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Abstract: In this theoretical exploration, we 

introduce a novel extension to the Einstein field 

Equations by incorporating a newly defined 

metric tensor, termed the “Golden Metric 

Tensor”. This approach aims to complement 

and expand upon the well-established Einstein 

field equations devoid of its initial 

incompleteness thereby offering a fresh 

perspective on the nature of gravity and its 

interplay with spacetime. Our result is found to 

be mathematically most elegant, physically 

most natural, and satisfactory for application 

to a sinusoidal time distribution of mass within 

a spheroidal body to generate gravitational 

waves.  
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1.0 Introduction  
 

Spherically symmetric solutions in general 

relativity are crucial for understanding the 

gravitational effects around objects with 

spherical symmetry, such as stars and black 

holes (Kim et al., 2018). One of the most 

renowned examples is the Schwarzschild 

metric (Antoci  and Liebscher, 2003) which 

characterizes the geometry around a non-

rotating uncharged black hole. This metric 

reveals fascinating phenomena, such as the 

existence of an event horizon beyond which 

escape is impossible, and the presence of a 

singularity at the center. The Schwarzschild 
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solution has played a pivotal role in 

astrophysics, providing the theoretical 

foundation for the study of black holes and 

their observable effects on nearby matter and 

light. Another notable example is the 

Friedmann–Lemaitre–Robertson–Walker 

(FLRW) metric, which defines how its scale 

factor changes with cosmic time, and 

characterizes a homogeneous and isotropic 

universe (Lematre, 1931).  The Reissner-

Nordström metric, which describes a charged 

black hole, is another example worthy of note 

(Giorgi, 2020; Rincóni et al.., 2019). This 

solution introduces an electric charge term, 

alongside the mass term present in the 

Schwarzschild metric. The presence of charge 

influences the behaviour of the electromagnetic 

field near the black hole, and it introduces 

additional intriguing features, such as the 

possibility of an inner Cauchy horizon. 

Understanding charged black holes is essential 

for comprehending their interactions with 

charged particles and magnetic fields in 

astrophysical environments. Although there is 

still considerable disagreement about its 

physical interpretation (Kaloper et al., 2010; 

Lake & Abdelqader, 2011), McVittie's 

combination of the Schwarzschild and FLRW 

metrics resulted in a new spherically-

symmetric solution that depicts a point mass 

contained in an expanding universe. The fact 

that a metric tensor known as the golden metric 

tensor for all gravitational fields in nature has 

been created is intriguing. This metric tensor 

holds for all four spacetime coordinates, 

regular geometries found in nature, and regular 

mass distributions. It reduces to the well-

known Euclidean metric tensor for all 

spacetimes in gravitational fields in nature in 

the limit of 𝑐0, in complete accordance with the 

equivalency principles of physics and 

mathematics (Koffa, et al.. 2016). 

Beyond individual black holes, spherically 

symmetric solutions have been instrumental in 

modelling more complex systems, such as 

binary black hole systems and the cosmological 

effects of massive spherical bodies. These 

solutions not only provide insights into the 

behaviour of gravity in extreme conditions but 

also serve as a foundation for testing the 

predictions of general relativity through 

observations and experiments. Overall, 

spherically symmetric solutions constitute a 

cornerstone of our understanding of the 

gravitational universe and play a vital role in 

contemporary astrophysical research. 

Furthermore, spherically symmetric solutions 

are foundational in astrophysical applications. 

They allow scientists to model the dynamics of 

binary black hole systems, where two compact 

objects orbit around each other. This modelling 

is crucial in predicting the gravitational waves 

emitted during their coalescence, a 

phenomenon that has been directly observed by 

experiments like LIGO and Virgo (Abbott, 

2016; Acernese, 2014). Additionally, 

spherically symmetric solutions play a crucial 

role in understanding the evolution and 

behaviour of stars. By applying these solutions 

to models of stellar structure, scientists can 

make predictions about the life cycles of stars, 

including their eventual fate as black holes or 

other compact remnants. 

The field of General Relativity, conceived by 

Albert Einstein in the early 20th century, stands 

as one of the cornerstones of modern 

theoretical physics. At its heart lies the Einstein 

Field Equations (EFE); a set of mathematical 

expressions that elegantly encapsulate the 

fundamental relationship between spacetime 

curvature and the distribution of matter and 

energy within the universe. The search for new, 

precise analytical solutions to Einstein's field 

equations is one of the major issues facing 

general relativity. After the discovery of 

general relativity by Einstein in 1915, many 

potent techniques have been developed for the 

derivation of new solutions to the gravitational 

field equations (Turimov, et al.., 2018; 

MacCallum, 2006; Rincón et al., 2019). An 

array of fascinating exact solutions to the 

Einstein field equations can be found in the 

literature (Contopoulos, et al.., 2016; Frutos-

Alfaro et al., 2018; Gibbons and Volkov, 2017; 

MacCallum, 2006; Rincón et al., 2019) and 

(Stephani et al., 2003; Basu and Ray, 1998, 
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Stephani et al., 2009). Under the conformal 

field theory approach, some approximate static 

solutions of the Einstein equations are shown 

in (Fan, Chen, and Lü, 2016; Fan and Lü, 2015; 

Jyoti and Kumar, 2020). 

However, as our understanding of the cosmos 

has deepened, so too has the desire to refine and 

extend the foundations laid by Einstein. This 

pursuit has led us to consider novel approaches, 

including the introduction of a new metric 

tensor, hereby referred to as the "Golden Metric 

Tensor," alongside the incorporation of a 

complementary Laplacian operator.  

This research endeavours to usher in a new era 

of gravitational physics by synthesizing the 

classical framework of General Relativity with 

this novel metric tensor and Laplacian 

operator. The proposed extensions are poised 

to enrich our comprehension of gravity's 

intricacies and unlock new avenues for 

exploration. 

 

2.0 Theory  

The well-known Newton’s gravitational field 

equation in the spherical coordinates system is 

given by (Obaboye, 2016); 

∇2𝑓(𝑟, 𝑡) = 4𝜋𝐺𝜌0(𝑟, 𝑡) (1) 

Where all the symbols have their usual 

meaning. 

Equation (1) will have to be generalized and 

transformed into our oblate spheroidal 

coordinates system and the Laplacian replaced 

by the Riemannian Laplacian. This is necessary 

because the Euclidean Laplacian cannot 

account for the variation of the density of the 

proper mass in the equation with time 

coordinates. This variation of proper mass with 

the time coordinate is what gives rise to 

radiation energy in the form of gravitational 

waves as predicted by Einstein in his theory of 

General Relativity. 

The golden metric tensor for all gravitational 

fields in nature in spherical polar coordinates 

(𝑟, 𝜃, 𝜙, 𝑥0) is given as 

𝑔00 = − (1 +
2

𝑐2
𝑓(𝑟, 𝜃, 𝜙, 𝑥0) ) (2) 

𝑔11 = (1 +
2

𝑐2
𝑓(𝑟, 𝜃, 𝜙, 𝑥0) )

−1

(3) 

𝑔22 = 𝑟2  (1 +
2

𝑐2
𝑓(𝑟, 𝜃, 𝜙, 𝑥0) )

−1

(4) 

𝑔33 = 𝑟2  sin2 𝜃 (1 +
2

𝑐2
𝑓(𝑟, 𝜃, 𝜙, 𝑥0) )

−1

(5) 

𝑔𝜇𝜐 = 0; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (6) 

The Cartesian coordinates are related the spherical polar coordinates as: 

𝑟 = [𝑥2 + 𝑦2 + 𝑧2]
1
2   (7) 

𝜃 = cos−1 {
𝑧

[𝑥2 + 𝑦2 + 𝑧2]
1
2

} (8) 

and 

𝜙 = tan−1
𝑦

𝑥
(9) 

It may be note that the Cartesian coordinates (𝑥, 𝑦, 𝑧) are related to the Oblate Spheroidal 

coordinates (𝜂, 𝜉, 𝜙) as  

𝑥 = 𝑎(1 − 𝜂2)
1
2(1 + 𝜉2)

1
2 cos 𝜙 (10) 

𝑦 = 𝑎(1 − 𝜂2)
1
2(1 + 𝜉2)

1
2 sin 𝜙 (11) 

𝑧 = 𝑎𝜂𝜉 (12) 

From the well-known transformation equation given by the covariant tensor (Koffa et al..,2016 ; 

Ogunleye, et al., 2016) 
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g̅μυ =
∂xq

∂x̅μ

∂xs

∂x̅υ
gqs

 
(13) 

Consequently, upon transformation of (2)-(5) using equation (13), we obtain the golden metric 

tensor for all gravitational fields in Oblate Spheroidal Coordinates as: 

g00 = − (1 +
2

c2
f(𝜂, 𝜉, 𝜙, 𝑥0) ) (14) 

g11 =
a2(η2 + ξ2)

(1 − η2)
(1 +

2

c2
f(𝜂, 𝜉, 𝜙, 𝑥0))

−1

(15) 

g22 =
a2(η2 + ξ2)

(1 + ξ2)
(1 +

2

c2
f(𝜂, 𝜉, 𝜙, 𝑥0))

−1

(16) 

g33 = a2(1 − η2)(η2 + ξ2) (1 +
2

c2
f(𝜂, 𝜉, 𝜙, 𝑥0))

−1

(17) 

gμν = 0; otherwise (18) 

It is easy to see that the contravariant metric tensor for the gravitational field obtained by using the 

Quotient Theorem of tensor analysis becomes: 

𝑔00 = − (1 +
2

𝑐2
𝑓(𝜂, 𝜉, 𝜙, 𝑥0))

−1

(19) 

𝑔11 =
(1 − 𝜂2)

𝑎2(𝜂2 + 𝜉2)
(1 +

2

𝑐2
𝑓(𝜂, 𝜉, 𝜙, 𝑥0) ) (20) 

𝑔22 =
(1 + 𝜉2)

𝑎2(𝜂2 + 𝜉2)
(1 +

2

𝑐2
𝑓 (𝜂, 𝜉, 𝜙, 𝑥0)) (21) 

𝑔33 =
(1 +

2
𝑐2 𝑓(𝜂, 𝜉, 𝜙, 𝑥0) )

𝑎2(1 − 𝜂2)(1 + 𝜉2)
 (22) 

𝑔𝜇𝜈 = 0, otherwise (23) 

Next, we define the covariant metric tensor in a 4 by 4 metric as follows: 

𝑔𝜇𝜐 = (

𝑔00

𝑔10

𝑔01

𝑔11

𝑔02 𝑔03

𝑔12 𝑔13

𝑔20 𝑔21
𝑔22 𝑔23

𝑔30 𝑔31
𝑔32 𝑔33

) (24) 

Then the determinant of the metric tensor 𝑔𝜇𝜐, denoted as 𝑔 can be determined as: 

𝑔 = [

𝑔00

𝑔10

𝑔01

𝑔11

𝑔02 𝑔03

𝑔12 𝑔13

𝑔20 𝑔21
𝑔22 𝑔23

𝑔30 𝑔31
𝑔32 𝑔33

] (25) 

 

Hence, 

𝑔 = −𝑎6(𝜂2 + 𝜉2)2 (1 +
2

𝑐2
𝑓 )

−2

(26) 

According to the theory of Tensor Analysis, the Laplacian operator ∇𝑅
2 , is given in all gravitational 

fields and all orthogonal curvilinear coordinates 𝑥𝜇 by  

∇𝑅
2 =

1

√𝑔

𝜕

𝜕𝑥𝛼
[√𝑔𝑔𝛼𝛽

𝜕

𝜕𝑥𝛽
] (27) 
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Where 𝑔 is the determinant of the metric tensor 𝑔𝜇𝜈 and ∇𝑅
2  is called Riemannian Laplacian 

operator. 

Based upon the golden metric tensor in oblate spheroidal coordinates, √𝑔 is given as : 

√𝑔 = 𝑖𝑎3(𝜂2 + 𝜉2)  (1 +
2

𝑐2
𝑓 )

−1

(28) 

Hence, the Riemannian Laplacian operator is given in Oblate Spheroidal Coordinates as: 

∇𝑅
2 =

1

√𝑔

𝜕

𝜕𝑥0
[√𝑔𝑔00

𝜕

𝜕𝑥0
] +

1

√𝑔

𝜕

𝜕𝑥1
[√𝑔𝑔11

𝜕

𝜕𝑥1
] +

1

√𝑔

𝜕

𝜕𝑥2
[√𝑔𝑔22

𝜕

𝜕𝑥2
]  +

1

√𝑔

𝜕

𝜕𝑥3
[√𝑔𝑔33

𝜕

𝜕𝑥3
] (29) 

So that by substituting (19) – (23) and (28) in (29) we have, 

∇𝑅
2 = −

1

𝑐2(1+
2

𝑐2𝑓 )

𝜕2

𝜕𝑡2 +
1

𝑎2(𝜂2+𝜉2)  (1+
2

𝑐2𝑓 )
−1

 

𝜕

𝜕𝜂
[(1 − 𝜂2)

𝜕

𝜕𝜂
] +

1

𝑎2(𝜂2+𝜉2)  (1+
2

𝑐2𝑓 )
−1

 

𝜕

𝜕𝜉
[(1 +

𝜉2)
𝜕

𝜕𝜉
] +

1

𝑎2(𝜂2+𝜉2)  (1+
2

𝑐2𝑓 )
−1

 

𝜕2

𝜕𝜙2
                                                                                           (30)  

Equation (30) is the generalized Riemann’s 

Laplacian operator in oblate spheroidal 

coordinate based on the golden metric tensor. 

The Riemannian Laplacian operator implies 

appropriate corresponding generalizations of 

all the fundamental physical quantities of today 

(which have been based upon Euclidean 

Geometry): 

• Riemannian generalization of 

Newtonian Gravitational Potential 

equation, 

• Riemannian generalization of 

Maxwell’s Electric field Equations 

• Riemannian generalization of 

Schrodinger’s Dynamical Quantum 

Mechanical Wave Equation, 

• And so on 

2.1 Generalized Gravitational Wave 

Equation Based Upon the Golden Metric 

Tensor 

Consider a sinusoidal time-varying distribution 

of mass with density given by  

𝜌0 + 𝜌𝑒𝑒𝑖𝑤𝑡 (31) 

where; 

𝜌0 is the constant density of the spheroid at the 

beginning. 

𝜌𝑒 is the density of valence electrons in the 

spheroid. 

The generalized Newton’s gravitational field 

equation based upon Riemann geometry and 

the golden metric tensor is therefore given as 

∇𝑅
2 𝑓(𝜉, 𝑡) = 4𝜋𝐺[𝜌0 + 𝜌𝑒𝑒𝑖𝑤𝑡] (32) 

∇𝑅
2  is the Riemannian Laplacian based on the 

golden metric tensor for all gravitational fields 

in nature and all other symbols have their usual 

meanings. It should be noted that Euclidean 

Laplacian has been replaced with Riemannian 

Laplacian based on the golden metric tensor in 

the oblate spheroidal coordinates system. 

Using (30) and (31), it implies that the general gravitation wave equation (32) becomes; 
1

𝑎2(𝜂2 + 𝜉2)  (1 +
2
𝑐2 𝑓 )

−1

 

𝜕

𝜕𝜉
[(1 + 𝜉2)

𝜕

𝜕𝜉
] 𝑓(𝜉, 𝑡)

+
1

𝑎2(𝜂2 + 𝜉2)  (1 +
2
𝑐2 𝑓 )

−1

 

𝜕

𝜕𝜂
[(1 − 𝜂2)

𝜕

𝜕𝜂
] 𝑓(𝜉, 𝑡)

+
1

𝑎2(𝜂2 + 𝜉2)  (1 +
2
𝑐2 𝑓 )

−1

 

𝜕2

𝜕𝜙2
𝑓(𝜉, 𝑡) −

1

𝑐2 (1 +
2
𝑐2 𝑓 )

𝜕2

𝜕𝑡2
𝑓(𝜉, 𝑡)

= 4𝜋𝐺[𝜌0 + 𝜌𝑒𝑒𝑖𝑤𝑡]                                                                                                   (33) 
 

3.0 Results and Discussion 
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Equation (33) is therefore the generalized wave 

equation which resolves the incompleteness 

stated in Newton’s gravitational field equation. 

This equation is mathematically most elegant, 

physically most natural and satisfactory for 

application to a sinusoidal time distribution of 

mass within a spheroidal body to generate 

gravitational waves. It is also important to note 

that in the limit of 𝑐0, the general gravitational 

field equation reduces to the pure Newton’s 

gravitational equation as required by the 

principles of equivalence of physics. 

Therefore, the gravitational field equation 

contains post-Newton correction terms of order 

𝑐−2 and all degrees of nonlinearity in the 

gravitational scalar potential and its 

derivatives. 

It is important to state that this equation 

contains: 

i. The (1 +
2

𝑐2 𝑓) term which is not found 

in Newton’s gravitational field 

equation. The consequence of this is 

that it predicts correction terms to the 

gravitational field of all massive bodies. 

ii. The time component which predicts the 

existence of gravitational waves with 

velocity which is equal to the speed of 

light in vacuo. 

The construction of this new generalized 

Laplacian operator to extend Einstein's wave 

equation marks a significant advancement in 

our understanding of gravitational wave 

generation within spheroidal bodies. This novel 

operator introduces terms that, when applied to 

a sinusoidal time distribution of mass, 

contribute to the production of gravitational 

waves, complementing Einstein's established 

wave equation. 

One of the key implications of this result is its 

potential to shed light on the behaviour of 

gravitational waves in non-uniform mass 

distributions. While Einstein's wave equation 

has been invaluable in describing gravitational 

wave propagation in symmetric systems, this 

new generalized Laplacian offers a refined 

framework for scenarios where mass 

distribution varies with time and exhibits 

spheroidal symmetry. This is particularly 

relevant in astrophysical contexts, such as 

rotating neutron stars or binary systems 

undergoing orbital evolution. 

The introduction of the sinusoidal time 

distribution of mass is a crucial aspect of this 

result. It suggests that dynamic changes in mass 

within a spheroidal body, exhibiting oscillatory 

behaviour, can serve as a source for the 

generation of gravitational waves. This 

introduces a rich avenue for further exploration 

into the astrophysical phenomena that may give 

rise to such conditions. For instance, this could 

have implications for our understanding of 

compact binary systems, where objects orbit 

each other in elliptical paths. 

The complementary nature of this new 

generalized form of Einstein’s wave equation 

is noteworthy. It implies that both frameworks 

can coexist harmoniously, with each offering 

unique insights into different facets of 

gravitational wave dynamics. This duality not 

only enriches our theoretical arsenal but also 

opens avenues for cross-validation of results 

obtained through distinct mathematical 

approaches. 

The incorporation of the generalized Laplacian 

operator underscores the profound influence of 

geometric considerations on gravitational wave 

generation. This aligns with the broader 

framework of General Relativity, where 

geometry plays a central role in shaping the 

behaviour of gravitational fields. The interplay 

between geometry and mass distribution, as 

encapsulated in this result, further reinforces 

the elegance and coherence of Einstein's 

gravitational theory. 
 

4.0 Conclusion 
 

While the theoretical construct presented in this 

research is highly promising, it naturally 

invites empirical validation. Experimental 

tests, involving precise measurements of 

gravitational waves emanating from non-

uniform mass distributions, will be 
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instrumental in affirming the predictive power 

of this new framework. Additionally, 

collaborations with observational astronomers 

and astrophysicists will be crucial in 

identifying suitable celestial objects or events 

for targeted observations. 

The development of this new generalized 

Laplacian operator represents a significant step 

forward in the theoretical understanding of 

gravitational wave generation within 

spheroidal bodies. Its complementarity with 

Einstein's wave equation and its reliance on a 

sinusoidal time distribution of mass introduces 

a fresh perspective on the complex interplay 

between mass, geometry, and gravitational 

waves. This result not only expands the 

theoretical foundation of General Relativity but 

also beckons towards a new era of precision 

astrophysical observations. 
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