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Abstract: In the investigation of rotating 

spectra concerning the interstellar medium, 

machine-learning approaches have been 

documented as effective instrument. The 

understanding of molecular rotational 

transitions in space and can be a significant 

source of information on the dynamics, 

physical properties, and chemical make-up of 

interstellar spaces. Traditional analytical 

techniques are however confronted with 

difficulties when dealing with the enormous 

and complicated information produced by 

telescopic observations. The handling of 

these massive datasets and the extraction of 

useful data from rotating spectra can be 

accomplished using machine learning 

methods, which are a promising approach. 

This article gives a general overview of the 

developments of machine learning in the 

analysis of rotational spectra in the 

interstellar medium. It goes over how to 

recognize and describe molecular transitions 

using supervised and unsupervised learning 

algorithms, deep learning architectures, and 

spectral line fitting methods. Also, machine 

learning algorithms can aid detection of 

spectral lines that are weak or infrequent but 

may contain important data regarding the 

chemical complexity of interstellar areas.  

 

They help make new molecular discoveries 

and enable the research of previously 

undiscovered spectral regions in the 

electromagnetic spectrum. Despite these 

developments, there are still problems to be 

solved, such as handling data noise, 

uncertainty, and over fitting. By enabling 

effective and automatic extraction of 

chemical information from complicated 

datasets, machine learning in rotational 

spectra analysis revolutionizes the study of 

interstellar chemistry. It enables scientists to 

learn about the chemical diversity and 

development of interstellar regions, making 

crucial contributions to our comprehension 

of the genesis and development of the 

universe. 
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1.0  Introduction 

Molecular spectroscopy is a effective and 

flexible combination of methods that is 

useful in the investigation of the interaction 

of electromagnetic radiation with molecules.  

was Molecular spectroscopy can enables the 

identification, characterization, and 

investigation of chemical compounds and 

their properties by providing essential 

insights into the energy levels, vibrational 

states, rotational motion, and electronic 

transitions of molecules (Samuel et al., 

2023). Numerous scientific fields, including 

chemistry, physics, astronomy, biochemistry, 

environmental science, and materials 

science, rely on the application of molecular 

spectroscopy for various sectors. A subfield 

of spectroscopy called molecular 

spectroscopy investigates how 

electromagnetic radiation affects molecules. 

It offers useful details on the energy levels, 

vibrational states, rotational motion, and 

electronic transitions of molecules, which in 

turn aids in classifying molecules, figuring 

out their structures, and examining their 

chemical properties (Oliveira, et al., 2022). 

The quantization of a molecule's energy 

levels forms the foundation of the 

fundamental ideas that guide molecular 

spectroscopy. Molecules consist of electrons 

orbiting nuclei, and transitions between 

different electronic states involve changes in 

the arrangement of electrons. Electronic 

transitions occur at specific energy levels, 

representing the energy required for an 

electron to move from one orbit to another. 

Transitions between these energy levels are 

brought about by the absorption or emission 

of photons by molecules in response to the 

incident electromagnetic radiation (Agúndez 

et al., 2015). The generated spectra reveal a 

plethora of knowledge on the make-up and 

behaviour of the molecules. Molecular 

spectroscopy comes in a variety of forms, 

each based on a particular portion of the 

electromagnetic spectrum which includes 

vibrational, rotational, and electronic 

spectroscopy. Molecular vibrations, which 

are particular rhythmic motions of atoms 

within a molecule, are the subject of the field 

of vibrational spectroscopy, which examines 

them. Since vibrations in molecules are 

quantized, they take place at specific energy 

levels (Gúndez, et al., 2018). Two methods 

that are primarily used to conduct vibrational 

spectroscopy are Infra red spectroscopy and 

Raman spectroscopy. The study of electronic 

transitions within molecules is the focus of 

electronic spectroscopy. Molecules and 

ultraviolet (UV), visible (VIS), or near-

infrared (NIR) radiation interact in this 

process. When electrons take in energy and 

shift between various energy levels, 

electronic transitions take place. When 

examining the electronic energy levels, 

states, and transitions in molecules, which 

might reveal information about their 

electronic configuration and chemical 

reactivity, electronic spectroscopy is crucial. 

The study of molecule rotations is the main 

subject of rotational spectroscopy 

(Cernicharo, et al., 1991). Changes in 

rotational energy levels are the result of 

molecules interacting with microwave 

radiation. Diatomic and straightforward 

polyatomic compounds are particularly 

amenable to rotational spectroscopy. For 

studying molecular structures, it gives exact 

data on molecule geometry, bond lengths, 

and moments of inertia (Etim et al., 2017). 

Rotational spectroscopy offers special 

insights into the characteristics and dynamics 

of interstellar gas and molecules, making it a 

useful instrument for researching the 

interstellar medium (ISM). Understanding 

the molecular composition, physical 

characteristics, and kinematics of interstellar 

gas clouds and regions is particularly crucial 
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to the use of rotational spectroscopy in the 

ISM. Astronomers can discover and describe 

numerous compounds in the ISM using 

rotational spectroscopy (Samuel et al., 2023). 

Several basic diatomic and polyatomic 

species, including formaldehyde (H2CO), 

ammonia (NH3), and carbon monoxide (CO), 

show conspicuous rotational transitions that 

can be seen in the millimeter wavelength 

ranges (Hirota, et al., 2002). Astronomers 

can determine the abundances of these 

chemicals by examining these rotational 

lines, which gives them important knowledge 

about the chemical make-up of various 

interstellar environments. Rotational 

spectroscopy is useful in exploring the 

molecular clouds that give rise to the stars. 

These regions' physical characteristics, such 

as their temperature, density, and kinematics, 

can be learned through observations of 

rotational transitions in molecules (Janet, et 

al., 2020). This information ability to 

enhance the understanding of the dynamics 

and structure of molecular clouds, which are 

where young stars are formed (Kim et al., 

2021). Rotational spectroscopy is crucial to 

astrochemistry, the study of chemical 

reactions in space. Astronomers can 

investigate the chemical interactions, 

ionization processes, and the creation and 

annihilation of molecules in the ISM by 

examining rotating spectra. Understanding 

the chemical development of interstellar gas 

and its function in star formation requires 

knowledge of this information (Lee et al., 

2021). Rotational spectroscopy is very 

helpful for finding molecular ions since they 

have distinctive rotational transitions. It is 

possible to learn more about the ionization 

processes and magnetic fields in interstellar 

gas clouds by observing molecular ions, such 

as HCO+, HCN+, and NH+. Additionally, 

complex organic compounds, which are 

relevant to astrobiology and prebiotic 

chemistry investigations, can be found via 

rotational spectroscopy (Etim et al., 2023). 

The interstellar medium (ISM) functions as 

the universe's cosmological research facility 

to solve cosmic mysteries. There are 

molecular clouds within this large area, 

where intricate chemical reactions produce a 

profusion of molecules, including diatomic 

and polyatomic species (Shinggu et al., 

2023). Understanding the molecular 

composition, physical settings, and 

kinematics of interstellar gas clouds is made 

possible by studying these molecules via 

rotational spectroscopy. With improvements 

in observational equipment, the amount of 

spectral data in the ISM is increasing 

exponentially, making conventional analysis 

techniques laborious and time-consuming. 

As a result, machine learning has begun to 

take off as a revolutionary technique for 

rotational spectra analysis (Mattioda et al., 

2020). By offering effective and automated 

methods for data processing, categorization, 

and interpretation, machine learning 

techniques have the potential to transform the 

study of rotating spectra in the ISM. 

Researchers can handle the complexity of 

enormous datasets and gain useful insights 

from the rich and varied rotational spectra 

emitted or absorbed by interstellar molecules 

by utilizing the computational capacity of 

machine learning methods (McGuire 2018). 

The use of machine learning in rotational 

spectra analysis has numerous significant 

benefits in this context. First off, it makes it 

possible for molecular species to be 

automatically identified and categorized 

based on their spectral signatures, speeding 

up the process of molecular identification and 

providing a thorough database of detected 

species (McGuire et al., 2020). This study 

examines the numerous ways that machine 

learning can be used to analyze rotating 

spectra in the interstellar medium. We 
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examine the foundations of machine learning 

algorithms frequently applied to 

spectroscopic analysis, talk about the 

difficulties and opportunities in managing 

large and complex spectral datasets, and look 

at how machine learning can improve 

molecular identification, abundance 

measurements, and physical parameter 

estimation in the ISM (Zhao et al., 2020). The 

combination of machine learning with 

rotational spectroscopy promises to open up 

new vistas in interstellar study as we travel 

farther into space and collect ever-increasing 

volumes of rotational spectra data (Etim et 

al., 2020). The present article aims to explore 

machine learning in rotational spectra 

analysis in the interstellar medium. 

Additionally, we explore the potential of 

machine learning in investigating interstellar 

dynamics, such as gas kinematics and 

turbulent motions, and we emphasize its 

function in astrochemistry, which sheds light 

on the intricate chemical processes taking 

place in space.  

 

2.0 Machine learning algorithm in 

rotational spectra analysis 

 

In rotational spectroscopy, machine learning 

methods are frequently used to automate data 

processing, detect spectral patterns, and 

extract useful information from large datasets 

of rotating spectra. Researchers may generate 

predictions, categorize data, and interpret it 

based on the taught models thanks to these 

algorithms, which use mathematical and 

statistical techniques to understand patterns 

and relationships within the data (Chen et al., 

2020). The following machine-learning 

techniques are widely used in rotational 

spectroscopy in the interstellar medium 

(ISM): 

1. Supervised Learning 

 Supervised learning algorithms are trained 

on labeled datasets, where each data point is 

associated with a known target or label. In 

rotational spectroscopy, supervised learning 

is frequently used for molecular 

identification, abundance measurements, and 

predicting physical parameters from 

rotational spectra. 

i. Support Vector Machines (SVM): SVM 

is a classification-related supervised 

learning method. SVM can be used in 

rotational spectroscopy to categorize 

various molecular species according to 

their rotational spectral patterns. The 

method looks for the best hyperplane to 

divide various classes in the feature 

space. When working with complicated 

and non-linear spectrum data, SVM is 

especially helpful (Jia, et al., 2018). 

ii. Random Forests: Random Forests is an 

ensemble learning technique that brings 

together various decision trees to 

increase accuracy and decrease 

overfitting. Random Forests can be 

utilized in rotational spectroscopy for 

both classification and regression tasks. 

For example, it may categorize different 

molecular species according to their 

rotational spectra or forecast physical 

variables like temperature or density 

based on the strengths of rotational lines 

(Wang, et al., 2020). 

iii. Gradient Boosting Machines (GBM): 

GBM is another ensemble method that 

sequentially constructs a several weak 

learners (usually decision trees), each of 

which attempts to fix the mistakes of the 

previous one. Rotational spectra can be 

used to predict chemical characteristics 

and abundances using GBM. 

iv. Linear Regression: In rotational 

spectroscopy, linear regression is 

employed for regression problems where 

the objective is to predict continuous 

variables (for example, chemical 

abundances or physical temperatures) 

based on rotational spectra features. It 

allows researchers to estimate quantities 

from spectral data by fitting a linear 

relationship between the input features 

and the goal value (Huang, et al., 2019) 

2. Unsupervised Learning Algorithms 
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On unlabeled datasets, unsupervised learning 

algorithms are applied with the aim of 

discovering patterns and structures in the data 

without the use of explicit target labels. In 

rotational spectroscopy, these techniques are 

particularly beneficial for problems 

involving clustering and dimensionality 

reduction  

i. K-Means Clustering: K-means 

clustering is used to group rotational 

spectrum data into K clusters according 

to how similar they are as shown in fig 1. 

To identify molecular families or 

chemically related species, it can be 

helpful to group rotational spectra with 

comparable characteristics (Clarke et al., 

2008). 

 
Fig.  1.0: Structures of K-mean clustering (Clarke, et al., 2008) 

\

ii. Principal Component Analysis (PCA): 

PCA is a method for reducing the 

dimensions of rotational spectrum data 

while maintaining the data's important 

variability. PCA makes the data easier to 

visualize and analyze by breaking it 

down into a new set of uncorrelated 

variables (principal components) 

(Provost, and  Fawcett, 2013) 

3. Deep Learning Algorithms 

 Due to their capacity to automatically 

develop hierarchical representations from 

raw data, deep learning algorithms, in 

particular Convolutional Neural Networks 

(CNNs) and Recurrent Neural Networks 

(RNNs), have become increasingly 

prominent in rotational spectroscopy. 

i. Convolutional Neural Networks (CNNs): 

CNNs are typically employed for image 

analysis tasks, but they may be modified 

to analyze rotational spectra by treating 

the spectra as one-dimensional signals. 

CNNs are effective for molecular 

identification and classification tasks 

because they can learn to recognize 

spectral characteristics and patterns. The 

structure of the convolutional Neural 

Network is shown in Fig. 2 (Liu, 2021). 

 

i. Recurrent neural networks (RNNs): are 

effective for sequential data, such as time 

series or spectrum data. RNNs can 

recognize temporal patterns in the data 

and capture the sequential character of 

rotational spectra in rotational 

spectroscopy, allowing predictions based 

on previous spectral measurements. 

 

2.1 Training, validation, and testing of ML 

models for rotational spectra analysis 
 

To construct and assess machine learning 

(ML) models for rotating spectra analysis in 

the interstellar medium, training, validation, 
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and testing are essential procedures. By using 

these procedures, you can make sure that the 

models can accurately learn from the data, 

generalize to new data, and make accurate 

predictions for tasks like molecular 

identification and abundance calculations, 

among others (Sun, et al., 2021). The 

procedure entails segmenting the rotational 

spectra data available into several subsets for 

training, validation, and testing as shown Fig. 

3, each fulfilling a particular function in 

model creation and evaluation. 

i. Training Data: The largest subset of 

rotational spectra utilized to train the 

ML model is the training dataset. It 

includes tagged rotational spectra 

examples and the target labels that 

correlate to them, such as molecular 

species or physical properties. By 

making iterative adjustments to its 

internal parameters during training, 

the model discovers the underlying 

patterns and relationships in the data 

(Zhao et al., 2020). The objective is 

to maximize the model's performance 

by reducing the discrepancy between 

the predicted target labels and the 

actual target labels. 

 
Fig.  2.0: Structure of Convolutional Neural Networks (Liu, 2021) 

 

 

ii. Validation data: To adjust the 

hyperparameters of the ML model, a 

smaller subset of the rotational 

spectra is used for the validation 

dataset. Hyperparameters are settings 

that affect the behaviour and 

complexity of the model but are not 

learned during training (Zhang, et al., 

2022). These hyperparameters have a 

substantial impact on the model's 

performance, and hyperparameter 

tuning is frequently used to determine 

their ideal values. The validation 

dataset aids in evaluating how well 

the model works on untested data and 

guards against overfitting, which 

occurs when the model performs well 

on training data but badly on fresh, 

untested data (Neumann, et al., 

2005). 

iii. Dataset for Testing: The testing 

dataset consists of a distinct subset of 

rotational spectra that is not used for 

training or hyperparameter tuning. It 

acts as an objective evaluation set to 

judge how well the model 

generalizes. The model is assessed on 

the testing data after training and 

hyperparameter tuning to determine 

an estimate of its performance in the 

actual world. This process enables 

scientists to assess how well the 

model will function on brand-new, 

unobserved rotating spectra in the 

ISM (Zhang, et al., 2020). 
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Fig.  3.0: Training, validation and testing set model (Zhang, et al., 2020). 

 

The following is a typical approach for 

developing, validating, and testing ML 

models for the study of rotational spectra: 

i. Data preprocessing: To guarantee 

consistency and quality, it is crucial to 

preprocess the rotational spectra before 

splitting the data. Normalizing the 

spectra, eliminating noise, adjusting for 

instrument effects, and handling missing 

or incomplete data are some examples of 

preprocessing techniques. 

ii. Data Splitting: Training, validation, and 

testing sets of the available rotational 

spectra data are created. Depending on 

the size of the dataset, the split 

percentages can change, but typical 

splits are 60–80% for training, 10–20% 

for validation, and 10–20% for testing 

(Tetko et al., 1995). 

iii. Model Training: Using the training set of 

data, the ML model is trained. By 

changing its internal parameters during 

training, the model learns to map the 

input rotational spectra to their 

corresponding target labels. Using 

optimization algorithms like gradient 

descent, the training procedure passes 

the data through the model, computing 

the prediction error, and adjusting the 

parameters (Krizhevsky et al., 2012). 

iv. Tuning of hyperparameters: The 

validation results are used to tune the 

hyperparameters. The combination that 

performs the best on the validation data 

is chosen after various combinations of 

hyperparameter values have been 

examined. 

v. Model Evaluation: Using the testing 

data, the model's performance is 

assessed after it has been trained and its 

hyperparameters have been fine-tuned. 

Based on the testing data, the model 

produces predictions, and its 

generalization performance is evaluated 

by computing its accuracy, precision, 

recall, F1-score, or other pertinent 

metrics (Zhang et al., 2017) 

vi. Model Selection and Deployment: The 

best-performing ML model is chosen for 

rotating spectra analysis in the ISM 

based on the evaluation findings. The 

chosen model can then be used for tasks 

like identifying molecules, measuring 
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abundances, and estimating physical 

parameters. 

vii. Model Monitoring and Iteration: As new 

data becomes available or when the 

underlying patterns in the ISM change, 

machine learning models may need 

periodic monitoring and retraining (Etim 

et al., 2018a). 

Researchers can create solid and trustworthy 

models for the investigation of rotating 

spectra in the interstellar medium by 

employing this methodical technique of 

training, validating, and testing ML models. 

Astronomers can learn more about the 

molecular make-up and physical 

characteristics of the ISM using the 

combination of rotational spectroscopy and 

machine learning, which advances our 

understanding of the intricate processes that 

form our universe (Claesen and Moor, 2015). 

 

2.2 Sources of rotational spectra data in the 

ISM 

 

The interstellar medium (ISM) has a variety 

of sources for rotational spectra data, 

including both ground- and space-based 

observatories with specialized equipment for 

spotting and measuring interstellar molecule 

rotational transitions. The rotational spectral 

lines of numerous compounds are prominent 

in the radio, microwave, and far-infrared 

frequency ranges, which are covered by these 

observatories. The important sources of data 

on rotating spectra in the ISM are listed 

below: 

1. Radio telescopes: For observing 

rotating spectra in the ISM, radio telescopes 

are an essential tool. They operate at radio 

frequencies, which are excellent for 

detecting rotational transitions of various 

diatomic and polyatomic molecules. These 

frequencies are typically in the range of a 

few gigahertzes to several hundred 

gigahertzes (Raissi et al., 2019). Several 

well-known radio telescopes are as follows: 

i. The Atacama Large Millimeter Array 

(ALMA):  is a group of radio telescopes 

that are situated in Chile as shown in Fig. 

4 and have grown to be a premier resource 

for researching rotational spectra in the 

millimeter wavelength range. Molecular 

clouds and star-forming regions can be 

observed in great detail thanks to ALMA's 

exceptional sensitivity and resolution. 

 
Fig. 4: Atacama Large Millimeter (Chen, et al., 2006). 

ii. Observatories in Space: Space-based 

observatories have the benefit of 

observing rotating spectra without air 

interference, giving them access to 

particular frequency ranges that are not 

accessible from the ground (Liu, et al., 

2017). Several well-known space 

observatories are: 

a. Herschel Space Observatory: 

Launched in 2009 by the European 

Space Agency (ESA), Herschel was an 

observatory designed to study the far-

infrared and submillimeter spectrums. 

It was essential for spotting rotational 

transitions in interstellar clouds and 

determining how chemicals affect star 
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formation as shown in Fig. 5 (Pathak, 

et al., 2022). 

 
Fig. 5:  Herschel Space Observatory (Pathak, et al., 2022). 

b. James Webb Space Telescope (JWST): 

NASA will launch this cutting-edge 

space telescope. In addition to 

completing the observations made by 

earlier observatories like Spitzer, it will 

have improved infrared capabilities 

that will allow rotating spectra 

measurements in the mid-infrared area 

as seen in Fig. 6 (Yang, et al., 2003). 

 
Fig. 6 James Webb Space Telescope (JWST) (Yang, et al., 2003). 

iii. Airborne Observations: Mounted on 

aircraft or high-altitude balloons, airborne 

observatories give users access to 

particular spectral bands without the 

atmospheric interference that ground-

based telescopes face. To observe certain 

chemical transitions with precision, these 

platforms can be fitted with rotational 

spectroscopy equipment. 

2. Suborbital telescopes: Suborbital 

telescopes are astronomical instruments 

sent into space aboard suborbital 

vehicles, either sounding rockets or 

high-altitude balloons. These platforms 

allow rotational spectra studies in certain 

frequency ranges but have very short 

observation intervals due to their ability 

to ascend to heights above a sizeable 

portion of the Earth's atmosphere. 

3. Data Archives and Surveys: The 

scientific community has access to a 

variety of rotating spectra data from the 

ISM since they have been gathered and 

archived in public data repositories. The 



Communication in Physical Sciences, 2023, 10(1): 172-203 181 
 

 

Spectral Line Atlas of Interstellar 

Molecules (SLAIM) and the Cologne 

Database for Molecular Spectroscopy 

(CDMS) are two examples of such 

archives (Zou, et al., 2007) 

Researchers can access a multitude of 

rotational spectra data from these sources, as 

well as from the instruments and data 

archives that go along with them, to study the 

chemical make-up, physical properties, and 

dynamics of the interstellar medium. 

Astronomers improve our understanding of 

the universe by using data from several 

observatories and combining observations 

made at various frequencies to provide a 

more complete picture of the intricate 

chemistry and physics of the ISM (Luinge, et 

al., 1995). 

 

2.3 Machine learning models for Molecular 

Identification and Abundance 

Measurements 

 

The method of automating molecule 

identification in rotational spectra 

investigation of the interstellar medium 

(ISM) shown considerable promise when 

using machine learning (ML) models. 

Understanding the chemical composition and 

physical circumstances in various interstellar 

settings depends on being able to identify 

molecular species. Effective and precise 

chemical identification is made possible by 

ML models, which are excellent at 

identifying patterns and extracting pertinent 

information from complicated spectrum data.  

Using supervised learning algorithms for 

molecular identification is a typical strategy. 

A labeled dataset of rotational spectra and the 

matching chemical species is used to train the 

machine learning algorithm (Madden, and 

Ryder 2002). During training, the model 

links particular spectral features with 

particular molecules. Once trained, the model 

can identify unknown rotational spectra by 

inferring their molecular identities from their 

spectral signatures. For the analysis of 

rotating spectra, convolutional neural 

networks (CNNs) have been effectively 

modified. Rotational spectra can be 

represented as one-dimensional images, 

making CNNs particularly well-suited for 

applications involving images. The model 

gains the ability to identify distinctive 

spectrum transitions and patterns linked to 

various molecular species. Additionally, 

decision tree-based techniques for molecular 

identification, like Random Forests and 

Gradient Boosting, are frequently employed. 

These models enable the classification of 

rotational spectra into various chemical 

categories by recursively separating the 

spectral data based on distinct properties. 

Quantifying molecule abundances in the ISM 

is a crucial task for machine learning 

approaches. Understanding the chemical 

composition and the function of diverse 

molecules in various astrophysical processes 

requires an accurate assessment of molecular 

abundances (Giambagli, et al., 2021). For 

abundance measurements, regression 

models, a kind of supervised learning 

method, are frequently utilized. The 

rotational spectra and accompanying 

chemical abundances from labeled datasets 

that include other observational or laboratory 

measurements are used to train these models. 

The molecule abundance values for fresh 

rotational spectra can be predicted thanks to 

the ML model's ability to learn the 

correlation between spectral properties and 

molecular abundances. Since Support Vector 

Regression (SVR) can handle continuous 

target variables, it is frequently used for 

abundance measurements. SVR determines a 

regression function that balances the trade-

off between accuracy and generalization and 

best fits the data (Chowdhury, et al., 2021).  

For example, the effectiveness of machine 

learning in molecular identification and 

abundance measurements in the ISM is 

demonstrated by several successful case 

studies: 

Carbon monoxide (CO) and other diatomic 

molecules have been identified and their 

abundance in molecular clouds has been 

measured using ML models. These 

investigations have shed important light on 

the existence of particular molecular species 

and their contributions to the ISM's 
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chemistry. The identification and 

characterization of complex organic 

molecules (COMs) in the ISM have been 

made possible via ML-driven rotational 

spectroscopy. COMs have been discovered 

by ML models, including glycolaldehyde 

(CH2OHCHO) as shown in Fig. 7, methyl 

formate (CH3OCHO), and others, offering 

light on the complex organic chemistry 

taking place in space (Etim et al., 2020). ML 

models have been used to calculate the 

molecular abundances in star-forming 

regions, which has aided in understanding 

their chemistry and the procedures that result 

in the creation of new stars (Etim et al., 

2018a). 

Rotational spectra have been automatically 

classified into various molecular categories 

using machine learning techniques, which 

streamlines the molecular identification 

procedure and enables high-throughput study 

of massive datasets. These case studies show 

the effectiveness of machine learning in the 

interpretation of rotating spectra and its 

potential to fundamentally alter our 

knowledge of the chemistry and chemical 

composition of the interstellar medium. As a 

result of the efficient processing of enormous 

amounts of spectrum data made possible by 

machine learning and rotational 

spectroscopy, astrochemistry and interstellar 

studies have significantly advanced 

(Leonard, et al., 2023). 

 

 
Fig. 7 Formation of glycolaldehyde in star 

dust (Wei et al., 2023) 

2.4 Machine learning in Probing 

Interstellar Clouds and Star-Forming 

Regions 

 

Huge areas of gas and dust are found between 

stars in interstellar gas clouds, which are 

present in galaxies. These clouds are essential 

for comprehending the process of star 

formation because they act as the sites of star 

birth. Analysis of rotational spectra is 

essential for understanding the physical 

settings of these interstellar gas clouds 

(Pellegrino et al., 2021). Astronomers can 

learn more about the temperature, density, 

and chemical make-up of the gas by watching 

the rotational transitions of different 

molecules. 

i. Temperature estimation: The thermal 

energy of the molecules in the gas cloud 

is revealed by the rotational spectra. The 

line widths and intensities of rotational 

transitions are temperature-dependent. 

Astronomers can estimate the kinetic 

temperature of the gas by examining the 

patterns and intensities of the spectral 

lines, which gives them important details 

about the energy distribution and heating 

mechanisms in the cloud (Kempema et 

al., 2021). 

ii. Calculating Density: The gas density in 

interstellar clouds has a big impact on 

collisional processes and the speed of 

molecular interactions. The gas density 

can be calculated using the examination 

of rotational spectra, particularly for 

molecules having many rotational 

transitions. The spectral line intensities 

alter with density because of increased 

collisional broadening, allowing 

astronomers to determine the gas density 

in various parts of the cloud (Prasanta et 

al., 2017). 

iii. Machine learning techniques have 

become effective resources for deriving 

the physical parameters of interstellar 

gas clouds from rotating spectra. These 

models are capable of learning the 

intricate connections between spectral 

patterns and physical factors, allowing 
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for precise predictions and the extraction 

of important data. 

iv. Temperature and Density Estimation: 

Labelled datasets comprising rotational 

spectra and matching temperature and 

density measurements from various 

observational techniques can be used to 

train supervised learning algorithms, 

such as regression models. The 

prediction of temperature and density 

values from rotating spectra is made 

possible by the machine learning model, 

which learns to link the spectral features 

to the physical parameters. For these 

tasks, neural networks and support 

vector regression (SVR) are frequently 

used (Etim et al., 2022). 

v. Kinematic Analysis: Machine learning 

approaches can be used to analyze the 

kinematics of interstellar clouds, 

including their movements and velocity 

structures. Convolutional neural 

networks and clustering algorithms, for 

example, can be utilized to discover 

spectral properties connected to various 

velocity components in the cloud. This 

makes it possible to analyze cloud 

dynamics like rotation, expansion, and 

infall motions, which sheds light on the 

cloud's general structure and evolution. 

Interstellar clouds contain complicated, 

dense regions called star-forming zones 

where new stars are formed. Studying 

the processes of star formation and the 

evolution of young stellar objects 

requires an understanding of the 

dynamics of these areas (Suwarno et al., 

2022). 

vi. Analysis of Velocity Field: Star-forming 

areas' velocity fields can be examined 

using machine learning algorithms. The 

Doppler changes in the rotational spectra 

of the molecules in the cloud allow us to 

determine their velocities. Astronomers 

can map the overall kinematic structure 

of the star-forming region by applying 

ML algorithms to these velocity 

measurements to uncover patterns of gas 

motion, locate turbulent areas, and 

identify turbulent regions (Meduri and 

Nandanavanam, 2023). 

vii. Protostellar Object Identification: ML 

models can be used to identify 

protostellar objects in star-forming 

regions. The rotational spectra of known 

protostars are included in labeled 

datasets that can be used to train these 

models. The machine learning 

algorithms pick up on the spectral cues 

that indicate protostellar emission, 

enabling the automatic detection of new 

protostellar candidates in the area 

(Sarkar et al., 2019). 

Machine learning can be used to investigate 

the chemical outflows and jets that come 

from newborn stars. The rotating spectra of 

these discharges have distinctive spectral 

characteristics. Astronomers can 

automatically find and examine these 

outflows by using ML algorithms, giving 

them insights into the launching mechanisms 

and feedback loops from young star objects.  

Rotational spectroscopy is an effective 

method for exploring star-forming regions 

and interstellar clouds. Astronomers can 

study star formation processes and the 

development of newborn stellar objects by 

analyzing rotational spectra to deduce the 

physical properties, kinematics, and 

dynamics of interstellar gas clouds. 

(Finkelmann et al., 2016). The combination 

of rotational spectroscopy and machine 

learning improves the effectiveness and 

precision of data processing, making it a 

potential strategy for expanding our 

understanding of the interstellar medium and 

its function in the genesis of stars and 

planetary systems. 

 

2.5 Machine learning in Astrochemistry and 

Chemical Evolution 

 

The study of chemical processes taking place 

in space, notably in the interstellar medium 

(ISM) and other celestial settings, is a 

multidisciplinary field known as 

astrochemistry. It is crucial to comprehend 

how molecules, atoms, and ions create and 

change throughout the cosmos. 
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Astrochemists now have a potent tool for 

exploring and analyzing the intricate 

chemical processes that form the ISM in the 

form of machine-learning (Bauer et al., 

2019). Some of the chemical processes in the 

ISM using machine learning in 

astrochemistry: 

i. Chemical Reaction Networks: The ISM 

contains numerous chemical reaction 

networks that involve interactions 

between atoms, ions, and molecules. 

Different species are created, destroyed, 

and interconverted as a result of these 

reactions. The simulation and exploration 

of chemical reaction networks using 

machine learning models, such as neural 

networks and genetic algorithms, can 

reveal information on the reaction 

kinetics, reaction pathways, and the 

function of various species as 

intermediates or catalysts in chemical 

processes (Von, 2019). The analysis and 

interpretation of spectroscopic lines found 

in the rotational, vibrational, and 

electronic spectra of interstellar molecules 

is done using machine learning methods. 

Researchers can recognize and classify 

spectral lines, assisting in molecular 

identification, by training models using 

labeled datasets containing known 

spectral signatures of various molecular 

species. Also, molecule abundances from 

spectral data can be estimated using ML 

models, which are essential for 

comprehending the chemical composition 

of the ISM (Shinggu et al., 2023).  

ii. Construction of spectrum databases: 

Extensive spectrum databases of 

interstellar molecules are built and 

maintained using machine learning. These 

databases keep track of molecules' 

relevant physical and chemical properties 

as well as their rotational, vibrational, and 

electronic spectra. The enormous volumes 

of spectroscopic data gathered from 

numerous observatories and experiments 

are organized and cataloged with the aid 

of machine learning (ML) techniques like 

data mining and pattern recognition (Ertl 

2019). 

iii. Exoplanet Atmospheres: Beyond the ISM, 

machine learning is used in astrochemistry 

to explore exoplanet atmospheres. To 

predict the chemical compositions of 

exoplanet atmospheres from their 

spectroscopic signals, machine learning 

models can be trained using laboratory 

data and theoretical models. This helps in 

the analysis of the atmospheres of 

exoplanets as well as the hunt for 

biosignature chemicals or indications of 

habitability. 

iv. Complex Molecule Detection: The 

detection of complex organic compounds 

(COMs) in the ISM has been made 

possible using machine learning 

techniques. COMs are multi-carbon atom 

compounds that are important for 

comprehending primordial chemistry and 

the origins of life. Based on spectral data, 

ML models may be taught to recognize the 

distinctive properties of COMs, making it 

easier to find them and investigate 

compounds of astrobiological significance 

(Grimme et al., 2017). 

v. Chemical Evolution Modelling: To 

simulate the chemical enrichment of the 

ISM over time, chemical evolution 

modeling employs machine learning 

approaches. These models take into 

account some variables, including grain-

surface chemistry, gas-phase processes, 

and star nucleosynthesis. To better 

comprehend chemical development, ML 

algorithms can be used to refine the model 

parameters and compare the simulated 

results with observed abundances 

(Halgren, 1996). 

 

2.5.1 Machine Learning-driven insights 

into the chemical evolution of the ISM 

 

The abundance and distribution of atoms, 

ions, and molecules within the ISM are 

shaped by a variety of physical and chemical 

processes throughout cosmic timescales. 

Astronomers have never before been able to 

simulate and evaluate the chemical evolution 

of the ISM thanks to ML-driven 

investigations. The following are some 
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crucial areas where machine learning has 

improved our comprehension of the ISM's 

chemical evolution: 

Large-scale chemical reaction networks, 

which control the ISM's chemical evolution, 

can be simulated by ML models. These 

networks contain tens of thousands of atomic 

and molecular species-based processes 

(Rasmussen 2004). Based on observational 

data, laboratory tests, and theoretical 

calculations, machine learning algorithms 

can optimize the rate coefficients of these 

reactions. Researchers can use ML to study 

how various reactions affect the chemical 

complexity of the ISM and model the 

evolution of abundances for a variety of 

species.  In a variety of astrophysical 

contexts, ML can be used to estimate the 

initial chemical conditions of the ISM. For 

instance, ML models can infer the initial 

abundances of elements and molecules 

present during the early phases of star 

formation using measured abundances of 

molecules and ions. This reveals details about 

the chemistry of the molecular cloud that 

gives rise to stars (Ushie 2018a). 

Supernovae, stellar winds, and 

nucleosynthetic activities all contribute to 

stellar feedback, which affects the chemical 

development of the ISM. Modeling the effect 

of star feedback on the chemical enrichment 

of the ISM can be aided by machine learning.  

 

2.6 Machine learning approaches for 

identifying molecular ions in rotational 

spectra 

 

As molecular ions are important participants 

in the chemical evolution of the interstellar 

medium (ISM) and are involved in a variety 

of interstellar processes, it is imperative in 

astrochemistry to identify them in rotational 

spectra. Identifying chemical ions from 

rotational spectra has been successfully 

automated and improved using machine-

learning techniques (Pedregosa et al., 2012). 

We go into great detail about the various 

machine learning approaches utilized for this 

purpose below: 

2.6.1. Supervised learning 

 

Identifying chemical ions in rotational 

spectra is frequently done using supervised 

learning. ML models are trained on labeled 

datasets in supervised learning, where 

rotational spectra are linked to the labels of 

the relevant chemical ions. The ML model 

gains the ability to identify spectral data 

patterns and features that are suggestive of 

particular chemical ions. 

i. Classification Models: Support Vector 

Machines (SVM), Random Forests, and 

Neural Networks are some of the most 

popular classification algorithms. Based 

on the distinctive spectral fingerprints of 

various chemical ions, these models may 

learn to differentiate between them 

(Anguloet al., 2022). 

ii. Engineering of Features: In supervised 

learning, feature engineering is a crucial 

stage. Peak intensities, line widths, and 

frequency shifts are a few of the pertinent 

characteristics that researchers may derive 

from the rotational spectra. The ML model 

uses these features as input, which aids in 

its ability to anticipate outcomes correctly. 

 

2.6.2  Unsupervised Learning 

 

 Unsupervised learning is a different machine 

learning method that can be used to detect 

chemical ions in rotational spectra, 

particularly when labeled data is scarce or 

nonexistent. 

i. Clustering: Rotational spectra can be 

grouped into clusters using clustering 

methods like K-Means and DBSCAN 

based on similarities in their spectral 

patterns. It may be possible to identify 

molecular ions without knowing their 

names by comparing the spectra within the 

same cluster, which may belong to the 

same molecular ion. Spectral lines that do 

not follow the conventional patterns found 

in rotational spectra can be found using 

anomaly detection methods like Isolation 

Forest and One-Class SVM. These 

anomalies might be caused by rare species 

or unidentified molecular ions (Etim et al., 

2015). 
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ii. Pre-trained models and transfer learning: 

Transfer learning uses the information 

gained from one task to enhance 

performance on a related one. To locate 

molecular ions in rotational spectra, 

researchers can utilize pre-trained models 

that have already been trained on vast 

datasets of molecular spectra. These 

models' precision and effectiveness can be 

considerably increased by fine-tuning 

them using particular rotational spectrum 

data (Etim et al., 2016). 

 

2.6.3 Deep learning 

 

Due to its capacity to automatically generate 

hierarchical representations from raw data, 

deep learning, a subset of machine learning 

has proven considerable potential in the 

identification of chemical ions from 

rotational spectra (Velasco, et al., 2022). 

i. Convolutional Neural Networks (CNNs): 

By considering the spectra as one-

dimensional signals, CNNs—which are 

frequently used to identify patterns in 

images—can be modified for the analysis 

of rotational spectra. CNNs are useful for 

identifying chemical ions because they 

can learn to recognize distinctive patterns 

in the spectrum data. 

ii. RNNs (recurrent neural networks): RNNs 

function well with sequential data, such as 

rotational spectra. RNNs can recognize 

distinctive patterns connected to certain 

chemical ions and capture temporal 

relationships between spectral properties 

(Mercier and Lennon, 2003). 

The identification of new molecular species 

in the ISM may be sped up by machine 

learning techniques for locating molecule 

ions in rotating spectra. They facilitate the 

evaluation of enormous volumes of spectrum 

data and further knowledge of the chemistry 

and development of interstellar 

environments. However, it is essential to 

remember that the effectiveness of these ML 

techniques relies on the availability of 

diverse, high-quality training data as well as 

careful consideration of feature selection and 

data preprocessing. Our knowledge of the 

cosmic chemistry in the ISM is expected to 

grow as ML techniques develop and are 

combined with rotational spectroscopy 

(Bandos et al., 2009). Astrochemistry as an 

interesting field of complex organic molecule 

(COM) and prebiotic chemistry in the 

interstellar medium (ISM) attempts to 

comprehend the creation and distribution of 

organic compounds in space. Complex 

organic molecules are fundamental 

components of life as we know it, and 

investigating their abundance in the ISM can 

shed light on prebiotic chemistry's potential 

as well as the universe's early history 

(Yuxuan, et al., 2023). Astronomers can now 

examine enormous and complex datasets of 

rotational and vibrational spectra using 

machine learning (ML) techniques, and they 

may also investigate the complex chemistry 

of the ISM. ML methods in examining COMs 

and prebiotic chemistry in the ISM are given 

below: 

i. Automated COMs Detection: Because 

there are so many spectral lines and there 

may be spectral overlaps, it can be 

difficult to find COMs in rotational and 

vibrational spectra. Clustering and 

pattern recognition are two ML-driven 

automated detection strategies that aid in 

locating and classifying spectral data 

connected to COMs. These algorithms 

can quickly sort through the data and 

identify possibilities for additional 

research. 

ii. Analysis of Spectral Lines: Spectral 

lines in COMs are analyzed using ML 

methods to identify their locations, 

intensities, and other distinctive 

characteristics (Longqiang et al., 2023) 

Researchers can anticipate the spectral 

properties of novel molecules and 

identify previously unidentified species 

by training ML models on the known 

spectral data of COMs.  

iii. Modeing Chemical Reaction Networks: 

Prebiotic chemistry in the ISM involves 

intricate networks of chemical reactions 

involving atoms, ions, and molecules. 

ML-driven models may simulate and 

optimize chemical reaction networks, 
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giving information about the processes 

through which COMs are formed and the 

distribution of their abundance. These 

models explore the circumstances under 

which COMs can arise by taking into 

account elements like temperature, 

density, and radiation fields (Cheng et 

al., 2023). 

iv. Prediction of Prebiotic Molecules: It is 

possible to predict the presence of 

additional prebiotic compounds in the 

ISM using machine learning algorithms 

that have been trained on spectroscopic 

data of known prebiotic molecules. 

Astronomers can determine the 

possibility of prebiotic chemistry 

occurring in particular parts of the ISM 

by finding the spectrum signatures of 

these molecules (Zaw-Myo et al., 2023). 

v. Exoplanet Habitability: By examining 

the makeup of their atmospheres, ML 

approaches can be extended to analyze 

the possible habitability of exoplanets. 

ML models can evaluate the possibility 

of prebiotic chemistry on exoplanets by 

comparing spectroscopic data from the 

atmospheres of such planets with the 

known spectra of COMs in the ISM 

(Weimin et al., 2023). 

vi. Big Data Analysis: The investigation of 

COMs and primordial chemistry 

requires a substantial amount of 

observational data from both terrestrial 

and planetary telescopes. Astronomers 

can make sense of the enormous amount 

of spectral data by using ML methods, 

like as deep learning, to quickly evaluate 

and identify patterns from huge data 

(Onen et al., 2000). Astronomers may 

now investigate the chemistry of the ISM 

in ways that were not previously 

conceivable by utilizing ML techniques. 

Our knowledge of the origins of life and 

the potential habitability of other planets 

has the potential to change as a result of 

ML-driven discoveries into complex 

organic compounds and primordial 

chemistry. As ML develops, its 

incorporation with astrochemistry has 

the prospect of revealing even more 

about the interesting chemistry taking on 

in the cosmos (Xia et al., 2022). 
 

2.7 Advanced ML Techniques in Rotational 

Spectroscopy  

2.7.1 Deep learning applications in 

rotational spectra analysis 
 

The analysis of rotational spectra in 

astrochemistry has been completely 

transformed by modern machine learning 

(ML) methods, particularly deep learning. 

Rotational spectroscopy applications using 

deep learning have produced encouraging 

results, delivering increased precision, 

effectiveness, and the capacity to 

automatically extract intricate features from 

spectrum data (Minjie et al., 2022). We go 

into great detail about the numerous deep 

learning uses for rotating spectra analysis 

below: 

1. Convolutional Neural Networks (CNNs) 

for Spectral Line Identification: 

Rotational spectroscopy uses CNNs, 

which were initially developed for image 

recognition, to identify one-dimensional 

spectral lines. CNNs are capable of 

automatically picking up on spectrum 

patterns and features related to particular 

chemical transitions. The models can 

precisely identify and classify spectral 

lines, enabling effective molecular 

identification, by training CNNs on 

labeled spectral datasets (Thereza et al., 

2022). 

2. Denoising Spectral Data using 

Autoencoders: Autoencoders are 

unsupervised deep learning models that 

are employed in the reduction of 

dimensionality and the reconstruction of 

data. Autoencoders can be used in 

rotational spectroscopy to denoise spectral 

data, reducing noise and artefacts from 

observed spectra. This procedure 

improves the data's quality and increases 

the precision of following analysis 

activities (Osigbemhe et al., 2022a; 

2022b; 2022c). 

3. Synthetic spectral generation using 

generative adversarial networks (GANs): 

To create synthetic spectrum data that 
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closely mimics actual observational 

spectra, GANs are used. Researchers can 

produce synthetic spectra with 

predetermined qualities by training GANs 

on datasets of observed spectral data. 

These artificial spectra provide useful 

datasets for ML model validation and 

comprehension of data constraints 

(Yajuan et al., 2022). 

4. Time-Series Spectral Analysis Using 

Recurrent Neural Networks (RNNs): 

RNNs are appropriate for time-series 

spectrum analysis because they excel at 

processing sequential data. RNNs are 

particularly effective for analyzing 

dynamic phenomena including outflows, 

turbulence, and changing spectral 

characteristics because they can capture 

temporal correlations in rotational spectra 

(Karteek et al., 2022). 

5. Attention Mechanisms for Spectral 

Feature Selection: Attention mechanisms 

are used to suppress noise or unimportant 

information and concentrate on pertinent 

spectral features. These processes enable 

the ML model to identify critical features 

for molecule identification and abundance 

measurements by giving different weights 

to various components of the spectral data. 

6. Transfer Learning for Abundance 

Estimation: Transfer learning makes use 

of models that have already been pre-

trained on large datasets to enhance the 

performance of ML models on related 

tasks using smaller datasets. Transfer 

learning can be used in rotational 

spectroscopy to refine pre-trained models 

from other spectroscopic datasets to 

estimate molecule abundances in the ISM 

(Wendy et al., 2021). 

7. Quantifying Prediction Uncertainty with 

Bayesian Deep Learning: Bayesian deep 

learning techniques make it possible to 

quantify prediction uncertainty. To 

accurately estimate molecule abundances 

and other physical characteristics from 

observed spectrum data in rotational 

spectroscopy while accounting for 

measurement errors and model 

uncertainties, uncertainty quantification is 

crucial (Daiguo et al., 2021). 

8. Deep Reinforcement Learning for 

Spectral Line Fitting: Deep reinforcement 

learning is a powerful tool for enhancing 

spectral line fitting to observed data. 

These models provide the ability to 

iteratively modify the spectral line profile 

parameters to reduce fitting errors, 

allowing for more precise modeling of 

rotational spectra. 

Our understanding of the chemistry, physics, 

and dynamics of the interstellar medium has 

greatly improved as a result of the use of deep 

learning methods in rotating spectra research. 

These cutting-edge ML methods provide 

astronomers with strong tools to investigate 

and comprehend the rich and intricate 

information contained in rotating spectra, 

paving the way for advances in 

astrochemistry and our comprehension of the 

chemical evolution of the universe 

(Giambagli et al., 2021). 
 

2.8 Transfer learning and domain 

adaptation for interstellar rotational 

spectroscopy 
 

In the context of interstellar rotational 

spectroscopy, transfer learning and domain 

adaptation are potent techniques because 

they allow for the efficient and effective use 

of knowledge from one spectral dataset 

(source domain) to enhance the analysis and 

modeling of another spectral dataset (target 

domain). These methods enable researchers 

to use data from other datasets to improve the 

analysis and interpretation of rotational 

spectra, which is particularly useful when 

working with sparse or limited data in the 

target domain (Kenya et al., 2019). 

i. Transfer learning for molecule 

Identification: Rotational spectra analysis 

frequently uses transfer learning for 

molecule identification. The goal is to use 

a large dataset of labeled rotational spectra 

from a source domain, where known 

molecular species are known, to pre-train 

a deep learning model, such as a 

convolutional neural network (CNN). The 

target domain, which might only include a 
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small amount of labeled data, is then given 

the information gained from the source 

domain. Even with a tiny target domain 

dataset, researchers can dramatically 

increase the accuracy and efficiency of 

molecular identification by fine-tuning the 

pre-trained model on the target domain 

(Xiangyu et al., 2019). 

ii. Domain Adaptation for Abundance 

Estimation: In abundance estimation tasks 

where the distribution of spectral data in 

the target domain (for example, a 

particular interstellar region) may differ 

from that in the source domain (for 

example, a laboratory or well-

characterized region), domain adaptation 

techniques are used. The objective is to 

minimize the consequences of domain 

shift while adapting the model developed 

on the source domain to the target domain. 

By taking into account variations in 

observational settings and environmental 

factors, domain adaptation contributes to 

the robust estimation of molecule 

abundances in the ISM (Jesse, et al., 

2019). 

iii. Data Augmentation for Improving 

Generalization: Data augmentation is a 

type of transfer learning that entails 

producing fake data to increase the dataset 

for the target domain. Researchers can 

construct extra training samples that 

capture various facets of the underlying 

data distribution by applying various 

changes to the current spectral data, such 

as adding noise, moving frequencies, or 

creating spectral variations. The capacity 

of ML models to generalize is improved 

through data augmentation, which 

improves their performance on spectrum 

data that has not yet been observed. 

iv. Transfer Learning for Spectral Line 

Fitting: In rotational spectroscopy, 

extracting physical parameters like line 

intensities, line widths, and velocities 

requires the use of spectral line fitting, 

which is a crucial task (Stein, et al., 2019). 

Models can be fine-tuned on the target 

domain using transfer learning after being 

pre-trained on a source domain with well-

characterized spectral lines to speed up the 

fitting procedure. Even when the target 

domain data have various observational 

conditions or spectral resolutions, this 

method increases the accuracy and 

efficiency of spectral line fitting. 

v. Domain Adaptation for Interstellar Cloud 

Analysis: Domain adaptation techniques 

can be used to modify machine learning 

(ML) models trained on one cloud to 

assess rotational spectra from different 

clouds in investigations of interstellar 

clouds with varying physical 

characteristics, such as temperature, 

density, and turbulence. Domain 

adaptation aids in capturing the unique 

qualities of each cloud while accounting 

for the differences in physical properties 

(Dai, et al., 2019). 

vi. Transferring Learned Representations: 

Transfer learning is not just about 

changing complete models; it can also 

mean transferring learned features or 

representations from a model that has 

already been trained. This may entail 

leveraging the intermediate layers of a 

deep learning model that has already been 

trained in rotational spectroscopy as 

feature extractors for other tasks like 

molecule classification, abundance 

estimate, or chemical evolution modeling. 

Powerful methods that improve the analysis 

and interpretation of rotating spectra in the 

interstellar medium include transfer learning 

and domain adaptation. Researchers can 

improve the study of another spectral dataset 

by using information from one to create 

predictions, model physical parameters, and 

gain important insights into the intricate 

chemistry and evolution of the ISM. These 

methods are essential for maximizing the 

information we do have while also expanding 

our knowledge of the chemical complexity of 

the cosmos (Jochen, et al., 2019). 
 

2.9 Integrating ML with traditional spectral 

analysis in rotational spectroscopy 
 

Rotational spectroscopy can produce better 

results and a deeper comprehension of the 

interstellar medium (ISM) by combining 
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machine learning (ML) with conventional 

spectral analysis techniques. Astronomers 

can extract more data, spot intricate 

characteristics, and increase the precision of 

molecule identification and abundance 

measurements by using machine learning 

(ML) techniques to supplement and improve 

conventional methods (Hiromasa et al., 

2018). Here are some examples of how 

rotational spectroscopy might incorporate 

ML with conventional spectral analysis 

techniques: 

i. Automated Line Identification: The 

manual inspection and comparison of 

observable spectral lines with theoretical 

or experimental data are the traditional 

approaches for line identification. This 

process can be automated using ML 

tools like convolutional neural networks 

(CNNs), which learn the distinctive 

patterns of chemical transitions from 

labelled datasets. The ML model can 

accurately recognize and categorize 

spectral lines while requiring less human 

effort than previous methods (Robert 

and Sheridan 2013). 

ii. Spectral denoising and deblending: 

Noise and blending of various chemical 

transitions can have an impact on 

spectral data from observational sensors. 

To eliminate noise and separate 

overlapping spectral lines, machine 

learning (ML) algorithms like 

autoencoders and deep denoising models 

can be used. Traditional approaches for 

line fitting and abundance estimate can 

function better and yield more 

trustworthy findings by deblending and 

denoising the data (Todd, et al., 2012). 

iii. Enhancing Spectral Line Fitting: ML 

methods can help to streamline the 

spectral line fitting procedure. ML 

models can learn the parameters that best 

represent the line profiles of various 

chemical transitions by being trained on 

simulated or existent spectral datasets.  

ML models can be used to predict 

uncertainty and errors in the study of 

rotational spectra. Bayesian deep 

learning, for example, can provide 

probabilistic predictions, allowing for 

the quantification of uncertainty in 

abundance measurements and other 

derived parameters (Bin, et al., 2012). 

iv. Building and Maintaining spectrum 

Databases: ML approaches can help 

build and maintain thorough spectrum 

databases of interstellar molecules. 

Astronomers will be able to access and 

use the data more easily for additional 

investigation by using ML algorithms to 

analyze and cluster spectral data from 

diverse sources. 

v. Quality control and outlier detection: 

ML techniques can help find outliers or 

suspicious data points in the rotational 

spectra. This can assist astronomers in 

identifying anomalies, instrument 

artifacts, or odd spectral features that 

need additional research and quality 

assurance (Christian, et al., 2010). 

In rotational spectroscopy, combining ML 

with conventional spectrum analysis 

techniques has many advantages, such as 

automatic line identification, denoising, 

improved fitting, and increased 

generalization. These combined methods can 

result in a more precise and effective 

examination of rotating spectra in the ISM, 

expanding our knowledge of astrochemical 

processes and paving the way for fresh 

insights into the study of the interstellar 

medium (Robert, 2012). 

Rotational spectroscopy in the interstellar 

medium (ISM) holds promising potential for 

the future, and it is anticipated to see new 

trends that will help us comprehend 

astrochemistry and the cosmos' chemical 

development. The following are some of the 

major rising trends and future opportunities 

in this industry: 

i. Big Data and High-Resolution 

Spectroscopy: Larger and higher-

resolution datasets of rotating spectra will 

be made available as observational 

capabilities advance. It will be necessary 

to modify machine learning approaches to 

effectively manage these enormous 

datasets. The development of scalable ML 

algorithms that can handle and interpret 
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massive data will be a key area of interest 

shortly. These algorithms will allow 

astronomers to investigate more intricate 

chemical networks and find unusual 

molecular species (Ushie, et al., 2022). 

ii. Deep Learning Architectures: ML 

techniques for rotational spectroscopy 

will continue to be led by deep learning. 

We will investigate advanced deep 

learning architectures for molecule 

identification, abundance estimates, and 

chemical evolution modeling, such as 

transformer networks and graph neural 

networks (John and Ryszard, 2008) 

 

 
Fig. 8:  A flowchart for the general approach to ML model development with (a) 

simulated generated and (b) experimentally collected data. 
 

3.0 Prospects in machine learning for 

rotational spectroscopy in the ISM 

 

iii. Bayesian Deep Learning for Uncertainty 

Quantification: To quantify uncertainty in 

abundance observations and model 

predictions, Bayesian deep learning 

techniques will be further integrated into 

rotational spectroscopy analysis. This will 

make it possible to interpret the results in 

a more solid and trustworthy manner 

(Qianyi and Jacqueline, 2009). 

iv. Integrated Analytical Pipelines: A 

developing trend is the creation of 

integrated analytical pipelines that 

combine conventional techniques with 

spectrum analysis powered by machine 

learning. This will offer a thorough 

method to investigate rotating spectra and 

gain useful information more quickly. 

 

v. Interpretable ML Models: There will be a 

greater demand for interpretable ML 

models as the use of ML models grows. 

Astronomers will be able to comprehend 

the physical foundation of their forecasts 

by developing models that offer concise 

explanations of their choices (Prachi, et 

al., 2023). 

vi. Hardware Acceleration and Quantum 

Computing: New developments in 

hardware acceleration and quantum 

computing may be used to increase the 

effectiveness and speed of machine 

learning (ML) algorithms for rotational 

spectroscopy and allow for real-time or 

almost real-time analysis of spectrum 

data. 

With new trends emphasizing scalability, 

deep learning architectures, uncertainty 

quantification, and interdisciplinary 
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collaborations, the future of machine learning 

in rotational spectroscopy looks bright. These 

developments will enable astronomers to 

understand the chemical makeup and 

evolution of the ISM in greater detail and 

open up new vistas for the study of 

astrochemistry in the context of the 

constantly growing corpus of spectral data 

(Qinghua, et al., 2023). 
 

4.0 Conclusion 
 

The study of the interstellar medium (ISM) 

and our understanding of astrochemistry 

have both been revolutionized by the 

development of machine learning as a 

transformative tool in rotational 

spectroscopy. Astronomers may now 

examine the intricate chemical processes that 

generate the ISM thanks to ML methods' 

previously unheard-of capabilities for 

analyzing, interpreting, and retrieving useful 

data from rotating spectra. Researchers can 

gain better outcomes, more efficiency, and 

deeper insights into cosmic chemistry by 

combining ML with conventional spectral 

analysis techniques. Scalable ML algorithms, 

deep learning architectures, domain 

adaptation techniques, and interdisciplinary 

collaborations will shape the next generation 

of rotational spectroscopy analysis, leading 

to a deeper understanding of astrochemical 

processes, the origins of complex molecules, 

and the chemical evolution of the universe. 

Rotational spectroscopy in the interstellar 

medium (ISM) has been significantly 

impacted by machine learning, altering how 

astronomers investigate the chemistry and 

development of the cosmos. By automating 

molecule identification, abundance estimate, 

and physical parameter determination from 

rotational spectra, ML approaches have 

decreased human error and improved 

accuracy. Researchers have been able to 

study larger, higher-resolution datasets 

thanks to the capabilities of ML algorithms to 

handle huge data, which has made it possible 

to explore more intricate chemical networks. 

The primordial chemistry of the ISM has 

been revealed thanks to the discovery and 

identification of complex organic molecules 

(COMs) and uncommon species using ML-

driven rotational spectroscopy. The 

effectiveness and dependability of spectral 

line fitting and uncertainty quantification 

have been improved by the incorporation of 

ML with conventional spectral analysis 

techniques. 

The importance of machine learning in 

advancing interstellar molecular analysis 

cannot be overemphasized. The obstacles 

faced by enormous volumes of observational 

data have been overcome by ML approaches, 

which have automated, efficient, and scalable 

rotational spectrum analysis. Deep learning 

architectures are used in ML models to 

enable autonomous learning and recognition 

of spectrum patterns, which improves 

molecular identification and abundance 

estimates. A more detailed knowledge of the 

chemical processes in the ISM is made 

possible by the uncertainty quantification 

offered by ML-driven Bayesian techniques, 

which improves the robustness of 

conclusions. Our understanding of 

astrochemical processes and the possibility 

of primordial chemistry in the universe has 

been revolutionized by the identification of 

complex and uncommon molecular species 

by ML-driven spectral analysis. 

In the coming years, machine learning has the 

potential to completely transform interstellar 

spectroscopy. As machine learning methods 

develop, their combination with rotational 

spectroscopy will yield even more ground-

breaking results. Future developments in the 

subject will be fuelled by trends including 

scalable algorithms for huge data handling, 

domain adaption methods for multi-region 

investigations, and deep learning 

architectures for exoplanet atmosphere study. 

Interprofessional partnerships involving 

astrophysicists, chemists, and ML specialists 

will promote creative solutions adapted to the 

special difficulties of rotational spectroscopy 

in the ISM. To unveil the mysteries of 

astrochemistry and provide a greater 

understanding of the chemical processes, 

machine learning must be able to extract 

useful insights from enormous amounts of 

spectral data. Astronomers are prepared to 
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enter a new era of discovery by utilizing the 

power of ML, unravelling the secrets of the 

interstellar medium and its part in the grand 

scheme of cosmic evolution. 
 

5.0  References 
 

 Kirk S., John, K., Aaron, O., Daniel A. 

K., Karen, B., Dave A., Alicia 

W. & Ganesh, V. (2008). Practical 

Outcomes of Applying Ensemble 

Machine Learning Classifiers to High-

Throughput Screening (HTS) Data 

Analysis and Screening. Journal of 

Chemical Information and 

Modeling 48, (11), 2196-

2206. https://doi.org/10.1021/ci800164

u 

Agúndez M., Cernicharo J., De Vicente P. 

(2015). Discovery of HC3O+ in space: 

The chemistry of O-bearing species in 

TMC-1. Astronomy & Astrophysics. 

;579:L10. doi:10.1051/0004-

6361/201526650. 

Andrew, C.; Etim E. E.; Ushie, O. A. & 

Khanal. G. P. (2018). Vibrational-

Rotational Spectra of Normal Acetylene 

and Doubly Deuterated Acetylene: 

Experimental and Computational 

Studies. Chemical Science 

Transactions 7(1), 77-82. 

DOI:10.7598/cst2018.1432.  

Angulo A., Yang L., Aydil E. S, & Modestino 

M.A. (2022). Machine learning 

enhanced spectroscopic analysis: 

towards autonomous chemical mixture 

characterization for rapid process 

optimization. Digital 

Discovery.;1(1):35-44. 

doi:10.1039/D1DD00027F 

Bandos, T. V., Bruzzone L.  & G. Camps-

Valls, (2009). "Classification of 

Hyperspectral Images With Regularized 

Linear Discriminant Analysis," in IEEE 

Transactions on Geoscience and Remote 

Sensing, vol. 47, no. 3, pp. 862-873, doi: 

10.1109/TGRS.2008.2005729. 

Bauer, C. A., Schneider, G. & Göller, A. H. 

(2029). Gaussian process regression 

models for the prediction of hydrogen 

bond acceptor strengths. Mol Inform  38, 

1800115, 

. doi.org/10.1002/minf.201800115 

Bin C., Robert P., Sheridan, V. H. & Johannes 

H. Voigt.(2012).  Comparison of 

Random Forest and Pipeline Pilot Naïve 

Bayes in Prospective QSAR 

Predictions. Journal of Chemical 

Information and Modeling 52 (3) , 792-

803. https://doi.org/10.1021/ci200615h 

Cernicharo J., Gottlieb C.A, & Guelin M. 

(1991). Detection of HC5NH+ in TMC-

1. The Astrophysical Journal 

Letters.;368: 39. doi:10.1086/185846. 

Chen, R. X., Liu, S., Jin, J. Lin, & J. Liu, 

(2006). “Machine Learning for Drug 

Target Interaction Prediction,”, doi: 

10.3390/molecules23092208. 

Available:www.mdpi.com/journal/mole

cules. 

Chen, Z., Alexandre M., Weihua L., & 

Konstantinos G. (2020). “A deep 

learning method for bearing fault 

diagnosis based on Cyclic Spectral 

Coherence and Convolutional Neural 

Networks.” Mechanical Systems and 

Signal Processing, vol. 140, 106683. 

https://doi.org/10.1016/j.ymssp.2020.10

6683. 

Cheng F., Ye W., Richard G., Sudarshan K., 

Cheryl B., Patrick T. &  Simone S. 

(2023). Prospective Validation of 

Machine Learning Algorithms for 

Absorption, Distribution, Metabolism, 

and Excretion Prediction: An Industrial 

Perspective. Journal of Chemical 

Information and Modeling 63 (11) , 

3263 

3274. https://doi.org/10.1021/acs.jcim.3

c00160 

Chowdhury, M.A., Rice, T.E. & 

Oehlschlaeger, M.A. (2021). Evaluation 

of machine learning methods for 

classification of rotational absorption 

spectra for gases in the 220–330 GHz 

range. Appl. Phys. B 127, 34 

https://doi.org/10.1007/s00340-021-

07582-0  

Christian K., Bernd B., & Timothy C. 

(2010). Insolubility Classification with 

Accurate Prediction Probabilities Using 

https://doi.org/10.1021/ci800164u
https://doi.org/10.1021/ci800164u
https://doi.org/10.1002/minf.201800115
https://doi.org/10.1021/ci200615h
http://www.mdpi.com/journal/molecules
http://www.mdpi.com/journal/molecules
https://doi.org/10.1016/j.ymssp.2020.106683
https://doi.org/10.1016/j.ymssp.2020.106683
https://doi.org/10.1021/acs.jcim.3c00160
https://doi.org/10.1021/acs.jcim.3c00160
https://doi.org/10.1007/s00340-021-07582-0
https://doi.org/10.1007/s00340-021-07582-0


Communication in Physical Sciences, 2023, 10(1): 172-203 194 
 

 

a MetaClassifier. Journal of Chemical 

Information and Modeling , 50 (3) , 404 

414. https://doi.org/10.1021/ci900377e 

Claesen M. & B. De Moor, (2015). 

“Hyperparameter search in machine 

learning,” arXiv preprint 

arXiv:1502.02127,  arXiv: 1502 . 02127. 

https://arxiv.org/abs/2302.05911 

Clarke, R. H. W. Ressom, A. T. Wang, J. H. 

Xuan, M. C. Liu, E. A. Gehan, & Y. W. 

(2021). “The properties of high-

dimensional data spaces: implications 

for exploring gene and protein 

expression data,” Nature Reviews 

Cancer, vol. 8, no. 1, pp. 37–49, issn: 

1474-175X. doi: 10.1038/nrc2294. 

Dai F., Vladimir S., Andy L., Matthew P., 

& Robert P. S. (2019). Building 

Quantitative Structure–Activity 

Relationship Models Using Bayesian 

Additive Regression Trees. Journal of 

Chemical Information and 

Modeling 59 (6) , 2642-

2655. https://doi.org/10.1021/acs.jcim.9

b00094 

Daiguo D., Xiaowei C., Ruochi Z., Zengrong 

L., Xiaojian W. & Fengfeng Z. X. 

(2021). GraphBoost: Extracting Graph 

Neural Network-Based Features for a 

Better Prediction of Molecular 

Properties. Journal of Chemical 

Information and Modeling 61 (6) , 

2697-

2705. https://doi.org/10.1021/acs.jcim.0

c01489 

Ertl P. (2021). An algorithm to identify 

functional groups in organic molecules. 

J Cheminform 9:1–

7. https://doi.org/10.1186/s13321-017-

0225-z 

Etim E.E., & E. Arunan (2015). Rotational 

Spectroscopy and Interstellar 

Molecules. Planex News letter, 5 (2): 

16-21. Invited mini-review article. 

Etim, E. E., Adelagun, R.O.A; Andrew, C; 

Oladimeji, E. (2021). Optimizing the 

Searches for Interstellar Heterocycles. 

Advances in Space Research 

Journal,  https://doi.org/10.1016/j.asr.2

021.06.003.   

Etim, E. E., (2015). Benchmark Studies on the 

Isomerization Enthalpies for Interstellar 

Molecular Species J. Nig. Soc. Phys. Sci. 

5, 

527. https://doi.org/10.46481/jnsps.202

3.527  

 Etim, E. E., C. Andrew, U. Lawal, I. S. & 

Etiowo G. U. (2020). Protonation of 

Carbonyl Sulfide: Ab initio Study. 

Journal of Applied Sciences, 20: 26-34. 

DOI: 10.3923/jas.2020.26.34 

Etim, E. E., Gorai, P., Das,A., Chakrabarti, S. 

K & Arunan, E. (2018). Interstellar 

Hydrogen Bonding. Advances in Space 

Research,  61(11): 2870-

2880, https://doi.org/10.1016/j.asr.2018

.03.003. 

Etim, E. E., Gorai, P., Das,A., Chakrabarti, S. 

K & Arunan, E. (2018a). Interstellar 

Hydrogen Bonding. Advances in Space 

Research, 61(11): 2870-

2880, https://doi.org/10.1016/j.asr.2018

.03.003. 

Etim, E. E., Inyang, E. J., Ushie, O. A., 

Mbakara, I. E., Andrew, C. & Lawal., U. 

(2017). Is ESA Relationship the tool for 

searching for Interstellar Heterocycles? 

FUW Trends in Science and Technology 

Journal, 2(2): 665-678. 

Etim, E. E., J. E. Asuquo, O. C. Ngana & 

Ogofotha. G. O. (2022). Investigation on 

the thermochemistry, molecular 

spectroscopy and structural parameters 

of pyrrole and its isomers: a quantum 

chemistry approach. J. Chem. Soc. 

Nigeria, 47(1):129 - 138. 

Etim, E. E., Lawal, U., Andrew, C., & 

Udegbunam, I. S. (2018). 

Computational Studies on 

C3H4N2 Isomers. International Journal 

of Advanced Research in Chemical 

Science (IJARCS) 5 (1) 29-40. 

DOI: http://dx.doi.org/10.20431/2349-

0403.0501005 

Etim, E. E., Magaji, A. & Ogofotha, G. 

O. (2022). Pipeline corrosion and its 

preventions in          the oil and gas 

sector: a review. International Journal 

of Environment and 

Bioenergy 17      (1), 1-11. 

https://doi.org/10.1021/ci900377e
https://arxiv.org/abs/2302.05911
https://doi.org/10.1021/acs.jcim.9b00094
https://doi.org/10.1021/acs.jcim.9b00094
https://doi.org/10.1021/acs.jcim.0c01489
https://doi.org/10.1021/acs.jcim.0c01489
https://doi.org/10.1186/s13321-017-0225-z
https://doi.org/10.1186/s13321-017-0225-z
https://doi.org/10.1016/j.asr.2021.06.003
https://doi.org/10.1016/j.asr.2021.06.003
https://doi.org/10.46481/jnsps.2023.527
https://doi.org/10.46481/jnsps.2023.527
http://dx.doi.org/10.3923/jas.2020.26.34
https://doi.org/10.1016/j.asr.2018.03.003
https://doi.org/10.1016/j.asr.2018.03.003
https://doi.org/10.1016/j.asr.2018.03.003
https://doi.org/10.1016/j.asr.2018.03.003
http://dx.doi.org/10.20431/2349-0403.0501005
http://dx.doi.org/10.20431/2349-0403.0501005
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=lTY4y3MAAAAJ&sortby=pubdate&citation_for_view=lTY4y3MAAAAJ:fEOibwPWpKIC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=lTY4y3MAAAAJ&sortby=pubdate&citation_for_view=lTY4y3MAAAAJ:fEOibwPWpKIC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=lTY4y3MAAAAJ&sortby=pubdate&citation_for_view=lTY4y3MAAAAJ:fEOibwPWpKIC


Communication in Physical Sciences, 2023, 10(1): 172-203 195 
 

 

Etim, E. E., Mbakara, I. E., Khanal, G. P., 

Inyang, E. J., Ukafia, O. P. & Sambo, I. 

F. (2017). Coupled Cluster Predictions 

of Spectroscopic Parameters for 

(Potential) Interstellar Protonated 

Species. Elixir Computational 

Chemistry, 111: 48818-48822. 

Etim, E. E., Oko Emmanuel, Godwin, Ifiok F. 

Sambo, Sulaiman Adeoye Olagboye. 

(2020a). Quantum Chemical Studies on 

Furan and Its Isomers. International 

Journal of Modern Chemistry, 12(1): 

77-98. 

Etim, E. E., Oko E. G, Sulaiman A.O. (2020). 

Protonation in Noble Gas Containing 

Molecular Systems: Observing Periodic 

Trends in CF3Cl, CF3Br, CH3F, CH3Cl. 

International Journal of Advanced 

Research in Physical Science (IJARPS) 

7(6): 14-19 

Etim, E. E., Oko Godwin E., Ogofotha, G. O. 

(2021). Quantum Chemical Studies on 

C4H4N2 Isomeric Molecular Species. J. 

Nig. Soc. Phys. Sci. 3 429–

445.  https://doi.org/10.46481/jnsps.202

1.282 

Etim, E. E., Oko, G. E., Onen, A. I., Ushie, O. 

A., Andrew, C., Lawal., U, & Khanal, G. 

P. (2018). Computational Studies of 

Sulphur Trioxide (SO3) and its 

Protonated Analogues. J. Chem Soc. 

Nigeria,  43 (2): 10 – 17. 

Etim, E. E., Onen,  A.I,  Andrew,C., Lawal, 

U., Udegbunam, I. S.  & Ushie, O. A. 

(2018). Computational Studies of 

C5H5N Isomers. J. Chem Soc. Nigeria, 

43(2):1 – 9. 

Etim, E. E., Onudibia, M. E., Asuquo, J. E., 

Ukafia, O. P., Andrew, C. & Ushie, 

O.A. (2017).. Interstellar C3S: Different 

Dipole Moment, Different Column 

Density, Same Astronomical Source. 

FUW Trends in Science and 

Technology Journal, 2 (1B): 574-577. 

Etim, E. E., Sulaiman Adeoye Olagboye, Oko 

Emmanuel Godwin, Irene Mfoniso 

Atiatah. (2020b). Quantum Chemical 

Studies on Silicon Tetrafluoride and Its 

Protonated Analogues. International 

Journal of Modern Chemistry, 12(1): 

26-45 

Etim, E. E., Sulaiman A. O., Oko E. G., & 

Irene M. A. (2020). Quantum Chemical 

Studies on Silicon Tetrafluoride and Its 

Protonated Analogues. International 

Journal of Modern Chemistry, 12(1): 

26-45 

Etim, E. E., (2023). Benchmark Studies on the 

Isomerization Enthalpies for Interstellar 

Molecular Species. J. Nig. Soc. Phys. 

Sci. 5, 

527. https://doi.org/10.46481/jnsps.202

3.527 https://arxiv.org/abs/2302.05911 

Etim, E.E, Akpan N. I., Ruth O. A., & Usman 

L. (2020). Deuterated Interstellar and 

Circumstellar Molecules: D/H Ratio and 

Dominant Formation Processes. Indian 

Journal of Physics 

https://doi.org/10.1007/s12648-020-

01747-x 

Etim, E.E. & E. Arunan. (2020). Interstellar 

Isomeric Species: Energy, Stability and 

Abundance Relationship. European 

Physical Journal Plus, 

131:448.                DOI 

10.1140/epjp/i2016-16448-0 

Etim, E.E, Prsanta Gorai, Ankan Das, & E. 

Arunan (2018). Theoretical 

investigation of interstellar C–C–O and 

C–O–C bonding backbone 

molecules. Astrophysics and  Space 

Science, 363:6. DOI 10.1007/s10509-

017-3226-5 

Etim, E.E., Mbakara, I.E., Inyang, E.J., Ushie, 

O.A., Lawal, U. & Andrew, C. (2017). 

Spectroscopy of Linear Interstellar 

Carbon Chain Isotopologues: Meeting 

Experimental Accuracy. Trop. J. Appl. 

Nat. Sci., 2(1): 11-

16. Doi: https://doi.org/10.25240/TJAN

S.2017.2.1.03 

Etim, E.E., Abah, B.S., Mbakara, I.E., Inyang, 

E.J., & Ukafia, O.P. (2017). Quantum 

Chemical Calculations on Silicon 

Monoxide (SiO) and its Protonated 

Analogues. . Trop. J. Appl. Nat. Sci., 

2(1): 61-68. 

Doi: https://doi.org/10.25240/TJANS.2

017.2.1.10 

https://doi.org/10.46481/jnsps.2021.282
https://doi.org/10.46481/jnsps.2021.282
https://doi.org/10.46481/jnsps.2023.527
https://doi.org/10.46481/jnsps.2023.527
https://arxiv.org/abs/2302.05911
https://doi.org/10.1007/s12648-020-01747-x
https://doi.org/10.1007/s12648-020-01747-x
https://doi.org/10.25240/TJANS.2017.2.1.03
https://doi.org/10.25240/TJANS.2017.2.1.03
https://doi.org/10.25240/TJANS.2017.2.1.10
https://doi.org/10.25240/TJANS.2017.2.1.10


Communication in Physical Sciences, 2023, 10(1): 172-203 196 
 

 

Etim, E.E., Onudibia, M. E., Asuquo, J. E., 

Ukafia, O. P., Andrew, C., Ushie, 

O.A.(2017).  Interstellar C3S: Different 

Dipole Moment, Different Column 

Density, Same Astronomical Source, 

FUW Trends in Science and 

Technology Journal, 2 (1B): 574-577. 

Etim, E.E., Prsanta G., Ankan D., & E. 

Arunan. (2017). C5H9N Isomers: 

Pointers to    Possible Branched Chain 

Interstellar Molecules. European 

Physical Journal D, 71:86. DOI: 

10.1140/epjd/e2017-70611-3 

Etim, E.E., Ugo Nweke-Maraizu., 

Samuel, H.S, (2023). Techniques 

used in corrosion inhibition studies: 

Modelling/computational 

techniques Communications in 

Physical Sciences. 

Etim, E.E., Ugo Nweke-Maraizu., Samuel,

 H.S, (2023). A Review of

 Theoretical Techniques in Corrosion

 Inhibition Studies. Communication

 in Physical Sciences, 9(4): 394-403. 

Etim, E.E., Ashu, H. A, Mbakara, I.E,

 Inyang, E. J., Ukafia, O. P, &

 Sambo, I. F. (2017b). Quantum

 Chemical Calculations on Oxygen

 Monofluoride (OF) and its

 Protonated Analogues: Comparison

 of Methods. Elixir Computational

 Chemistry,111: 48823-48827. 

Finkelmann A.R., Göller A.H. & Schneider G. 

(2016). Robust molecular 

representations for modelling and design 

derived from atomic partial charges. 

Chem Commun 52:681–

684. https://doi.org/10.1039/c5cc07887

c 

Giambagli, L., Buffoni, L. & Carletti, T. 

(2021).  Machine learning in spectral 

domain. Nat Commun 12, 1330 

https://doi.org/10.1038/s41467-021-

21481-0 

Grimme S., Bannwarth C. & Shushkov P. 

(2017). A robust and accurate tight-

binding quantum chemical method for 

structures, vibrational frequencies, and 

noncovalent interactions of large 

molecular systems parametrized for all 

spd-block elements (Z = 1-86). J Chem 

Theory Comput 13:1989–

2009. https://doi.org/10.1021/acs.jctc.7

b00118 

Gúndez M, Marcelino N, Cernicharo J. 

(2018). Tentative detection of HC5NH+ 

in TMC-1. Astronomy & Astrophysics. 

861:L22. doi:10.1051/0004-

6361/201833657. 

Halgren T.A.  (1996). Molecular force field. 

III. Molecular geometries and 

vibrational frequencies for MMFF94. J 

Comput Chem 17:553–

586. https://doi.org/10.1002/(SICI)1096

-987X(199604)17:5/6%3c553:AID 

JCC3%3e3.0.CO;2-T 

Herbst E, & Klemperer W. (1973). The 

Formation and Depletion of Molecules 

in Dense Interstellar Clouds. The 

Astrophysical Journal.;185:505-533. 

doi:10.1086/152436. 

Hiromasa Kaneko (2018). Discussion on 

Regression Methods Based on Ensemble 

Learning and Applicability Domains of 

Linear Submodels. Journal of Chemical 

Information and Modeling 58 (2) 480-

489. https://doi.org/10.1021/acs.jcim.7b

00649 

Hirota T, Ito T, & Yamamoto S. (2002). A 

Study of the Physical and Chemical 

Properties of the Quiescent Cores 

L1521B and L1521E. The Astrophysical 

Journal.;565:359-

372.doi:10.1086/324588. 

Huang W, Cheng J, Yang Y, Guo G. (2019). 

An improved deep convolutional neural 

network with multi-scale information 

for bearing fault diagnosis. 

Neurocomputing. 359:77-92. 

doi:10.1016/j.neucom.2019.05.052 

Janet JP, Kulik HJ, Morency Y, Caucci MK. 

Machine Learning in Chemistry. ACS In 

Focus (Washington, DC: American 

Chemical Society). 2020. 

Jesse G. Meyer, Shengchao Liu, Ian J. Miller, 

Joshua J. Coon, & Anthony Gitter 

(2019). Learning Drug Functions from 

Chemical Structures with Convolutional 

https://doi.org/10.1039/c5cc07887c
https://doi.org/10.1039/c5cc07887c
https://doi.org/10.1038/s41467-021-21481-0
https://doi.org/10.1038/s41467-021-21481-0
https://doi.org/10.1021/acs.jctc.7b00118
https://doi.org/10.1021/acs.jctc.7b00118
https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6%3c553:AID%20JCC3%3e3.0.CO;2-T
https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6%3c553:AID%20JCC3%3e3.0.CO;2-T
https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6%3c553:AID%20JCC3%3e3.0.CO;2-T
https://doi.org/10.1021/acs.jcim.7b00649
https://doi.org/10.1021/acs.jcim.7b00649


Communication in Physical Sciences, 2023, 10(1): 172-203 197 
 

 

Neural Networks and Random 

Forests. Journal of Chemical 

Information and Modeling 59 (10), 4438 

4449. https://doi.org/10.1021/acs.jcim.9

b00236 

Jia F, Lei Y, Guo L, Lin J. & Xing S. (2018). 

A neural network constructed by deep 

learning technique and its application to 

intelligent fault diagnosis of machines. 

Neurocomputing. 272:619-628. 

doi:10.1016/j.neucom.2017.07.032 

Jochen Sieg, Florian F. & Matthias R., (2019). 

In Need of Bias Control: Evaluating 

Chemical Data for Machine Learning in 

Structure-Based Virtual 

Screening. Journal of Chemical 

Information and Modeling  59 (3) , 947-

961. https://doi.org/10.1021/acs.jcim.8b

00712  

John M.  & Ryszard C. (2008). SAMFA: 

Simplifying Molecular Description for 

3D-QSAR. Journal of Chemical 

Information and Modeling 48 (6) , 1167 

1173. https://doi.org/10.1021/ci800009

u 

Karteek K. Bejagam, J. L., Carl N. Iverson, B. 

L. & Marrone, G. P. (2022). Machine 

Learning for Melting Temperature 

Predictions and Design in 

Polyhydroxyalkanoate-Based 

Biopolymers. The Journal of Physical 

Chemistry B 126 (4), 934-

945. https://doi.org/10.1021/acs.jpcb.1c

08354 

Kempema, N. J., Sharpe, C., Wu, X., Shahabi, 

M., & Kubinski, D. (2021). Machine-

Learning-Based Emission Models in 

Gasoline Powertrains Part 2: Virtual 

Carbon Monoxide. SAE International 

Journal of 

Engines,  16(6). https://doi.org/10.4271/

03-16-06-0045 

Kenya Tanaka, Kengo Hachiya, Wenjin 

Zhang, Kazunari Matsuda, & Yuhei 

Miyauchi.(2019). Machine-Learning 

Analysis to Predict the Exciton Valley 

Polarization Landscape of 2D 

Semiconductors. ACS Nano 13 (11), 

12687 

12693. https://doi.org/10.1021/acsnano.

9b04220 

Kim S, Chen J, & Cheng T. (2021). New data 

content and improved web interfaces. 

Nucleic Acids Res. 49:D1388. 

PubChem in 2021 

doi:10.1093/nar/gkaa971. 

Krizhevsky, A. I. Sutskever, & G. E. Hinton, 

(2012). “ImageNet Classification with 

Deep Convolutional Neural Networks,” 

Tech. Rep., pp. 1097–1105 

Lee, K. L., Loomis R. A. & Burkhardt A.M. 

(2021). Discovery of Interstellar trans-

cyanovinylacetylene (HC # CCH = CHC 

# N) and vinylcyanoacetylene (H 2 C = 

CHC 3 N) in GOTHAM Observations of 

TMC-1. Astrophysical Journal Letters. 

908:L11. doi:10.3847/2041-

8213/abdbb9. 

Leonard Tan, Ooi Kiang Tan, Chun Chau Sze, 

Wilsonm & Wen Bin Goh. (2023). 

Emotional Variance Analysis: A new 

sentiment analysis feature set for 

Artificial Intelligence and Machine 

Learning applications, PLOS 

ONE,  18, 1, (e0274299). 

https://doi.org/10.1371/journal.pone.02

74299 

Liu, Youlin. (2021). Machine learning 

methods for spectral analysis. Purdue 

University Graduate School. Thesis. 

https://doi.org/10.25394/PGS.15040332

.v1 

Liu,W. Z. Wang, X. Liu, N. Zeng, Y. Liu, & 

Alsaadi, F. E. (2017). “A survey of deep 

neural network architectures and their 

applications,” Neurocomputing, vol. 

234, pp. 11–26, Apr. issn: 18728286. 

doi: 10.1016/j.neucom.2016.12.038. 

Longqiang Li, Zhou Lu, Guixia Liu, Yun 

Tang, & Weihua Li. (2023). Machine 

Learning Models to Predict Cytochrome 

P450 2B6 Inhibitors and 

Substrates. Chemical Research in 

Toxicology Article ASAP. 

Luinge, H.J., van der Maas, J.H. & Visser, T. 

(1995). Partial least squares regression 

as a multivariate tool for the 

interpretation of infrared spectra. 

https://doi.org/10.1021/acs.jcim.9b00236
https://doi.org/10.1021/acs.jcim.9b00236
https://doi.org/10.1021/acs.jcim.8b00712
https://doi.org/10.1021/acs.jcim.8b00712
https://doi.org/10.1021/ci800009u
https://doi.org/10.1021/ci800009u
https://doi.org/10.1021/acs.jpcb.1c08354
https://doi.org/10.1021/acs.jpcb.1c08354
https://doi.org/10.4271/03-16-06-0045
https://doi.org/10.4271/03-16-06-0045
https://doi.org/10.1021/acsnano.9b04220
https://doi.org/10.1021/acsnano.9b04220
https://doi.org/10.1371/journal.pone.0274299
https://doi.org/10.1371/journal.pone.0274299
https://doi.org/10.25394/PGS.15040332.v1
https://doi.org/10.25394/PGS.15040332.v1


Communication in Physical Sciences, 2023, 10(1): 172-203 198 
 

 

Chemometrics and intelligent 

laboratory system, 28, 125–138. 15  

Madden, M.G. & Ryder A.G. (2002). Machine 

learning methods for quantitative 

analysis of Raman Spectroscopy data. In 

Proceedings of SPIE, Vol. 4876, 1013-

1019 

Mattioda AL, Hudgins DM, Boersma C. 

(2020). The NASA Ames PAH IR 

Spectroscopic Database: The 2019 

Release. Astrophysical Journal 

Supplement Series.;251(2):22. 

doi:10.3847/1538-4365/abb3db. 

McGuire BA, Burkhardt AM, Loomis R. 

(2020). Discovery of Interstellar trans-

cyanovinylacetylene (HC # CCH = CHC 

# N) and vinylcyanoacetylene (H 2 C = 

CHC 3 N) in GOTHAM Observations of 

TMC-1. Astrophysical Journal 

Letters.;900(1):L10. doi:10.3847/2041-

8213/abafaf 

McGuire B.A. (2018). 2018 census of 

interstellar, circumstellar, extragalactic, 

protoplanetary disk, and exoplanetary 

molecules. Astrophys J Suppl 

Ser.239(1):17. doi:10.3847/1538-

4365/aae5d2 

Meduri S, & Nandanavanam J. (2023). 

Prediction of hydrogen uptake of metal 

organic frameworks using explainable 

machine learning. Energy and AI. 

12:100230. 

doi:10.1016/j.egyai.2023.100230 

Mercier G. & M. Lennon, (2003). "Support 

vector machines for hyperspectral image 

classification with spectral-based 

kernels," IGARSS 2003. 2003 IEEE 

International Geoscience and Remote 

Sensing Symposium. Proceedings 

(IEEE Cat. No.03CH37477), Toulouse, 

pp. 288-290 vol.1, doi: 

10.1109/IGARSS.2003.1293752. 

Minjie Mou, Ziqi Pan, Mingkun Lu, 

Huaicheng Sun, Yunxia Wang, 

Yongchao Luo, & Feng Zhu. 

(2002). Application of Machine 

Learning in Spatial Proteomics. Journal 

of Chemical Information and 

Modeling 62 (23) , 5875-

5895. https://doi.org/10.1021/acs.jcim.2

c01161 

Neumann, J. S. Christoph, S. Gabriele, C. 

Schn¨orr, & G. Steidl, (2005). 

“Combined SVMBased Feature 

Selection and Classification,” Machine 

Learning,  vol. 61, no. 1-3, pp. 129– 150, 

issn: 0885-6125. doi: 10.1007/s10994-

005-1505-9. 

Oliveira JCA, Frey J, Zhang SQ, Xu LC, Li X, 

Li SW, Hong X, & Ackermann L. 

(2022). When machine learning meets 

molecular synthesis. Trends in 

Chemistry. 4(10):863-885. 

doi:10.1016/j.trechm.2022.07.005. 

Onen, A. I., Joseph, J., Etim, E. E., & Eddy, 

N. O. (2017). Quantum Chemical 

Studies on the Inhibition Mechanism of 

Ficus carica, FC and Vitellaria paradoxa, 

VP Leaf Extracts. Journal of Advanced 

Chemical Sciences, 3(3):496-

498. http://jacsdirectory.com/journal-

of-advanced-chemical-

sciences/articleview.php?id=155 

Osigbemhe, I. G., Emmanuella 

E.O.,  HitlerLouis,  E. M. Khan,  E. E. 

Etim.,   Henry O. E.,   Onyinye J. 

I., Amoawe P. O.,& Faith O. 

(2022c).  Antibacterial potential of N-

(2-furylmethylidene)-1, 3, 4-

thiadiazole-2-amine: Experimental and 

theoretical investigations. Journal of the 

Indian Chemical Society, 99 (9): 

100597. https://www.sciencedirect.com

/science/article/abs/pii/S001945222200

259X 

Osigbemhe, I.G., Louis, H., Khan, E.M., Etim, 

E. E.,  Odey, D. O., Oviawe, A. P., Edet, 

H.    O., & Obuye, F.  (2022a). 

Synthesis, characterization, DFT 

studies, and molecular modeling of 2-(-

(2-hydroxy-5-methoxyphenyl)-

methylidene)-amino) nicotinic acid 

against some selected bacterial 

receptors. J IRAN CHEM 

SOC https://doi.org/10.1007/s13738-

022-02550-7 

Osigbemhe, I.G., Louis, H., Khan, E.M., Etim, 

E. E.,  Odey, D. O., Oviawe, A. P., Edet, 

H.    O., & Obuye, F.  (2022b). 

https://doi.org/10.1021/acs.jcim.2c01161
https://doi.org/10.1021/acs.jcim.2c01161
http://jacsdirectory.com/journal-of-advanced-chemical-sciences/articleview.php?id=155
http://jacsdirectory.com/journal-of-advanced-chemical-sciences/articleview.php?id=155
http://jacsdirectory.com/journal-of-advanced-chemical-sciences/articleview.php?id=155
https://www.sciencedirect.com/science/article/abs/pii/S001945222200259X#!
https://www.sciencedirect.com/science/article/abs/pii/S001945222200259X#!
https://www.sciencedirect.com/science/article/abs/pii/S001945222200259X
https://www.sciencedirect.com/science/article/abs/pii/S001945222200259X
https://www.sciencedirect.com/science/article/abs/pii/S001945222200259X
https://doi.org/10.1007/s13738-022-02550-7
https://doi.org/10.1007/s13738-022-02550-7


Communication in Physical Sciences, 2023, 10(1): 172-203 199 
 

 

Antibacterial Potential of 2-(-(2-

Hydroxyphenyl)-methylidene)-

amino)nicotinic Acid: Experimental, 

DFT Studies, and Molecular Docking 

Approach. Appl Biochem 

Biotechnol https://doi.org/10.1007/s120

10-022-04054-9 

Pathak, D.K., Kalita, S.K. & Bhattacharya, D. 

K. (2022). Hyperspectral image 

classification using support vector 

machine: a spectral spatial feature based 

approach. Evol. Intel. 15, 1809–1823. 

https://doi.org/10.1007/s12065-021-

00591-0 

Pedregosa, F. & Varoquaux G. (2012). A 

Scikit-learn: machine Learning in 

Python. J Mach Learn Res 12:2825–

2830 

Pellegrino, E., Jacques, C., Beaufils, 

N. (2021). Machine learning random 

forest for predicting oncosomatic variant 

NGS analysis. Sci Rep 11, 21820. 

https://doi.org/10.1038/s41598-021-

01253-y 

Prachi Garg, Scott Broderick, Baishakhi 

Mazumder. (2023). Machine learning‐

based accelerated design of 

fluorphlogopite glass ceramic 

chemistries with targeted 

hardness. Journal of the American 

Ceramic Society 106 (8), 4654-

4663. https://doi.org/10.1111/jace.1913

3 

Prasanta Gorai, Ankan Das, Amaresh Das, 

Bhalamurugan Sivaraman, Emmanuel 

E. Etim, & Sandip     K. (2017). A 

Search for Interstellar Monohydric 

Thiols. The Astrophysical Journal, 836, 

70. DOI 10.3847/1538-4357/836/1/70  

Provost, F. & T. Fawcett, (2017). “Data 

Science and its Relationship to Big Data 

and DataDriven Decision Making,” Big 

Data, vol. 1, no. 1, pp. 51–59, issn: 

2167647X. doi: 10.1089/big.2013.1508.  

Qianyi Zhang, Jacqueline M. Hughes-

Oliver & Raymond T. N. (2009). A 

Model-Based Ensembling Approach for 

Developing QSARs. Journal of 

Chemical Information and 

Modeling 49 (8) , 1857-

1865. https://doi.org/10.1021/ci900080f 

Qinghua Wang, Zhe Wang, Qirui 

Deng, Sutong Xiang, Rongfan 

Tang,  Haiping Hao, & Huiyong Sun. 

(2023). Discriminating functional and 

non-functional nuclear-receptor ligands 

with a conformational selection-inspired 

machine learning algorithm. Cell 

Reports Physical Science 4 (7), 

101466. https://doi.org/10.1016/j.xcrp.2

023.101466 

Raissi, P. Perdikaris, & G. E. Karniadakis 

(2019). “Physics-informed neural 

networks: A deep learning framework 

for solving forward and inverse 

problems involving nonlinear partial 

differential equations,” Journal of 

Computational Physics, vol. 378, pp. 

686–707, issn: 10902716. doi: 

10.1016/j.jcp.2018.10.045. 

Rasmussen C. E. (2004). Gaussian Processes 

in Machine Learning. In: Bousquet O, 

von Luxburg U, Rätsch G (eds) 

Advanced Lectures on Machine 

Learning: ML Summer Schools 

Springer, pp 63–71 Berlin Heidelberg, 

Robert P. S. (2012).  Three Useful 

Dimensions for Domain Applicability in 

QSAR Models Using Random 

Forest. Journal of Chemical Information 

and Modeling 52 (3) , 814-

823. https://doi.org/10.1021/ci300004n 

Robert P. S. (2013). Using Random Forest To 

Model the Domain Applicability of 

Another Random Forest Model. Journal 

of Chemical Information and 

Modeling 53 (11), 2837-

2850. https://doi.org/10.1021/ci400482

e 

Samuel, H. S., Nweke-Maraizu, U., 

Johnson, G., & Etim, E. E. (2023). 

Nonelectrochemical Techniques in 

corrosion inhibition studies: 

Analytical 

techniques. Communication in 

Physical Sciences, 9(3), 383-393 

Samuel, H.S, Etim, E.E., & Ugo Nweke-

Maraizu., (2023). Understanding the 

experimental and computational 

https://doi.org/10.1007/s12010-022-04054-9
https://doi.org/10.1007/s12010-022-04054-9
https://doi.org/10.1007/s12065-021-00591-0
https://doi.org/10.1007/s12065-021-00591-0
https://doi.org/10.1038/s41598-021-01253-y
https://doi.org/10.1038/s41598-021-01253-y
https://doi.org/10.1111/jace.19133
https://doi.org/10.1111/jace.19133
https://doi.org/10.3847/1538-4357/836/1/70
https://doi.org/10.1021/ci900080f
https://doi.org/10.1016/j.xcrp.2023.101466
https://doi.org/10.1016/j.xcrp.2023.101466
https://doi.org/10.1021/ci300004n
https://doi.org/10.1021/ci400482e
https://doi.org/10.1021/ci400482e


Communication in Physical Sciences, 2023, 10(1): 172-203 200 
 

 

approach in characterizing 

intermolecular and intramolecular 

hydrogen bond, Journal of  

Chemical Review, 5(4), 439-465.  

https://doi.org/10.48309/JCR.2023.

407989.1235 

Samuel, H.S., U. Nweke-Mariazu, & E. E. 

Etim. (2023). Experimental and 

Theoretical Approaches for 

Characterizing Halogen Bonding. J. 

Appl. Organomet. Chem.,  3(3), 

169-183. 

https://doi.org/10.22034/jaoc.2023.

405412.1088 

Samuel, H.S., E. E. Etim, U. Nweke-

Maraizu. (2023). Approaches for 

Special Characteristics of Chalcogen 

Bonding: A mini Review. J. Appl. 

Organomet. Chem.,  3(3), 199-212. 

https://doi.org/10.22034/jaoc.2023.405

432.1089  

Sarkar S, Chakraborty S. & Das S. (2021).  

Machine learning enabled quantification 

of the hydrogen bonds inside the 

polyelectrolyte brush layer probed using 

all-atom molecular dynamics 

simulations. J Chem Phys. 

155(14):144902. 

doi:10.1063/5.0062659 

Shinggu, J. P.; Etim, E. E, & Onen, A. I., 

(2023). Quantum Chemical Studies on 

C2H2O Isomeric Species: Astrophysical 

Implications, and Comparison of 

Methods. Communication in Physical 

Sciences, 9(2): 93-105. 

Stein, H. S., Guevarra, D., Newhouse, P. F., 

Soedarmadjia, E., & Gregoire, J. M. 

(2019). Machine learning of optical 

properties of materials – predicting 

spectra from images and images from 

spectra. Chemical Science. 

https://doi.org/10.1039/C8SC03077D 

Sun, Y., Brockhauser, S., Hegedűs, P. (2021). 

Machine Learning Applied for Spectra 

Classification. In: Gervasi, O., et 

al. Computational Science and Its 

Applications – ICCSA 2021. ICCSA 

2021. Lecture Notes in Computer 

Science, vol 12957. Springer, Cham. 

https://doi.org/10.1007/978-3-030-

87013-3_5 

Suwarno S, Dicky G, Suyuthi A, Effendi M, 

Witantyo W, Noerochim L. & Ismail M. 

(2022). Machine learning analysis of 

alloying element effects on hydrogen 

storage properties of AB2 metal 

hydrides. Int J Hydrogen Energy 

47(23):11938-11947. 

doi:10.1016/j.ijhydene.2022.01.210 

Tetko, D. J. Livingstone, & A. I. Luik, (1995). 

“Neural Network Studies. 1. 

Comparison of Overfitting and 

Overtraining,” Journal of Chemical 

Information and Computer Sciences, 35, 

5, pp. 826–833, issn: 00952338. doi: 

10.1021/ci00027a006. 

Thereza A. Soares, Ariane Nunes-Alves, 

Angelica Mazzolari, Fiorella Ruggiu, 

Guo-Wei Wei, & Kenneth 

Merz. (2022). the (Re)-Evolution of 

Quantitative Structure–Activity 

Relationship (QSAR) Studies Propelled 

by the Surge of Machine Learning 

Methods. Journal of Chemical 

Information and Modeling, 62 (22) , 

5317-

5320. https://doi.org/10.1021/acs.jcim.2

c01422 

Todd M. Martin, Paul Harten, Douglas M. 

Young, Eugene N. Muratov, Alexander 

Golbraikh, Hao Zhu, &  Alexander 

Tropsha. (2012).  Does Rational 

Selection of Training and Test Sets 

Improve the Outcome of QSAR 

Modeling?. Journal of Chemical 

Information and Modeling 52 (10) , 

2570-

2578. https://doi.org/10.1021/ci300338

w 

Ushie O.A, Etim, E.E, Adamu, H.M, Chindo, 

I.Y.Andrew, C & Khanal, G.P. (2017). 

Quantum Chemical Studies on Decyl 

Heptadecanoate (C27H54O2) Detected In 

Ethyl Acetae Leaf Extract 

of Chrysophyllum albidium. Elixir 

Applied Chemistry, 111: 48828-48838.  

Ushie, O. A., Etim, E. E., Onen, A. I., Andrew, 

C., Lawal, U., & Khanal, G.P., (2019). 

Computational Studies of β-amyrin 

https://doi.org/10.22034/jaoc.2023.405412.1088
https://doi.org/10.22034/jaoc.2023.405412.1088
https://doi.org/10.22034/jaoc.2023.405432.1089
https://doi.org/10.22034/jaoc.2023.405432.1089
https://doi.org/10.1039/C8SC03077D
https://doi.org/10.1007/978-3-030-87013-3_5
https://doi.org/10.1007/978-3-030-87013-3_5
https://doi.org/10.1021/acs.jcim.2c01422
https://doi.org/10.1021/acs.jcim.2c01422
https://doi.org/10.1021/ci300338w
https://doi.org/10.1021/ci300338w


Communication in Physical Sciences, 2023, 10(1): 172-203 201 
 

 

acetate (C32H52O2) Detected in 

Methanol Leaf Extract 

of Chrysophyllum albidium. J. Chem 

Soc. Nigeria, Vol. 44, No. 3, pp 561 -

581. 

Velasco L, Ruiz M, Shariati B, & Vela AP. 

(2022). Chapter Eight - Machine 

Learning for optical spectrum analysis. 

In: Lau APT, Khan FN, eds. Machine 

Learning for Future Fiber-Optic 

Communication Systems. Academic 

Press;:225-279. doi:10.1016/B978-0-

32-385227-2.00015-2 

Von Lilienfeld O. A. (2014). Quantum 

machine learning in chemical compound 

space. Angew Chemie Int Ed 57:4164–

4169. https://doi.org/10.1002/anie.2017

09686 

Wang X, Shen C, Xia M, Wang D, Zhu J, Zhu 

Z. (2020). Multi-scale deep intra-class 

transfer learning for bearing fault 

diagnosis. Reliability Engineering & 

System Safety. 202:107050. 

doi:10.1016/j.ress.2020.107050 

Wei Ying Tan, Carol Hargreaves, Christopher 

Chen, & Saima Hilal, (2023). A 

Machine Learning Approach for Early 

Diagnosis of Cognitive Impairment 

Using Population-Based Data, Journal 

of Alzheimer's Disease, 91, 1, (449-

461). https://doi.org/10.3233/JAD-

220776 

Weimin Zhu, Yi Zhang, Duancheng Zhao, 

Jianrong Xu, &  Ling Wang. (2023). 

HiGNN: A Hierarchical Informative 

Graph Neural Network for Molecular 

Property Prediction Equipped with 

Feature-Wise Attention. Journal of 

Chemical Information and 

Modeling 63 (1) , 43-

55. https://doi.org/10.1021/acs.jcim.2c0

1099 

Wendy L. Williams, Lingyu Zeng, Tobias 

Gensch, Matthew S. Sigman, Abigail G. 

Doyle, Eric V. Anslyn.(2021). The 

Evolution of Data-Driven Modeling in 

Organic Chemistry. ACS Central 

Science 7 (10) , 1622-

1637. https://doi.org/10.1021/acscentsci

.1c00535 

Xia Zhao, Yuhao Sun, Ruiqiu Zhang, 

Zhaoyang Chen, Yuqing Hua, Pei 

Zhang, Huizhu Guo, Xueyan Cui, Xin 

Huang, &  Xiao Li.(2022). Machine 

Learning Modeling and Insights into the 

Structural Characteristics of Drug-

Induced Neurotoxicity. Journal of 

Chemical Information and 

Modeling 62 (23) , 6035-

6045. https://doi.org/10.1021/acs.jcim.2

c01131 

Xiangyu Zhang, Jing Cui, Kexin Zhang, 

Jiasheng Wu, & Yongjin Lee. 

(2019). Machine Learning Prediction on 

Properties of Nanoporous Materials 

Utilizing Pore Geometry 

Barcodes. Journal of Chemical 

Information and Modeling 59 (11) , 

4636-

4644. https://doi.org/10.1021/acs.jcim.9

b00623 

Yajuan Shi, Jiang Wang, Qiang Wang, 

Qingzhu Jia, Fangyou Yan, Zheng-Hong 

Luo, & Yin-Ning Zhou. 

(2022). Supervised Machine Learning 

Algorithms for Predicting Rate 

Constants of Ozone Reaction with 

Micropollutants. Industrial & 

Engineering Chemistry 

Research 61 (24) , 8359-

8367. https://doi.org/10.1021/acs.iecr.1

c04697 

Yang, H., Griffiths, P.R. & Tate, J.D. (2003). 

Comparison of partial least squares 

regression and multi-layer neural 

networks for quantification of non-linear 

systems and application to gas phase 

fourier transfrom infrared spectra. 

Analytica Chimica Acta, 489, 125–136. 

13  

Yuxuan Hu, Qiuhan Ren, Xintong Liu, 

Liming Gao, Lecheng Xiao, & Wenying 

Yu. (2003). In Silico Prediction of 

Human Organ Toxicity via Artificial 

Intelligence Methods. Chemical 

Research in Toxicology, 36 (7), 1044-

1054. https://doi.org/10.1021/acs.chemr

estox.2c00411 

Zaw-Myo Win, Allen M. Y. Cheong, W. & 

Scott H. (2023). Using Machine 

https://doi.org/10.1002/anie.201709686
https://doi.org/10.1002/anie.201709686
https://doi.org/10.3233/JAD-220776
https://doi.org/10.3233/JAD-220776
https://doi.org/10.1021/acs.jcim.2c01099
https://doi.org/10.1021/acs.jcim.2c01099
https://doi.org/10.1021/acscentsci.1c00535
https://doi.org/10.1021/acscentsci.1c00535
https://doi.org/10.1021/acs.jcim.2c01131
https://doi.org/10.1021/acs.jcim.2c01131
https://doi.org/10.1021/acs.jcim.9b00623
https://doi.org/10.1021/acs.jcim.9b00623
https://doi.org/10.1021/acs.iecr.1c04697
https://doi.org/10.1021/acs.iecr.1c04697
https://doi.org/10.1021/acs.chemrestox.2c00411
https://doi.org/10.1021/acs.chemrestox.2c00411


Communication in Physical Sciences, 2023, 10(1): 172-203 202 
 

 

Learning To Predict Partition 

Coefficient (Log P) and Distribution 

Coefficient (Log D) with Molecular 

Descriptors and Liquid Chromatography 

Retention Time. Journal of Chemical 

Information and Modeling 63 (7), 1906-

1913. https://doi.org/10.1021/acs.jcim.2

c01373 

Zhang Z, Huang W, Liao Y, Song Z, Shi J, 

Jiang X, Shen C, & Zhu Z. (2022). 

Bearing fault diagnosis via generalized 

logarithm sparse regularization. 

Mechanical Systems and Signal 

Processing. 167(Part B):108576. 

doi:10.1016/j.ymssp.2021.108576 

Zhang, R. H. Xie, S. Cai, Y. Hu, G.-k. Liu, W. 

Hong, & Z.-q. Tian, (2020). “Transfer-

learningbased Raman spectra 

identification,” Journal of Raman 

Spectroscopy, vol. 51, no. 1, pp. 176–

186, issn: 0377-0486. doi: 

10.1002/jrs.5750. 

Zhang,C. S. Bengio, M. Hardt, B. Recht, & O. 

Vinyals, (2017). “Understanding deep 

learning requires rethinking 

generalization,” 5th International 

Conference on Learning 

Representations, ICLR - Conference 

Track Proceedings 

Zhao Z, Li T, Wu J, Sun C, Wang S, Yan R, 

& Chen X. (2023). Deep learning 

algorithms for rotating machinery 

intelligent diagnosis: An open source 

benchmark study. ISA Transactions. 

107:224-255. 

doi:10.1016/j.isatra.2020.08.010 

Zou, T., Dou, Y., Mi, H., Ren, Y. &  Ren, 

Y.(2007). Support vector regression for 

determination of component of 

compound oxytetracycline powder on 

near-infrared spectroscopy. Analytical 

Biochemistry, 355, 1–7. 14. 
 

Compliance with Ethical Standards 

Declarations  
 

The authors declare that they have no conflict 

of interest. 
 

Data availability  
 

All data used in this study will be readily 

available to the public.  
 

Consent for publication 
 

Not Applicable 
 

Availability of data and materials 
 
 

The publisher has the right to make the data 

Public. 
 

 

Competing interests 
 

The authors declared no conflict of interest. 
 

Funding 
 

There is no source of external funding 

 

Authors' contributions 

 H.S. Samuel., J.P. Shinggu and B. Bako 

were involved in literature review, writing 

and drafting, revision and editing while E.E. 

Etim was involved in conceptualization, 

revision and drafting. 

 

 

https://doi.org/10.1021/acs.jcim.2c01373
https://doi.org/10.1021/acs.jcim.2c01373

