

𝛽 =Exploitation coefficient controlling the 

convergence towards the best solution (larger 𝛽 

promotes exploitation), and 𝑟𝑎𝑛𝑑𝑜𝑚(0,1): A 

random number between 0 and 1 to introduce 

randomness into the search. 

ii. Vulture Velocity Update 

Vultures adjust their velocity based on their 

current velocity, the best-known position, and 

the food source's position. This allows them to 

balance exploration and exploitation. The 

velocity update equation is: 

𝑣𝑖(𝑡 + 1) = 𝛾 ⋅ 𝑣𝑖(𝑡) + 𝛿

⋅ (𝑓𝑏𝑒𝑠𝑡(𝑡) − 𝑥𝑖(𝑡))          (7) 

Where 𝑣𝑖(𝑡)𝑖𝑠 𝑡ℎ𝑒 𝑣elocity of the 𝑖𝑡ℎ vulture at 

iteration t, 𝛾 is the  coefficient for inertia, 

controlling the momentum from the previous 

velocity and 𝛿 𝑖𝑠 𝑎 coefficient for the atraction 

towards the food source, controlling the 

exploitation of the best-known position. 

iii. Foraging Behaviour 

The foraging behaviour is based on the 

following idea: vultures tend to explore vast 

areas for food and exploit rich food sources 

once discovered. The update process can be 

separated into two stages: 

Exploration Phase: When the vultures are far 

from the food source, they move randomly to 

search for new food sources. 

Exploitation Phase: Once a food source is 

found, vultures focus on refining their search 

around the food source. 

To balance these two phases, AVOA uses 

adaptive mechanisms that adjust the 

coefficients 𝛼 and 𝛽 during the optimisation 

process. The exploration is encouraged with 

larger values of 𝛼 early in the search, while 

exploitation is favoured with larger values of 𝛽 

as the algorithm converges. 

iv. Fitness Evaluation 

The fitness of each vulture is evaluated by an 

objective function 𝑓(𝑥) that quantifies how 

close the vulture's position is to the optimal 

solution. The algorithm aims to maximise or 

minimise this fitness function (depending on 

the problem). 

𝑓(𝑥)
= 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 𝑎𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑥 

The best position found by the vultures, 

denoted as 𝑓𝑏𝑒𝑠𝑡, corresponds to the food 

source that maximises or minimises the 

objective function, depending on the nature of 

the optimisation problem. 

v. Adaptive Update Mechanism 

To ensure efficient exploration and 

exploitation throughout the search process, 

AVOA adapts the exploration and exploitation 

coefficients based on the quality of the current 

solution. As the algorithm progresses, 𝛼 

gradually decreases to promote exploitation, 

while 𝛽 increases to focus on refining the 

search around promising regions. 

𝛼(𝑡) = 𝛼𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ⋅ (1 −
𝑡

𝑇
)          (8) 

𝛽(𝑡) =  𝛽𝑖𝑛𝑖𝑡𝑖𝑎𝑙. (
𝑡

𝑇
)                    (9)  

Where 𝑡 is the current iteration, 𝑇 is the total 

number of iterations, 𝛼𝑖𝑛𝑖𝑡𝑖𝑎𝑙 and 𝛽𝑖𝑛𝑖𝑡𝑖𝑎𝑙 are 

the initial values for the coefficients. 

vi. Stopping Criteria 



Communication in Physical Sciences, 2024, 12(3): 1123-1150  1129 
 

The AVOA terminates when a predefined 

stopping criterion is met, such as: 

• A maximum number of iterations. 

• A threshold for the fitness value (i.e., 

when the algorithm converges to a 

satisfactory solution). 

Summary of the AVOA Process: 

1. Initialisation: Randomly initialise the 

positions and velocities of the vultures. 

2. Fitness Evaluation: Calculate the 

fitness of each vulture. 

3. Position Update: Update the position 

and velocity based on the foraging 

behaviour. 

4. Best Solution Update: Update the 

global best (food source) position based 

on fitness. 

5. Iteration: Repeat steps 2–4 until the 

stopping criterion is met. 

These mathematical expressions and processes 

form the foundation of the African Vulture 

Optimisation Algorithm, enabling it to explore 

and exploit the search space effectively. 

The African Vulture Optimisation Algorithm 

(AVOA) is a metaheuristic algorithm 

introduced by B. Abdollahzadeh et al. (2021) 

in 2021. This approach is inspired by the 

competitive and navigational behaviour of 

African vultures, which are known for their 

unique physical traits and regarded as 

intelligent and resilient creatures. One of the 

key characteristics of African vultures is their 

ability to take appropriate actions based on 

their current hunger level, which is also a 

feature of the AVOA. The algorithm models 

this behaviour by considering the vulture’s 

hunger rate during the solution process. 

The hunger rate model is mathematically represented by equation (10): 

𝐹𝑡(𝑡) = (2 × 𝑟𝑎𝑛𝑑 + 1) × 𝑧 × (1 −
𝑡

𝑇
) + 𝑑𝑡                                              (10) 

𝑑𝑡 = ℎ 𝑥 (𝑠𝑖𝑛
𝑤 (
𝜋

2
𝑥
𝑡

𝑇
) + 𝑐𝑜𝑠 (

𝜋

2
𝑥
𝑡

𝑇
) − 1)                                                (11) 

where 𝐹𝑡(𝑡) is the hunger rate of the 𝑖𝑡ℎ vulture 

at the 𝑡𝑡ℎ iteration, 𝑑𝑡 is a fixed parameter, 

determined before the algorithm begins,  is the 

current iteration number, 𝑇 is the maximum 

number of iterations, 𝑟𝑎𝑛𝑑 is a random number 

between 0 and 1, ℎ is a random number 

between -2 and 2,  𝑧 is a random number 

between -1 and 1 and 𝑤 is a fixed value, set to 

2.5 in AVOA. 

If 𝐹𝑡(𝑡) drops below zero, the vulture 

iseconsidered to be in a hungry state. If 𝑧 
increases to zero, the vulture is considered 

satiated. 

To simulate the competitive behaviour of 

vultures, the first- or second-best vulture is 

selected as the leader, as represented in 

Equation (3): 

𝑅𝑖(𝑡)

= {
𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒1, 𝑖𝑓 𝑝 > 𝑟𝑎𝑛𝑑
𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒2,            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                        (12) 

where 𝑅𝑖(𝑡) is the randomly selected vulture at 

iteration t, 𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒1 and 𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒2 

represent the first- and second-best vultures, 

respectively and 𝑝 is a constant set to 0.8. 
 

3.2.1 Exploration Phase 
 

When the hunger rate|𝐹𝑡(𝑡)|  ≥  1, vultures 

search for food in different areas, indicating 

that the AVOA has entered the exploration 

phase. In this phase, the vultures exhibit two 

distinct movement strategies to protect their 

food sources, which are mathematically 

represented by the following models: 

The position of the 𝑖𝑡ℎ vulture for the next 

iteration 𝑃𝑡(𝑡 + 1), is updated based on the 

following two equations: 

𝑃𝑖(𝑡 + 1) =

{
𝐸𝑞. (13), 𝑖𝑓 𝑝1 ≥ 𝑟𝑎𝑛𝑑𝑝1
𝐸𝑞. (14), 𝑖𝑓 𝑝1 < 𝑟𝑎𝑛𝑑𝑝1

           (13), (14) 

where 𝑃𝑖(𝑡 + 1) represents the updated 

position of the vulture at iteration 𝑡 +  1 and 

 𝑝1 is set to 0.6, and 𝑟𝑎𝑛𝑑𝑝1 is a random 

number between 0 and 1. 
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𝑃𝑖(𝑡 + 1) = 𝑅𝑖(𝑡) − 𝐷𝑖(𝑡) × 𝐹𝑖(𝑡)                                                                   (15) 
𝑃𝑖(𝑡 + 1) = 𝑅𝑖(𝑡) − 𝐹𝑖(𝑡) + 𝑟𝑎𝑛𝑑 × ((𝑢𝑏 − 𝑙𝑏) × 𝑟𝑎𝑛𝑑 × 𝑙𝑏)               (16) 

Where 𝑅𝑖(𝑡) is the randomly selected leader 

vulture at iteration t, 𝐷𝑖  is the distance between 

the current vulture and the selected leader, 

𝐹𝑖(𝑡) is the hunger rate of the vulture at 

iteration t, 𝑢𝑏 and 𝑙𝑏 represent the upper and 

lower bounds of the search space and 𝑋 is a 

random number between -2 and 2. The distance 

𝐷𝑖(𝑡) is calculated as: 

𝐷𝑖(𝑡) =∣ 𝑋 × 𝑅𝑖(𝑡) − 𝑃𝑖(𝑡)               (17) 
 

3.2.2 Exploitation Phase 
 

When the hunger rate |𝐹𝑡(𝑡)|  <  1, vultures 

focus on searching for food within smaller 

areas, and the algorithm transitions to the 

exploitation phase. In this phase, the vultures 

employ two different movement strategies. 

The update rules for the vulture’s position are as follows: 

𝑃𝑖(𝑡 + 1) = {
𝐸𝑞. (17), 𝑖𝑓 𝑝2 ≥ 𝑟𝑎𝑛𝑑𝑝2
𝐸𝑞. (18), 𝑖𝑓 𝑝2 < 𝑟𝑎𝑛𝑑𝑝2

                                                          (17), (18) 

𝑃𝑖(𝑡 + 1) = 𝐷𝑖(𝑡) − (𝐹𝑖(𝑡) + 𝑟𝑎𝑛𝑑) − 𝑑𝑖(𝑡)                                                                 (19) 
𝑃𝑖(𝑡 + 1) = 𝑅𝑖(𝑡) − (𝑆1 − 𝑆2)              (20) 

Where 𝑑𝑖(𝑡) is the difference between the position of the current vulture and the selected leader, 

given by: 

𝑑𝑖(𝑡) = 𝑅𝑖(𝑡) − 𝑃𝑖(𝑡)                                                                                           (21)  
The variables 𝑆1 and 𝑆2 are defined as: 

𝑆1 = 𝑅𝑖(𝑡) × (
𝑟𝑎𝑛𝑑 × 𝑃𝑖(𝑡)

2𝜋
) × cos(𝑃𝑖(𝑡))                                                   (22) 

𝑆2 = 𝑅𝑖(𝑡) × (
𝑟𝑎𝑛𝑑 × 𝑃𝑖(𝑡)

2𝜋
) × sin(𝑃𝑖(𝑡))                                                   (23) 

where 𝑝2 is set to 0.4, and 𝑟𝑎𝑛𝑑𝑝2 is a random number between 0 and 1, 𝑅𝑖 is the best vulture at 

iteration 𝑡 and 𝑟𝑎𝑛𝑑 is a random number between 0 and 1. 
 

3.2.3 Accumulation and Fierce Competition for Food 
 

In the second phase, when the hunger rate |𝐹𝑡(𝑡)|<1, the vultures begin to accumulate food and 

engage in fierce competition for food sources. This phase is simulated by two additional strategies 

based on the leader vulture’s position: 

𝑃𝑖(𝑡 + 1) = {
𝐸𝑞. (24), 𝑖𝑓 𝑝3 ≥ 𝑟𝑎𝑛𝑑𝑝3
𝐸𝑞. (25), 𝑖𝑓 𝑝3 < 𝑟𝑎𝑛𝑑𝑝3

                                                                              (24), (25) 

𝑃𝑖(𝑡 + 1) =
𝐴1+𝐴2

2
                                                                                                                    (26) 

𝑃𝑖(𝑡 + 1) = 𝑅𝑖(𝑡) − |𝑑𝑖(𝑡)| 𝑥 𝐹𝑖(𝑡) 𝑥 𝐿𝑒𝑣𝑦(𝑑)                                                                (27) 
 

Where: 

• 𝐴1 and 𝐴2 represent the differences between the leader vultures and the current position of 

the vulture: 

𝐴1 = 𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒1(𝑡) − (
𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒1(𝑡) − 𝑃𝑖(𝑡)

2

(𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒1(𝑡))
2
− 𝑃𝑖(𝑡)2

)  𝑥 𝐹𝑖(𝑡)         (27) 

𝐴2 = 𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒1(𝑡) − (
𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒2(𝑡) − 𝑃𝑖(𝑡)

2

𝐵𝑒𝑠𝑡𝑉𝑢𝑙𝑡𝑢𝑟𝑒2(𝑡) − 𝑃𝑖(𝑡)2
)  𝑥 𝐹𝑖(𝑡)                              (28) 

The Levy flight function 𝐿𝑒𝑣𝑦(𝑑) is defined as: 
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𝐿𝑒𝑣𝑦(𝑑) = 0.01𝑥
𝑢

|𝑣|
1
𝛽

, 𝑢 ∼ (0, 𝜎𝑢
2), 𝑣 ∼ (0, 𝜎𝑣

2)                                                            (29) 

𝜎𝑢 =

(

 
𝛤(1 + 𝛽) 𝑥 𝑠𝑖𝑛 (

𝜋𝛽
2
)

𝛤 (
1 + 𝛽
2
)  𝑥 𝛽 𝑥 2

(
𝛽−1
2
)

)

 

1
𝛽

                                                                                    (30) 

Where: 

• 𝑢 ∼ (0, 𝜎𝑢
2) 𝑎𝑛𝑑 𝑣 ∼ (0, 𝜎𝑣

2) are random numbers generated from normal distributions. 

• 𝛽 is a constant, and 𝜎𝑢 𝑎𝑛𝑑 𝜎𝑣 are the standard deviations. 

he values for Γ and other parameters are used 

to ensure the Lévy distribution's heavy-tail 

property, facilitating large jumps during the 

search process. Here, p3p_3p3 is set to 0.4, and 

randp3\text{rand}_{p3}randp3 is a random 

number between 0 and 1. The variables uuu and 

vvv are random numbers that follow a 

Gaussian distribution. The values of 

σv\sigma_vσv and β\betaβ are set to 1 and 1.5, 

respectively. Γ\GammaΓ represents the 

standard gamma function (Abdollahzadeh, 

Gharehchopogh, & Mirjalili, 2021). 
 

 

3.3 Hybrid Optimisation Approaches 
 

Combining the strengths of different 

optimisation algorithms has proven effective in 

overcoming the limitations of individual 

methods (Yang, 2014). A hybrid approach can 

leverage the exploration capabilities of one 

algorithm and the exploitation strengths of 

another, leading to a more balanced search 

process. Hybrid optimisation methods 

involving Social Spider Optimisation (SSO) 

and African Vulture Optimisation Algorithm 

(AVOA) have been rarely explored in the 

literature (Lee & Wang, 2022), especially in the 

context of short-term load forecasting (STLF). 

This paper introduces such a hybrid method, 

aiming to combine the global search capability 

of SSO with the refinement power of AVOA, 

thereby improving ANN training for STLF. 
 

3.4 Artificial Neural Network (ANN) Model 
 

The ANN model used for STLF consists of an 

input layer, one or more hidden layers, and an 

output layer (Brown & Clarke, 2022; Han et al., 

2021). The input layer takes various features 

such as historical load data, weather data (e.g., 

temperature and humidity), and temporal 

information (e.g., time of day, day of the week). 

The output layer provides the predicted load for 

the next time step. The hidden layers contain 

neurons that perform the necessary 

transformations to map the input features to the 

target output. Training the ANN involves 

optimising the weights and biases using the 

hybrid optimisation approach (Kowalski, 

Kucharczyk, & Mańdziuk, 2025). The goal is 

to minimise the Mean Squared Error (MSE) or 

Root Mean Squared Error (RMSE) between the 

predicted and actual loads. 
 

3.5 Hybrid SSO and AVOA Optimisation 
 

The hybrid SSO and AVOA approach is 

implemented as follows: 

Social Spider Optimisation (SSO): Initially, 

SSO is used to explore the solution space and 

generate a diverse population of candidate 

solutions. Each solution corresponds to a set of 

ANN weights and biases (Al-Betar et al., 

2023). 

African Vulture Optimisation Algorithm 

(AVOA): Once SSO has generated an initial 

population of promising solutions, AVOA is 

applied to refine these solutions by focusing on 

the best candidates. The vulture agents exploit 

the best solutions found by the spiders (SSO) to 

achieve higher accuracy in forecasting 

(Thompson & Wilson, 2020; Adams, Smith, & 

Johnson, 2021). 

Iterative Optimisation: The hybrid method 

iteratively alternates between the exploration 

phase of SSO and the exploitation phase of 
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AVOA, continuously improving the ANN’s 

parameters. 

ANN Training: The optimised parameters are 

then used to train the ANN model, allowing it 

to learn from the data and make accurate 

predictions for future load. 

The Hybrid Social Spider Optimisation 

(HSSO) and African Vulture Optimisation 

Algorithm (AVOA) are both heuristic 

techniques that can significantly improve the 

performance of ANNs for STLF (Madadi & 

Correia, 2023; Heidari et al., 2020). 
 

3.6 Hybrid Social Spider Optimization and 

African Vulture Optimization (HSSO-AVO) 
 

The hybridization of Social Spider 

Optimization (SSO) and African Vulture 

Optimization (AVO) combines the strengths of 

both algorithms. The hybrid strategy is 

intended to leverage both the social 

collaboration aspect of spiders and the 

exploration-exploitation behavior of vultures. 
 

3.7 Hybrid Update Formula 
 

The hybridized update rule could be defined as: 

𝑆𝑖(𝑡 + 1) =  𝛼. ( 𝑆𝑖(𝑡) + 𝑐1. (𝑃𝑏𝑒𝑠𝑡𝑖 − 𝑆𝑖(𝑡)) + 𝑐2. (𝐺𝑏𝑒𝑠𝑡 − 𝑆𝑖(𝑡)) + 𝜀)

+ 𝛽. ( 𝑋𝑖(𝑡) + 𝑐1. (𝑉𝑖(𝑡) − 𝑋𝑖(𝑡)) + 𝑐2. (𝐺(𝑡) − 𝑋𝑖(𝑡)))                 (30) 

Where 𝑆𝑖(𝑡 + 1) is the updated position of the 

hybrid solution at time 𝑡 + 1, 𝑆𝑖(𝑡) and𝑋𝑖(𝑡) 
are the current positions (solutions) of the 

spider and the vulture, respectively, 𝑃𝑏𝑒𝑠𝑡𝑖 and 

𝑉𝑖(𝑡) are the personal best positions of the 

spider and vulture, 𝐺𝑏𝑒𝑠𝑡 and 𝐺(𝑡) are the 

global best positions, 𝑐1, 𝑐2 are constants, and 

𝛼 and 𝛽 are weighting factors that control the 

influence of each individual optimization 

technique in the hybrid model.  This combined 

approach allows the model to benefit from the 

exploitation abilities of spiders and the 

exploration strengths of vultures, potentially 

leading to better performance in ANN-based 

STLF. 
 

3.8. ANN for Short-Term Load Forecasting 

(STLF) 
 

In the context of STLF, the optimization 

algorithms are applied to train the weights and 

biases of the ANN model. The ANN model 

would typically consist of an input layer, 

hidden layers, and an output layer. The inputs 

might consist of historical load data, weather 

data, or time-related features, while the output 

is the forecasted load for a specific time 

interval. 

Let 𝑋 represent the input data (load history, 

weather, etc.), and 𝑌 represent the forecasted 

load. The loss function to be minimized could 

be the Mean Squared Error (MSE): 

𝑀𝑆𝐸 =  
1

𝑛
∑( 𝑦𝑖 − �̂�𝑖)

2

𝑛

𝑖

                      (31) 

where 𝑛 is the number of data points, 𝑦𝑖 is the 

actual load value at time 𝑖 and �̂�𝑖 is the 

predicted load value at time 𝑖. 
 

3.9. Combining the Optimization with ANN 

for STLF 
 

After applying HSSO-AVO to optimize the 

ANN weights and biases, the neural network is 

trained to minimize the MSE. The hybrid 

algorithm iterates over generations, updating 

the network parameters, and potentially 

improves the model's ability to forecast short-

term loads. 

Thus, the hybrid approach aims to find the best 

configuration of ANN parameters that 

minimize the error in forecasting short-term 

load. 

This formulation provides a general 

understanding of how the two optimization 

algorithms (SSO and AVO) can be combined 

and applied to ANN in the context of STLF. 

Adjustments to the parameters and the 

hybridization mechanism might be necessary 

based on specific characteristics of the 

forecasting problem and the neural network 

architecture being used. 
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3.10 Algorithm for Hybrid Social Spider 

Optimization and African Vulture 

Optimization (HSSO-AVO) 
 

The Hybrid Social Spider Optimization and 

African Vulture Optimization (HSSO-AVO) 

algorithm integrates the features of both Social 

Spider Optimization (SSO) and African 

Vulture Optimization Algorithm (AVO) to 

achieve enhanced search performance. Below 

is a step-by-step outline of the algorithm: 

Step 1: Initialization 

1. Set parameters: 

𝑁: Number of spiders and vultures 

(population size). 

𝑐1, 𝑐2: Constants for influencing 

personal and global best solutions. 

𝛼, 𝛽: Weighting factors to control the 

influence of each optimisation 

technique (SSO and AVO). 

𝜖: Small random noise factor to 

maintain diversity. 

Maximum number of iterations𝑇𝑚𝑎𝑥. 

2. Initialize positions: 

Randomly initialise the positions of 

spiders 𝑆𝑖
𝑡 and vultures 𝑋𝑖

𝑡 for each 

individual 𝑖 in the population. 

3. Initialize velocities: 

Set the initial velocities of spiders and 

vultures to zero or random values. 

4. Initialize personal best positions: 

Set the personal best positions of 

spiders 𝑃𝑏𝑒𝑠𝑡𝑖 and vultures 𝑉𝑏𝑒𝑠𝑡𝑖 to their 

initial positions. 

5. Initialize global best position: 

Set the global best position 𝐺𝑏𝑒𝑠𝑡 to the 

best solution found by both spiders and 

vultures. 

Step 2: Iterative Update Process 

For each iteration 𝑡 = 1,2,3, … , 𝑇𝑚𝑎𝑥: 
1. Evaluate fitness: 

For each spider 𝑆𝑖(𝑡) and vulture 𝑋𝑖(𝑡), 
evaluate the fitness function (e.g., error 

in load forecasting). 

2. Update personal best positions: 

If the fitness of a spider 𝑆𝑖(𝑡) or vulture 𝑋𝑖(𝑡)is better than its previous personal best 

  𝑃𝑏𝑒𝑠𝑡𝑖  𝑜𝑟 𝑉𝑏𝑒𝑠𝑡𝑖 , update the respective personal bests: 

𝑃𝑏𝑒𝑠𝑡𝑖 = 𝑆𝑖(𝑡) 𝑖𝑓𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑆𝑖(𝑡)) < 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑃𝑏𝑒𝑠𝑡𝑖) 

 𝑉𝑏𝑒𝑠𝑡𝑖 = 𝑉𝑖(𝑡) 𝑖𝑓𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑉𝑖(𝑡)) < 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑉𝑏𝑒𝑠𝑡𝑖)  

3. Update global best position: 

Update the global best position 𝐺𝑏𝑒𝑠𝑡 if the fitness of the spider or vulture is better than the 

current 𝐺𝑏𝑒𝑠𝑡 
𝐺𝑏𝑒𝑠𝑡 = 𝑆𝑖(𝑡) 𝑖𝑓𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑆𝑖

𝑡) < 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐺𝑏𝑒𝑠𝑡) 
𝐺𝑏𝑒𝑠𝑡 = 𝑋𝑖(𝑡) 𝑖𝑓𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑋𝑖(𝑡)) < 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐺𝑏𝑒𝑠𝑡)  

4. Update positions: 

For each individual 𝑖, update the position using the hybrid update formula: 

𝑆𝑖(𝑡 + 1) = 𝛼 ⋅ (𝑆𝑖(𝑡) + 𝑐1 ⋅ (𝑃𝑏𝑒𝑠𝑡𝑖 − 𝑆𝑖(𝑡)) + 𝑐2 ⋅ (𝐺𝑏𝑒𝑠𝑡 − 𝑆𝑖(𝑡)) + 𝜖) + 𝛽

⋅ (𝑋𝑖(𝑡) + 𝑐1 ⋅ (𝑉𝑖(𝑡) − 𝑋𝑖(𝑡)) + 𝑐2 ⋅ (𝐺𝑡 − 𝑋𝑖(𝑡))) 
where 𝑆𝑖(𝑡 + 1) Updated position of the spider 

at iteration 𝑡 + 1, 𝑋𝑖(𝑡) = Current position of 

the vulture at iteration t, 𝑃𝑏𝑒𝑠𝑡𝑖= Personal best 

position of the spider, 𝑉𝑖(𝑡) = Personal best 

position of the vulture, 𝐺𝑏𝑒𝑠𝑡 = Global best 

position, 𝑐1, 𝑐2: Constants influencing the 

personal and global best positions, 𝛼, 𝛽 = 

Weighting factors for the spider and vulture 

components and 𝜖 = Random noise term. 

5. Velocity update (optional): 

If required, update the velocity for both 

spiders and vultures based on their 

current position and best-known 

solutions (this depends on the specific 

variant of the algorithm being used). 

Step 3: Termination 

1. Check for termination: 

The algorithm stops either when the 

maximum number of iterations 
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𝑇𝑚𝑎𝑥 is reached or when a satisfactory 

solution is found (fitness threshold). 

2. Output the global best position 𝐺𝑏𝑒𝑠𝑡 
The global best position at the final 

iteration represents the optimised 

solution for the problem. 

3.11 Summary of Key Components: 

Hybrid Update Formula: The update formula 

blends the Social Spider Optimisation (SSO) 

and African Vulture Optimisation Algorithm 

(AVO), combining exploitation (from spiders) 

and exploration (from vultures). 

Personal and Global Best: Both spiders and 

vultures maintain their personal best positions 

and share the global best solution to guide their 

search. 

Balancing Exploration and Exploitation: The 

parameters α and β control how much each 

algorithm (SSO and AVO) influences the 

overall search process, allowing for dynamic 

adjustments to suit the problem at hand. 

The HSSO-AVO algorithm offers a balanced 

approach by hybridising the strengths of both 

Social Spider Optimisation and African 

Vulture Optimisation. The algorithm 

effectively combines the exploration abilities 

of vultures with the exploitation strengths of 

spiders, making it suitable for complex 

optimisation problems like ANN-based Short-

Term Load Forecasting (STLF). 

4.0  Experimental Setup 

4.1 Data Collection and Pre-processing 
 

Training and Testing: The dataset is split into 

training, validation, and test sets. The training 

set is used to train the proposed hybrid model 

with optimised parameters, while the validation 

set is used for tuning and evaluating the 

performance during the optimisation process. 

The test set is used for final evaluation. 

The dataset used for training and testing the 

model consists of historical hourly load 

demand data, and time-related features (e.g., 

time of day, weekday, month). The data is pre-

processed by normalising the input features and 

spliting it into training and testing sets. Cross-

validation is applied to ensure that the model is 

robust and generalises well to unseen data. 
 

4.2 Dataset 
 

The dataset used in this study is sourced from 

Nigeria power utilities, containing historical 

load data for a period of three years. The 

dataset includes features such as time of day, 

which are crucial for accurate load forecasting. 

4.3 Performance/ Comparison Metrics and 

Evaluation Criteria 
 

The performance of the proposed hybrid 

method is evaluated using the following 

metrics: 

1. Mean Absolute Error (MAE) 

𝑀𝐴𝐸 =  
1

𝑁
∑|𝑦𝑡 − �̂�𝑡|

𝑁

𝑡=1

                (25) 

2. Root Mean Squared Error (RMSE) 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑(𝑦𝑡 − �̂�𝑡)2
𝑁

𝑡=1

          (26) 

3. Mean Absolute Percentage Error (MAPE) 

𝑀𝐴𝑃𝐸

=  
100%

𝑁
∑|

𝑦𝑡 − �̂�𝑡
𝑦𝑡

|

𝑁

𝑡=1

                         (27) 

4. R-squared (𝑅2) 

𝑅2 =  1 − 
∑ (𝑦𝑡 − �̂�𝑡)

2𝑁
𝑡=1

∑ (𝑦𝑡 − �̅�)2
𝑁
𝑡=1

             (28) 

where �̅� is the mean of the actual values 𝑦𝑡. 
5. Pearson Correlation Coefficient r 

    𝑟 =
∑ (𝑋𝑖 − �̅�)(𝑌𝑖 − �̅�)
𝑁
𝑖=1

√∑ (𝑋𝑖 − �̅�)2
𝑁
𝑖=1 ∑ (𝑌𝑖 − �̅�)2

𝑁
𝑖=1

   (29) 

     where 𝑋𝑖 and 𝑌𝑖 are the individual sample 

points, and �̅� and �̅�are the means of the 𝑋𝑖 
and 𝑌𝑖  variables, respectively. 

 
 

4.4 Implementation 
 

The ANN model is implemented using Dev 

C++ ver 6.3, and the optimisation algorithms 

are implemented using the same platform. The 

hybrid SSO-AVOA optimisation is integrated 
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into the ANN training loop to fine-tune the 

model’s parameters. 
 

5.0 Results and Discussion 

5.1 Comparison with Traditional 

Optimisation Methods 
 

To support the evaluation and validation of the 

proposed model's predictive performance, a 

comparative analysis with various existing 

optimization-based forecasting models was 

conducted. This comparison utilized standard 

statistical performance metrics including Mean 

Absolute Percentage Error (MAPE), Mean 

Absolute Error (MAE), Theil’s U-statistic, and 

Root Mean Square Error (RMSE). These 

metrics help assess both the accuracy and 

efficiency of the predictive algorithms. The 

results presented in Table 1 reflect the 

performance of each model using historical 

data from 24th April 2021, a representative 

date selected for model benchmarking. 

Table 1 below provides a comparative 

summary of the performance metrics of the 

proposed model (SSO-AVOA) against other 

models, including Artificial Bee Colony 

(ABC), ABC enhanced with Firefly Algorithm 

(ABC-FA), Genetic Algorithm (GA), hybrid 

models such as BA-GA (Bat Algorithm–

Genetic Algorithm), and several others. 

 

 

Table 1: Comparison of the Performance Metrics of the Proposed Model and Various 

Models for 24/04/2021 
 

Performance 

Metrics 

ABC ABC-

FA 

GA BA-GA BA SSO-

AVOA 

DVBA PSO GWO-

GTO 

MAPE (%) 0.2971 0.2832 0.2817 0.2965 0.2820 0.2786 0.2884 0.2932 0.2967 

MAE 13.7880 13.3109 13.2328 14.0514 13.2735 13.1069 13.6061 13.8262 14.0239 

Theil’s U 

Statistic 

1.1175 0.8913 0.8931 0.9663 0.8938 0.8862 0.9158 0.9699 0.9356 

RMSE 44.6345 44.4982 44.5907 48.2469 44.6249 44.2450 45.7254 48.4224 46.7127 

 

From the table, it is evident that the SSO-

AVOA model outperformed all other models 

across all four performance metrics, registering 

the lowest MAPE, MAE, Theil's U, and RMSE 

values, thereby affirming its superior predictive 

capability and robustness for the data 

considered. To further evaluate the 

consistency, accuracy, and reliability of the 

proposed SSO-AVOA hybrid model, an 

extended 1-week load forecasting performance 

was assessed using multiple statistical 

indicators. This provides a dynamic 

perspective of the model’s behavior over time 

and under varying daily conditions. The results 

are presented in Table 2, which includes a 

comprehensive suite of performance metrics 

such as Mean Absolute Percentage Error 

(MAPE), Mean Absolute Error (MAE), 

Forecasting Efficiency (FE), Mean Percentage 

Error (MPE), Theil's U Statistic, Root Mean 

Square Error (RMSE), Coefficient of 

Determination (R²), Accuracy (%), Pearson 

Correlation Coefficient (PCC), and 

Convergence Time. 

The model exhibits very low MAPE values 

(less than 1%) from the 22nd to the 25th of 

February, indicating excellent forecasting 

accuracy. As the week progresses toward the 

weekend, both MAPE and MAE show a steady 

increase, particularly on the 27th and 28th of 

February. This trend may be attributed to 

increased volatility or greater deviations in load 

demand during weekends. Despite this, the 

peak error observed on the 28th of February 

(MAPE: 3.8861%, MAE: 180.35) still falls 

within the acceptable range typically reported 

in power system forecasting studies. 
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Forecasting Efficiency (FE) values closer to 1 

signify better model efficiency. The FE values  

recorded during the weekdays range from 0.3 

to 0.6, reflecting strong forecasting capability. 

However, a noticeable drop below 0.2 is 

observed over the weekend, underscoring the 

persistent challenge of accurately predicting 

weekend loads, often influenced by 

unpredictable consumer behavior. 
 

 

Table 2: Comparison of the Error Rates for 1 Week (22/02/2021 – 28/02/2021) Load 

Forecast Using SSO-AVOA 
 

Metric 22/02 23/02 24/02 25/02 26/02 27/02 28/02 

MAPE (%) 0.4996 0.3969 0.5143 0.7698 1.2129 1.7610 3.8861 

MAE 22.7242 19.1116 25.0518 37.7404 59.9690 79.4048 180.3509 

Forecast 

Efficiency (FE) 

0.3007 0.5864 0.5467 0.3901 0.4200 0.0937 0.1033 

MPE (%) 0.2386 0.2048 0.2655 0.3910 0.5776 -0.2267 1.8710 

Theil’s U 0.8363 0.6431 0.6732 0.7809 0.7616 0.9520 0.9469 

RMSE 78.9891 62.6088 65.8253 100.4668 123.1074 152.9988 214.9170 

R² (CoD) 0.99999 0.99999 0.99999 0.99999 0.99999 0.99999 0.99999 

Accuracy (%) 98.8590 99.0432 98.5236 98.1686 97.0255 94.8821 91.0512 

PCC (r) 0.99898 0.99949 0.99956 0.99908 0.99893 0.99795 0.99719 

Convergence 

Time (s) 

12.43 12.33 12.27 12.32 12.39 12.52 12.41 

 

The Mean Percentage Error (MPE) values are 

generally low and positive, indicating minimal 

bias in the model's predictions. A slight 

underestimation is noted on the 27th of 

February with a negative MPE of -0.2267%, 

while the relatively high MPE of 1.871% on the 

28th suggests possible overfitting or sensitivity 

to anomalous data. The Theil’s U statistics 

remain consistently below 1 throughout the 

week, confirming that the model performs 

better than a naïve forecast. Notably, the lowest 

U values are recorded on the 23rd and 24th of 

February, highlighting these days as periods of 

the model’s most stable and optimal 

performance.Root Mean Squared Error 

(RMSE) values complement the MAE 

observations, reinforcing the trend of 

increasing forecast error toward the end of the 

week. Nonetheless, all RMSE values remain 

below 250, a threshold generally considered 

robust in the literature for short-term load 

forecasting tasks. 

The model’s R² (coefficient of determination) 

and Pearson Correlation Coefficient (PCC) 

values are consistently close to 1 across all 

days. This confirms a strong linear relationship 

between actual and forecasted values, 

demonstrating the model's capability to capture 

both the trend and variance in load demand 

accurately. The convergence time across all 

forecast days remains stable, averaging around 

12.3 seconds. This consistency indicates 

computational reliability and the optimization 

efficiency of the proposed model. In 

comparison with existing literature, hybrid 

forecasting models such as GA-ANN, PSO-

SVM, and DE-LSTM typically report MAPE 

values in the range of 1.5% to 4% for short-

term load forecasting. The SSO-AVOA model, 

by contrast, achieves sub-1% MAPE for five 

out of the seven days evaluated, outperforming 

most models reported in the literature. For 

example, Wang et al. (2020) and Yildiz et al. 

(2019) recorded minimum MAPE values of 

1.02% and 1.36% using PSO-ANN and GWO-

LSTM, respectively. The proposed model 

shows consistently superior performance, 

especially during weekdays. The results 



Communication in Physical Sciences, 2024, 12(3): 1123-1150  1137 
 

presented in Table 2 firmly establish the 

superiority of the SSO-AVOA hybrid model in 

terms of forecasting accuracy and 

generalization capability across a week. While 

some performance degradation is evident over 

the weekend — a well-known issue in energy 

demand prediction — the model’s overall 

performance remains better than the majority 

of existing models in the literature. With its 

high accuracy, low forecast error, strong  

correlation with actual values, and reliable 

convergence behavior, the SSO-AVOA model 

presents a compelling option for practical 

deployment in real-world power system load 

forecasting scenarios. 

To assess the robustness of the SSO-AVOA 

forecasting model over a weekly horizon, 

Table 3 presents a detailed comparison of 

performance metrics for load forecasting 

between 25th and 31st March 2021. The 

evaluation includes MAPE, MAE, Forecasting 

Efficiency (FE), MPE, Theil’s U-statistic, 

RMSE, Coefficient of Determination (R²), 

Accuracy, Pearson Correlation Coefficient 

(PCC), and Convergence Time. 
 

 

Table 3: Comparison of the error rates for 1 week (25/03/2021 – 31/03/2021) load forecast 

using SSO-AVOA 
 

Performa

nce 

Metrics 

25/03/20

21 

26/03/20

21 

27/03/20

21 

28/03/20

21 

29/03/20

21 

30/03/20

21 

31/03/20

21 

MAPE 

(%) 

0.4381 0.4170 0.4569 0.6653 0.5815 1.1310 1.2866 

MAE 18.8793 17.9913 19.6224 25.5752 22.6520 46.2078 53.7571 

Forecastin

g 

Efficiency 

0.1133 0.4434 0.1188 -0.2250 0.2851 -0.1246 0.3555 

MPE (%) -0.0539 -0.0374 -0.1874 -0.5157 0.0053 -0.3883 -0.3913 

Theil's U-

statistic 

0.9416 0.7460 0.9387 1.1068 0.8455 1.0605 0.8028 

RMSE 67.0453 51.8756 53.6343 66.5758 46.5426 83.9172 76.0852 

R² 0.999990

29 

0.999995

17 

0.999995

65 

0.999993

39 

0.999997

53 

0.999995

37 

0.999998

17 

Accuracy 

(%) 

98.3975 95.8786 97.3833 97.3101 96.1706 91.2873 85.9545 

PCC (r) 0.999012

87 

0.999500

18 

0.999584

32 

0.999520

84 

0.999695

30 

0.999340

41 

0.999513

86 

Converge

nce Time 

(s) 

17.1 17.29 17.21 17.23 17.5 17.09 17.43 

The SSO-AVOA model delivered high 

accuracy in load forecasting over this 7-day 

period, with MAPE remaining below 0.7% for 

the first five days and only exceeding 1% on 

the last two days. The lowest forecast error 

occurred on 26th March with a MAPE of 

0.4170%, while the highest error was observed 

on 31st March with 1.2866%. MAE followed a 

similar trend, indicating that the actual average 

absolute difference between predicted and 

observed loads grew as the week progressed. 

The FE metric turned negative on 28th and 30th 

March, which coincided with elevated MAPE 

and RMSE values, indicating less reliable 

forecasting on these days. RMSE reached a 

maximum of 83.9172 on 30th March. Despite 



Communication in Physical Sciences, 2024, 12(3): 1123-1150  1138 
 

this, the R² values remained consistently near 

unity (>0.99999), and PCC values were above 

0.999 across all days, signifying an almost 

perfect correlation between actual and 

predicted values. The accuracy dropped from 

98.4% on 25th March to 85.95% by the end of 

the week, further confirming a mild 

degradation in forecast precision over time. 

Convergence  

times were relatively stable around 17 seconds, 

confirming the model's computational 

efficiency. 

To further evaluate the adaptability of SSO-

AVOA under different seasonal and load 

variation conditions, Table 4 presents the 

forecast performance over another one-week 

period from 25th to 31st May 2021, with 

emphasis on daily MAPE, MAE, and RMSE. 
 

Table 4: Comparison of error rate for 1 week at 24h interval for 25/05/2021 – 31/05/2021 

using SSO-AVOA 
 

Performan

ce Metrics 

25/05/20

21 

26/05/20

21 

27/05/20

21 

28/05/20

21 

29/05/20

21 

30/05/20

21 

31/05/20

21 

MAPE 

(%) 

0.2020 0.2920 0.5422 0.6150 0.6264 1.3974 2.2333 

MAE 8.4795 11.7956 21.2018 23.7537 24.8711 53.2351 88.1374 

RMSE 28.8322 36.8167 61.5002 59.6809 48.4623 95.3176 110.6974 
 

In this week-long forecast, the SSO-AVOA 

model demonstrated superior accuracy early in 

the week, achieving MAPE values as low as 

0.2020% on 25th May. However, as the week 

progressed, the errors increased significantly, 

culminating in a MAPE of 2.2333% on 31st 

May. The increasing MAE and RMSE metrics 

mirrored this trend, with RMSE more than 

tripling from 28.8322 on 25th May to 110.6974 

on the last day. The marked rise in error from 

29th May onwards may reflect increased load 

variability or model sensitivity to external 

perturbations (e.g., weather or consumption 

anomalies), suggesting a need for adaptive 

weighting or error correction during weekends. 

To evaluate the model's robustness in another 

climatic and temporal window, Table 5 reports 

the forecasting performance from 24th to 30th 

June 2021. The included metrics are MAPE, 

MAE, MPE, Theil's U-statistic, and RMSE. 
 

 

Table 5: Comparison of the error rates for 1 week (24/06/2021 – 30/06/2021) load forecast 

using SSO-AVOA 
 

Performan

ce Metrics 

24/06/20

21 

25/06/20

21 

26/06/20

21 

27/06/20

21 

28/06/20

21 

29/06/20

21 

30/06/20

21 

MAPE 

(%) 

0.4453 0.4926 1.6054 0.8050 1.3288 1.4351 2.4676 

MAE 15.7271 18.1428 46.3151 27.1811 47.3304 48.3041 86.8040 

MPE (%) -0.1390 -0.1651 -0.8469 -0.2599 -0.5524 -1.0824 -1.7901 

Theil's U-

statistic 

0.9994 0.9586 1.5316 1.3001 1.0028 1.3848 0.9573 

RMSE 52.8565 49.2821 122.0996 72.6876 97.9773 98.6697 108.0468 

The model began with strong performance on 

24th and 25th June, showing MAPE values 

under 0.5% and Theil’s U-statistics below 1, 

indicating accurate predictions. However, 

performance deteriorated from 26th June 

onward, with MAPE rising to a peak of 

2.4676% by 30th June. MAE and RMSE also 

rose sharply, peaking at 86.8040 and 122.0996, 

respectively. The negative MPE throughout the 

week confirms a consistent underprediction 
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bias, which became more pronounced in the 

later days. Theil’s U values above 1 on 26th, 

27th, and 29th June indicate a drop below naive 

model performance during these days, 

potentially linked to high demand variability. 

The elevated RMSE values at the end of the 

month underline increased forecast dispersion, 

highlighting the importance of incorporating 

error correction schemes in future model 

enhancements. 

The attached image contains three line graphs 

that depict 24-hour load forecasts using the 

SSO-AVOA model for three consecutive days: 

26/02/2021  (Fig. 1) , 27/02/2021 (Fig. 2), and 

28/02/2021 (Fig. 3). Each graph compares the 

actual power load (shown in blue) to the 

forecasted load (shown in red) across the hours 

of the day, measured in megawatts (MW). The 

Fig.  for 26/02/2021 presents a scenario where 

the SSO-AVOA model generally follows the 

pattern of the actual load but with noticeable 

differences in magnitude. During the early 

morning hours, particularly around hours 3 and 

5, the model overestimates the load, while the 

trend alignment improves between hours 10 

and 20, despite some underestimation of peak 

values. Toward the later hours of the day, 

especially from hours 21 to 24, the forecast 

shows better alignment, although actual loads 

still slightly surpass the forecasted values. 

The graph for 27/02/2021 demonstrates a 

stronger correlation between the forecasted and 

actual loads. The model effectively captures 

the midday dip and the significant evening rise 

in demand. Notably, there is some 

underestimation between hours 22 and 24, 

where actual load values rise more sharply than 

the predictions. However, during the morning 

period between hours 1 and 8, the differences 

between actual and forecasted values are 

minimal, indicating improved model 

performance during off-peak hours. 

The graph for 28/02/2021 presents a more 

challenging forecasting scenario. The 

forecasted values in the early morning are 

consistently higher than the actual loads, 

indicating overestimation. Midday hours (10 to 

16) exhibit a substantial dip in actual loads, 

which the model fails to capture accurately, 

continuing its trend of overestimation. In the 

evening hours, particularly from hour 18 

onward, the actual load rises sharply and 

surpasses the forecasted values, reflecting the 

model’s tendency to underestimate peak 

evening demand, though it does capture the 

general rising trend. 

When comparing across the three days, it 

becomes clear that the SSO-AVOA model 

successfully captures the general patterns of 

load variation but struggles to precisely predict 

peak magnitudes. The most consistent 

forecasting challenge observed across the days 

is the underestimation of evening peak 

demands and the overestimation during midday 

troughs.  
 

 
Fig.  1. Actual vs Forecast at 1h interval for 

24h Ahead using SSO-AVOA for 24/02/2021 

 
Fig.  2. Actual vs Forecast at 1h interval for 

24h Ahead using SSO-AVOA for 26/02/2021 
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Fig.  3. Actual vs Forecast at 1h interval for 

24h Ahead using SSO-AVOA for 

28/02/2021. 
‘ 
 

 

The model is reasonably responsive to gradual 

changes in load but lags slightly when it comes 

to abrupt shifts in demand. 

In comparison with the results presented in the 

tables (once referenced), it is anticipated that 

error metrics such as RMSE and MAPE would 

show the lowest values for 27/02/2021, given 

the close alignment of trends between the 

actual and forecasted data. On the other hand, 

28/02/2021 appears to demonstrate the largest 

deviations and would likely correspond to 

higher error values. If the tabulated results 

indicate that the SSO-AVOA model performs 

better than other models such as ANN or 

LSTM, these visual patterns provide further 

support, highlighting the model’s effectiveness 

in trend prediction despite some issues in 

forecasting magnitude with precision. These 

graphical interpretations reinforce the 

quantitative insights presented in the tables and 

support the conclusion that the SSO-AVOA 

model offers a reliable, if imperfect, tool for 

short-term power load forecasting. 
 

5.2 Comprehensive Analysis of Error 

Rates for 1-Week Load Forecasts Using SSO-

AVOA 
 

The analysis covers one-week load forecasts 

carried out using the hybrid SSO-AVOA model 

(Social Spider Optimization – African Vulture 

Optimization Algorithm) for the periods: 

22/02/2021 to 28/02/2021, 25/03/2021 to 

31/03/2021, 25/05/2021 to 31/05/2021, and 

24/06/2021 to 30/06/2021. Performance 

metrics used in the analysis include MAPE 

(Mean Absolute Percentage Error), MAE 

(Mean Absolute Error), RMSE (Root Mean 

Squared Error), Forecast Efficiency (FE), MPE 

(Mean Percentage Error), Theil's U statistic, 

Coefficient of Determination (R²), Accuracy 

(%), Pearson Correlation Coefficient (PCC), 

and Convergence Time. 

n the analysis of the forecast performance for 

28/02/2021, the deviation between predicted 

and observed loads is clearly illustrated in the 

radar graph comparing the actual and 

forecasted values at one-hour intervals over a 

24-hour period, as shown in Fig. 4. The 

increasing trend in forecast error throughout 

the week is demonstrated in the line graph 

depicting the day-by-day variation in MAPE 

from 22/02/2021 to 28/02/2021, presented in 

Fig. 5. To further depict the changes in error 

magnitudes over the same week, the radar 

graphs of MAE and RMSE provide a visual 

representation of how both metrics evolved, as 

illustrated in Fig. 6. 
 

5.2.1 Error Rate Analysis for 22/02/2021 – 

28/02/2021 
 

The forecast accuracy during this week shows 

noticeable variation. MAPE increases from 

0.3969% on 23/02/2021 to 3.8861% on 

28/02/2021, indicating a clear decline in 

predictive performance as the week progresses. 

A similar trend is observed in MAE, which 

rises from 19.1116 to 180.3509, and RMSE, 

which grows from 62.6088 to 214.9170. These 

increases reflect a consistent growth in error 

magnitude across the week. Forecast 

Efficiency (FE) values fluctuate, reaching the 

lowest point of 0.0937 on 27/02/2021, 

suggesting poor performance in capturing the 

actual load on that day. However, despite these 

rising errors, the correlation coefficient (PCC) 

remains strong, ranging from 0.997 to 0.999, 

which confirms a persistent linear relationship 

between the actual and forecasted data. 

Overall, the hybrid SSO-AVOA model 

performs well in the first half of the week, 

maintaining MAPE values under 1% and MAE 
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values below 60. In the latter half, particularly 

by 28/02/2021, there is a significant drop in 

accuracy. Nevertheless, Theil’s U statistic 

stays below 1 throughout the period, indicating 

that while deviations grow, the model does not 

show significant bias or random error behavior. 

These trends are reflected visually in the radar 

graphs and MAPE graphs provided, where 

model performance deterioration over the week 

is evident. 
 

5.2.2 Error Rate Analysis for 25/03/2021 – 

31/03/2021 
 

During this forecast period, the SSO-AVOA 

model shows improved performance compared 

to the previous week. The MAPE ranges from 

0.4170% on 26/03/2021 to 1.2866% on 

31/03/2021, which is significantly lower than 

the maximum MAPE observed in the previous 

analysis. MAE begins at 17.9913 and increases 

to 53.7571, indicating lower absolute error 

values overall.  
 

 
Fig. 4. Radar graph of Actual vs Forecast at 1h interval for 24h Ahead using SSO-AVOA for 

28/02/2021 

 
Fig. 5. The MAPE graph for 1 week (22/02/2021 – 28/02/2021) using SSO-AVOA 
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Fig. 6. Radar graphs for MAE and RMSE for 1 week (22/02/2021 – 28/02/2021) using SSO-

AVOA  
 

Although RMSE increases to 83.9172 on 

30/03/2021, it still remains better controlled 

than in the 22/02/2021 to 28/02/2021 period. 

Forecast Efficiency varies but includes a 

notable dip into negative territory on 

28/03/2021 with a value of -0.2250, indicating 

a substantial divergence between predicted and 

actual values for that day. The correlation 

coefficient remains high across the week, with 

values slightly decreasing from 0.99949386 on 

26/03/2021 to 0.99718823 on 31/03/2021, 

reinforcing that the general trend of the forecast 

is reliable even if magnitudes fluctuate. This 

week’s results suggest that the SSO-AVOA 

model maintains lower and more consistent 

error rates in the early part of the forecast 

period, with more variability in the later days. 

The consistently high R² values across the 

week imply that the model is well-tuned to the 

structure of the actual load data and provides a 

good fit despite some volatility in error values. 

When compared with results from the entire 

study, the 25/03/2021 to 31/03/2021 period 

shows the most stable performance among the 

evaluated weeks. The forecast during this 

period not only maintains lower MAPE, MAE, 

and RMSE values but also retains high 

correlation and determination coefficients, 

indicating overall robustness. In contrast, the 

22/02/2021 to 28/02/2021 week reveals 

increasing forecast inaccuracy towards the end 

of the period, culminating in a fourfold increase 

in MAPE and nearly tenfold increase in MAE. 

Overall, this comparative analysis underlines 

the importance of monitoring not just point-

error values but the evolution of performance 

over time. While the SSO-AVOA model 

demonstrates strong potential in short-term 

load forecasting, its reliability can vary across 

different operational periods, possibly 

influenced by seasonal or operational changes 

in the grid. When compared to other models 

discussed elsewhere in this work, such as ANN 

and LSTM, the SSO-AVOA demonstrates 

superior trend alignment and lower average 

error rates, especially in periods with stable 

load behavior. 
 

5.2.3. Comparison of Error Rates for 

25/05/2021 – 31/05/2021 
 

The daily performance of the SSO-AVOA-

based load forecasting model from 25th to 31st 

May 2021 is presented in Figs. 7 to 13. Each 

graph illustrates the comparison between the 

actual load demand and the forecasted load 

values over a 24-hour period for each 

respective day. 

Fig.  7 presents the forecast for 25/05/2021. 

The prediction follows the trend of the actual 

load closely throughout the day with minimal 

deviation, indicating high accuracy. This aligns 

with the observed metrics, where the Mean 

Absolute Percentage Error (MAPE) is at its 

lowest value of 0.2020%, the Mean Absolute 
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Error (MAE) is 8.4795, and the Root Mean 

Square Error (RMSE) is 28.8322. The high 

correlation between predicted and actual values 

reflects in a strong Pearson Correlation 

Coefficient (PCC), confirming the reliability of 

the model on this day. 

Fig.  8 shows the results for 26/05/2021, where 

the forecast remains accurate though minor 

deviations are observable during peak hours. 

This results in a slight increase in MAPE and 

MAE, with a corresponding moderate rise in 

RMSE, indicating early signs of growing 

forecast error. 

In Fig.  9, corresponding to 27/05/2021, the 

forecasted loads still maintain good alignment 

with the actual data. Although the deviations 

become slightly more pronounced during mid-

day periods, the forecast retains overall 

reliability. This suggests a gradual increase in 

forecast error, as confirmed by a further uptick 

in MAPE and MAE. 

The forecast performance for 28/05/2021, 

illustrated in Fig.  10, indicates more visible 

divergence between predicted and actual 

values, particularly in the evening hours. This 

day shows a noticeable increase in RMSE, 

suggesting a growing magnitude of forecast 

error, though the correlation coefficient 

remains strong. 

Fig.  11 shows the forecast for 29/05/2021. The 

forecast is generally consistent but 

underestimates the actual load during multiple 

time intervals. The MAE and RMSE metrics 

continue to increase, reflecting the 

accumulation of forecast error over the days. 

On 30/05/2021, presented in Fig.  12, the 

forecast shows a smoother curve but diverges 

more significantly from actual load values. 

Particularly in the morning and early evening 

periods, noticeable deviations emerge. While 

the MAPE is still within reasonable bounds, 

both MAE and RMSE rise sharply, indicating 

increasing error magnitudes. However, the 

PCC remains high, reflecting a preserved 

pattern correlation. Fig.  13 displays the 

forecast for 31/05/2021, where the largest 

forecast errors for this period occur. There are 

substantial differences between the predicted 

and actual values, especially in the late 

afternoon to evening hours.  

During the period of 24th to 30th June 2021, a 

detailed evaluation of the hybrid Social Spider 

Optimization–African Vulture Optimization 

Algorithm (SSO-AVOA) model for short-term 

load forecasting reveals valuable insights into 

its predictive capabilities under conditions of 

increased load variability. The algorithm 

demonstrated its highest forecasting accuracy 

during the early part of the week, particularly 

on the 24th and 25th of June, as evidenced by 

notably low values in key performance metrics 

such as Mean Absolute Percentage Error 

(MAPE), Mean Absolute Error (MAE), and 

Root Mean Squared Error (RMSE). 

Specifically, the MAPE started at a moderate 

level of 0.4453%, while MAE and RMSE 

values remained relatively low during these 

initial days, indicating a strong alignment 

between forecasted and actual load values. 

However, as the week progressed, especially 

on the 26th and 30th of June, there was a 

noticeable increase in prediction errors, with 

the RMSE reaching approximately 122 and 108 

respectively. This rise in error values suggests 

that the model encountered challenges in 

adapting to the more erratic demand patterns 

likely influenced by climatic and socio-

economic fluctuations characteristic of this 

period in Nigeria. The consistent 

underestimation of load, as reflected by 

negative Mean Percentage Error (MPE) values 

throughout the week, further corroborates the 

model’s bias during this transitional seasonal 

phase. Notably, Theil’s U statistic exceeded the 

threshold of 1.0 on some days—peaking at 

1.5316 on the 26th of June—indicating that the 

model's forecasts on those days were less 

effective than those generated by a naïve 

approach. 
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The broader weekly comparison across 

different forecasting windows in 2021 places 

this late June week among the lower-

performing intervals. When juxtaposed with 

the week of 25th to 31st May 2021, which 

showcased exemplary performance with 

MAPE as low as 0.202% and RMSE around 

28.83, the June period’s elevated error rates 

underscore the challenges posed by seasonal 

transitions. Meanwhile, the poorest overall 

 
Fig.: 7. 24h load forecast using SSO-AVOA for 

25/94/2021  

 
Fig. : 8. 24h Load forecast using SSO-AVOA for 

26/04/2021 

 

 
Fig.:9. 24h Load forecast using SSO-AVOA for 

27/04/2021 

 
Fig.: 10. 24h Load forecast using SSO-AVOA 

for 28/04/2021 

 
Fig. :11. 24h Load forecast using SSO-AVOA 

for 29/04/2021 

 

 
Fig. :12. 24h Load forecast using SSO-AVOA 

for 30/04/2021 

 

 
Fig. :12. 24h Load forecast using SSO-AVOA 

for 30/04/2021 

 
Fig.: 13. 24h ahead load forecast using SSO-

AVOA for 31/04/2021 
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performance metrics were recorded during the 

week of 22nd to 28th February 2021, which not 

only had the highest MAE of 180.35 but also a 

significantly high RMSE of 214.9. Accuracy 

percentages during June also showed a 

declining trend toward the end of the week, 

reflecting lower reliability under complex load 

dynamics. 

Several key insights emerge from this temporal 

and seasonal analysis. Weekends, particularly 

the 30th of June, are marked by greater forecast 

inaccuracies, which could be attributed to less 

predictable consumption patterns or a lack of 

sufficient weekend-specific training data in the 

model. The hybrid model consistently delivers 

better results mid-week, where electricity 

consumption trends appear to be more regular 

and structured. Additionally, performance 

drops at the end of the month may be 

influenced by behavioural shifts related to 

billing cycles or changes in economic activity. 

The persistent negative MPE values in late 

June suggest a systematic underestimation that 

could be addressed through model recalibration 

or inclusion of more recent training data 

reflecting evolving demand patterns. 

From a technical standpoint, the SSO-AVOA 

model merges global search capability with 

solution refinement, where SSO facilitates 

broad exploration across the search landscape 

and AVOA enhances convergence around 

high-potential solutions. This synergy enables 

the model to maintain high predictive fidelity 

during stable periods, such as May, where 

meteorological and consumption patterns align 

more consistently. However, in months like 

February and June, characterized by climatic 

transitions and increased variance in demand, 

the model’s limitations become apparent. 

Incorporating external factors such as real-time 

weather forecasts, public holidays, and socio-

political developments like fuel price 

adjustments could significantly enhance the 

model’s adaptive capabilities. 

Despite these limitations, the convergence time 

across all weeks remained consistently within 

the 12 to 17-second range, indicating the 

model’s suitability for near-real-time 

forecasting applications. This operational 

efficiency ensures that the SSO-AVOA 

approach can be feasibly deployed in dynamic 

grid environments where quick decision-

making is critical. 

In summary, the hybrid SSO-AVOA model 

exhibits strong potential for short-term load 

forecasting in Nigeria, with demonstrated 

reliability during stable climatic periods. 

However, its forecasting accuracy is 

challenged during transitional weather phases 

and irregular demand intervals such as 

weekends and month-ends. To bolster its 

performance, future iterations of the model 

could benefit from dynamic parameter tuning 

and integration of additional exogenous 

variables that reflect the socio-environmental 

context of electricity consumption in Nigeria. 
 

5.2.4 Comparison of Error Rates for 

24/06/2021 – 30/06/2021 
 

The performance of the SSO-AVOA hybrid 

model for short-term load forecasting over the 

period of 24th to 30th June 2021 reveals key 

insights into the behavior of the model under 

conditions of increased load volatility. During 

this particular week, the model displayed its 

strongest predictive capabilities at the 

beginning of the week, with relatively low error 

rates, which then progressively increased as the 

week advanced. For instance, on 24/06 and 

25/06, the Mean Absolute Percentage Error 

(MAPE) values remained impressively low, 

starting at approximately 0.4453%, indicating 

a high degree of forecasting accuracy. 

However, as load dynamics became more 

irregular, especially towards the end of the 

week, MAPE values rose, peaking at 2.4676% 

on 30/06. This trend suggests that the hybrid 

model’s performance is sensitive to 

fluctuations in consumer demand patterns that 

are often characteristic of the transition period 

towards summer in Nigeria. 
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Further analysis of other error metrics such as 

the Mean Absolute Error (MAE) and Root 

Mean Squared Error (RMSE) reinforces this 

observation. The RMSE, which is more 

sensitive to large deviations, increased 

significantly on 26/06 and 30/06, reaching 

values of approximately 122.09 and 108.1 

respectively. These elevated error values 

highlight the presence of atypical load surges 

or drops which the model, despite its hybrid 

architecture, found challenging to predict with 

high precision. Additionally, the consistently 

negative Mean Percentage Error (MPE) 

recorded throughout the week indicates a 

systematic underestimation of actual load, 

pointing to a potential bias in the model’s 

learning behavior under certain seasonal 

demand shifts. 

The Theil’s U statistic, which is used to 

compare the forecasting performance of the 

model against a naïve approach, further 

supports the notion of temporal degradation in 

model accuracy. While this statistic remained 

close to or below unity during most of the 

week, a peak value of 1.5316 was observed on 

26/06. This reflects that on that specific day, 

the model performed worse than a naïve  

forecast. The upward shift in Theil’s U on 

multiple days during this week reveals the 

influence of high intra-week variability on 

model reliability. 

This week also recorded the highest degree of 

inconsistency and variability in forecast quality 

when compared to other analyzed periods. This 

can be partially attributed to unpredictable load 

behavior associated with the late June pre-

summer spike in demand, particularly from 

regions experiencing rising ambient 

temperatures and intermittent rainfall. These 

conditions create a dual-demand response—an 

increase due to cooling systems and a decrease 

due to weather-related outages—making the 

task of consistent load forecasting especially 

complex. 
 

5.2.5 Overall Comparison & Trends (Table 7) 
 

A comprehensive assessment of weekly model 

performance across multiple weeks in 2021 is 

summarized in Table 6, which presents key 

comparative metrics such as MAPE, MAE, 

RMSE, Forecast Efficiency, and Accuracy 

Percentage. The table enables a cross-temporal 

evaluation of the SSO-AVOA hybrid model, 

offering insights into how seasonal changes 

and weekly patterns affect forecasting 

accuracy. 
 

Table 6: Overall Comparison & Trends 
 

Metric Best Week (Performance) Worst Week (Performance) 

MAPE 25/05/21 – 31/05/21 (as low as 

0.202%) 

22/02/21 – 28/02/21 & 24/06/21 – 30/06/21 (up 

to 3.88% & 2.46%) 

MAE 25/05/21 – 31/05/21 (as low as 

8.47) 

22/02/21 – 28/02/21 (up to 180.35) 

RMSE 25/05/21 – 31/05/21 (min: 

28.83) 

22/02/21 – 28/02/21 & 24/06/21 – 30/06/21 

(max: 214.9 & 122.1) 

Forecast E 22/02/21 – 28/02/21 (up to 

0.5864) 

Some days in March and June showed negative 

FE 

Accuracy 

(%) 

Consistently high early in all 

weeks 

Sharp drops late in the week, especially in Feb 

and March 

 

From Table  6, the week of 25–31 May 2021 

stands out as the most stable and accurate 

forecasting window. This period, which 

corresponds to the peak of the rainy season in 

southern Nigeria, appears to benefit from 

relatively stable climatic and consumption 

patterns. Here, all three key error metrics 

(MAPE, MAE, RMSE) attain their lowest 
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recorded values, with MAPE dropping to an 

extraordinary 0.202%, signifying near-optimal 

predictive performance. 

Conversely, the weeks of 22–28 February 2021 

and 24–30 June 2021 represent the most 

challenging periods for the model. February's 

performance reflects the chaotic load behavior 

associated with the Harmattan-dry season 

transition in the north, with MAPE surging as 

high as 3.88% and MAE ballooning to 180.35. 

Likewise, the late June period saw a resurgence 

in RMSE values and reduced accuracy, which 

can be tied to seasonal pre-summer spikes in 

load coupled with rainfall variability. 

Forecast Efficiency (FE) fluctuates more 

notably in the February and March periods, 

with some days dipping into negative territory, 

signaling that the model’s predictive power 

occasionally fell below that of a simple 

baseline predictor. These inefficiencies are 

indicative of abrupt shifts in demand patterns 

or insufficiently modeled seasonal parameters. 

In terms of Accuracy Percentage, the model 

performs best during May, with values 

reaching up to 99.04%, confirming its strength 

during periods of climatic stability. On the 

other hand, the model’s accuracy diminishes 

sharply during the tail end of February and 

certain days in March, further underscoring the 

challenges posed by transitional climate 

periods. 

Across all weeks, it is also observed that 

weekends—especially dates such as 27/02, 

28/02, 30/05, and 30/06—tend to register 

significantly higher errors. This is likely due to 

irregular consumption patterns on non-working 

days and potentially insufficient representation 

of such days in the training data. Mid-week 

days, in contrast, tend to exhibit more stable 

error trends and higher accuracy, suggesting 

that the model is better calibrated for typical 

weekday load behaviors. 

Another noteworthy point from this 

comparative trend analysis is the observation of 

consistent convergence times across all 

periods, ranging from approximately 12 to 17 

seconds. This indicates that despite the 

variability in forecasting accuracy, the hybrid 

model retains a high degree of computational 

efficiency, making it suitable for near-real-time 

forecasting scenarios. 

In summary, Table 7 effectively illustrates the 

strengths and limitations of the SSO-AVOA 

hybrid model across different seasonal and 

temporal conditions in Nigeria. The model 

excels during climatologically stable periods 

such as May but requires enhancements in 

adaptability during periods of heightened 

variability. These insights provide a strong 

basis for future optimization efforts, such as 

incorporating exogenous variables and refining 

the model’s ability to respond dynamically to 

rapid shifts in electricity demand. 
 

6.0 Conclusion 
 

The study on Seasonal Short-Term Load 

Forecasting (STLF) using a hybrid model that 

combines Social Spider Optimisation (SSO) 

and the African Vulture Optimisation 

Algorithm (AVOA) within an Artificial Neural 

Network (ANN) framework has demonstrated 

promising results in enhancing the accuracy 

and robustness of electricity demand prediction 

in Nigeria. The proposed hybrid SSO-AVOA 

model showed consistent superiority over 

traditional optimisation techniques, with strong 

predictive accuracy and fast convergence 

times, typically between 12 and 17 seconds. 

Experimental findings reveal that the model 

maintains a consistently high correlation 

between forecasted and actual load values, as 

indicated by high Pearson Correlation 

Coefficients and R² values, confirming its 

ability to learn and generalize load patterns 

effectively. 

The model’s performance varied across 

different seasonal periods. The week from 25th 

to 31st May 2021, which falls within the rainy 

season, emerged as the most stable and 

accurate in terms of forecasting performance. 

During this period, error metrics such as MAPE 

(0.202%), MAE (8.47), and RMSE (28.83) 

reached their lowest values, reflecting the 
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model’s strength in capturing load dynamics 

under climatologically stable conditions. In 

contrast, periods like 22nd to 28th February 

and 24th to 30th June 2021 experienced 

elevated errors. These weeks coincided with 

seasonal transitions marked by abrupt changes 

in energy consumption, leading to higher 

forecasting difficulties. Despite these 

fluctuations in accuracy, the model maintained 

strong correlation values, affirming its 

underlying robustness even in more 

challenging scenarios. 

The overall comparison and trend analysis 

presented in Table 7 underscores the model's 

reliability and adaptability. Table 7 

consolidates performance metrics across 

selected weeks, highlighting both the 

consistency and limitations of the hybrid 

model. It shows that while the May 2021 period 

had the best results in terms of lowest 

forecasting errors and highest correlation 

metrics, February and June periods recorded 

higher error margins and forecast efficiency 

dips. This degradation in accuracy toward the 

end of forecasting periods illustrates the impact 

of increased load volatility and the limitations 

of the current model in capturing abrupt 

demand shifts. 

These findings suggest that the hybrid SSO-

AVOA model is a highly capable tool for short-

term electricity load forecasting, particularly in 

regions with distinct seasonal demand patterns 

like Nigeria. However, its sensitivity to 

transitional periods and weekend load 

irregularities points to areas requiring further 

refinement. Future research should aim to 

enhance the model’s adaptability by integrating 

exogenous variables such as weather 

parameters and socio-economic indicators, 

which influence load consumption patterns. 

Additionally, testing the model across various 

geopolitical zones would allow for region-

specific calibration, improving accuracy in 

localized contexts. 

In conclusion, the hybrid SSO-AVOA 

approach to ANN optimisation offers a 

compelling solution for STLF in complex, 

seasonally driven environments. While it 

performs exceptionally well during stable 

climatic periods, such as in May 2021, its 

performance can be further improved by 

incorporating more dynamic features and 

retraining strategies that reflect the variability 

of real-world electricity consumption. This 

study reinforces the value of hybrid bio-

inspired algorithms in modern forecasting 

applications and supports their broader 

adoption in smart grid and energy management 

systems, especially in developing regions with 

unpredictable demand patterns. 
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