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Abstract: In this study, we introduce a novel 

generator known as the Generalized Odd 

Gompertz distribution, which includes an 

extra shape parameter. We examine various 

mathematical properties of this new 

generator and explicitly derive its 

characteristics such as moments, moment-

generating function, survival function, 

hazard function, entropies, quantile function, 

and the distribution of order statistics. 

Within this family of distributions, we focus 

on one member, the Generalized Odd 

Gompertz-Exponential distribution, defining 

and analyzing its properties. To assess the 

flexibility and performance of the model's 

parameters, we employ Monte Carlo 

simulations. We further evaluate the 

versatility of the Generalized Odd 

Gompertz- Exponential distribution by 

applying it to real-world datasets and 

comparing its performance with other 

existing models. Additionally, we explore the 

estimation of model parameters using the 

maximum likelihood method, demonstrating 

the potential applicability of this distribution 

family to real-life data analysis. 
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1.0 Introduction  
 

The Gompertz distribution has garnered 

significant attention and has been 

extensively employed by researchers across 

diverse fields in the past few decades. Its 

applications span various domains, including 

reliability analysis, actuarial sciences, 

engineering, biological studies, 

environmental science, demography, 

medical sciences, economics, and finance 

Alizadeh et al., (2017a). This distribution, 

which is a generalization of the exponential 

distribution, finds common use in a wide 

range of lifetime analyses and applications 

(Sanku et al., 2018). In the quest for more 

versatile models capable of representing 

complex datasets, researchers have 

developed numerous statistical distributions. 

This effort has led to the creation of 

additional distributions by generalizing the 

parent distributions, as demonstrated in the 

work by Oguntunde et al., (2015).  

The innovation of developing a generalized 

family of probability distribution drew the 

devotion of researchers and dedicated 

statisticians to the flexibility possessions of 

the generalized distributions. The flexibility 
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of the probability distribution is of interest 

because more flexible models can provide 

more information than the less flexible 

models, but the tractability of the probability 

distributions makes it easier for the 

researcher, especially when it comes to the 

simulation of random samples (Usman et al., 

2020). Numerous scholars have broadened 

the application of this distribution, resulting 

in the creation of several related 

distributions. Among these extensions are 

the Beta-G developed by Eugene et al., 

(2002), the Gamma-G developed by 

Zografos and Balakrishnan (2009), Gamma-

G type-3 by Torabi and Montazari (2012) 

and the Exponentiated-G family by Gupta et 

al., (1998). The T-X family of distributions 

by  Alzaatreh et al., (2013), the 

exponentiated T-X family of distributions by 

Alzaghal et al., (2013) where  Bourguignon 

et al., (2014) introduced the Weibull-G 

family, Odd Log-logistic by  Cordeiro et al., 

(2017), New Weibull-X by Ahmad et al., 

(2018), the Beta Weibull-G by Yousof et al., 

(2017) , the Generalized Odd Generalized 

Exponential-G by Alizadeh et al., (2017b),  

Type I Half-Logistic Exponentiated-G 

Family by Bello et al., (2021) and New 

Generalized Odd Frechet-G by Abubakar 

Sadiq et al., (2023). 

This paper explores the development and 

application of the Generalized Odd 

Gompertz distribution (GOG-G) to analyze 

lifetime data. The motivation for expanding 

distribution models arises from the need to 

accommodate diverse behaviour patterns in 

lifetime data, including increasing, 

decreasing, constant, and bathtub-shaped 

failure rates. The new distribution family 

addresses practical goals such as introducing 

asymmetry, adapting kurtosis, and tailoring 

models to better represent real-world 

datasets. The paper is organized into four 

sections, covering the introduction, 

definition of the GOG-G family, expansion 

of density for cumulative distribution 

function, derivation of statistical 

characteristics, discussion of sub-model, and 

parameter estimation through maximum 

likelihood, demonstration of practical utility 

through simulations and real datasets, and 

concluding remarks. The Generalized Odd 

Gompertz distribution proves to be a 

versatile tool for analyzing diverse lifetime 

data patterns. 
 

2. 0 Methodology 

2.1.  Generalized odd Gompertz-G 

(GOG-G) family  

The probability density function (pdf) and 

cumulative distribution function (cdf) of the 

Gompertz distribution, as outlined by Lenart 

(2012), represent the scale parameter and  a 

symbol for the shape parameter which is 

mathematically formulated as follows: 

( )1

( ; , ) 1 ; 0 , , 0
te

G t e t


   
− −

= −                   (1) 

( )1

( ; , ) ; 0 , , 0
te

tg t e e t


     
− −

=                   (2) 

The cumulative distribution function, 

denoted as ( , )G t  , along with the survival 

function ( ; ) 1 ( ; )G t G t  = −   of the 

parent distribution, is contingent on a 

parameter vector . When considering a 

random variable "T" related to a system 

characterized by a baseline ( ; )G t   

distribution, the probability that the system 

will not function within a specific time 

interval is represented as ( ; ) ( ; )G t G t
  . 

The random variable "T" in the context of 

the Gompertz model is expressed as follows: 

( ) ( ( ; ) ( ; ) ) ( ; , , , )GOG Gp T t p T G t G t F x
   − =    = 

 

If we substitute t in the Gompertz 

cumulative distribution function with the 

odds ratio ( ; ) ( ; )G t G t
  , we propose a 

new family of distribution called the 

Generalized Odd Gompertz-G (GOG-G) 

family by integrating the density function in 

equation (2) to obtain the CDF given as 
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follows: 
( ; )

1 ( ; ) 1

( ; , , , ) 1

G x

G xe

GOG GF x e








  



− 

 
 

− − 
  
 

−  = −                  (3) 

The corresponding pdf from the CDF in equation (3) is given by  
( ; )

1 ( ; ) 1( ; )

1 2 1 ( ; )( ; , , , ) ( ; ) ( ; ) (1 ( ; ) )

G x

G xeG x

G x

GOG Gf x g x G x G x e e












    



− 

 
 

− − 
  − − −   

−  =   −               (4) 

where 0   is the scale parameter, 

0  , 0   are the shape 

parameters, ( , )g x  , ( ; )G x  represents the 

pdf and CDF of any parent distribution and 

  is the parameter vector, we, therefore, 

represent a random variable "X" with the 

distribution function and density function 

described in equations (3) and (4) as 

~ ( , , , )X GOG G   −  . 
 

2.2. Survival and Hazard Rate function of 

the GOG-G family 
 

The survival function and hazard rate 

function are provided as follows, 

respectively: 

( ; )

1 ( ; ) 1

( ; , , , )

G x

G xe

GOG GS x e








  



− 

 
 

− − 
  
 

−  =

                  (5) 
( ; )

1 2 1 ( ; )( ; , , , ) ( ; ) ( ; ) (1 ( ; ) )

G x

G x

GOG Gh x g x G x G x e






    



− − − 

−  =   −                       (6) 
 

2.3. Quantile function of GOG-G family 
 

The quantile function of the GOG-G family 

is derived by reversing the cumulative 

distribution function (CDF) provided in 

equation (3). It is expressed as: 

( )

( )

1

1

1
log 1 log 1

( ; )
1

1 log 1 log 1

u

x G x

u



 



 

−

  
− −  

  = 
   
+ − −   

   

                 (7) 

In this context, 1( ; )G x − represents any future parent distribution and "u" is treated as a 

random variable following a uniform distribution in the range of (0, 1). 
 

2.4. Suitable expansion for the density of GOG-G family 
 

In this section, we will explore a detailed expansion of the distribution functions for the 

GOG-G family. 

Proposition: The equation that provides a linear depiction of the GOG-G family of 

distributions can be stated as follows: 

, ( )

0 0

( ; , , , ) 1 ( ; )GOG G k l k l

k l

F x Z H x  
 

− +

= =

 = −               (8)

  

Proof 
( ; )

1 ( ; ) 1

( ; , , , ) 1

G x

G xe

GOG GF x e








  



− 

 
 

− − 
  
 

−  = −
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By power series expansion  

( )

( ; )

1 ( ; ) 1 ( ; )
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1 ( ; )

( ; ) ( ; )

1 ( ; ) 1 ( ; )

1 1
1 1

ii G xi
G x G x
G x

G x G x

G x G x

e
e

e e








 

 




 
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    
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( )
( ) ( )

1 ( ) 1 ( )

0

1
( ; , , , ) 1 1

!

i i
G x G xii

G x G x
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i

F x e e
i

 

 
 

  


   
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−

=

   −       = − − 
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               (9) 

Appling binomial expansion, 

( )
( ; ) ( ; )

1 ( ; ) 1 ( ; )
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ji
G x G x
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j
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e e
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F x e
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
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From power series expansion, 
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−
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 
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By generalize binomial expansion, 

 ( )
0

( ( ; ) )
1 ( ; )

!

l
k

l

k l G x
G x

l k





−

=
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( ; , , , ) 1 ( ; )

! ! !

i j k i
i k i k l

GOG G
j

i j k l
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F x G x

i k l k
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−
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( )

,

0 0

( ; , , , ) 1 ( ; ) k l

GOG G k l

k l

F x Z G x   
 

+

−

= =
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, ( )

0 0

( ; , , , ) 1 ( ; )GOG G k l k l

k l

F x Z H x  
 

− +

= =

 = −                 (13) 

Where 
( )

,

0 0

( 1) ( )

! ! !

i j k i
i k i

k l
j

i j

k li j
Z

i k l k
 

+ 
−

= =

 +− −  
=  

 
  and 

( )

( ) ( ; ) ( ; ) k l

k lH x G x 



+

+  =   

denotes the CDF of the Exponentiated-G distribution with power parameter ( ) 0k l +  . 

Differentiating equation (13) w.r.t x, we have the corresponding pdf as; 
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, ( )
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( ; , , , ) ( ; )GOG G k l k l

k l

f x Z h x  
 

− +

= =
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Where 
( ) 1

( ) ( ; ) ( ) ( ; ) ( ; ) k l

k lh x k l g x G x 

  + −

+  = +    
 

2.5. Moments of the GOG-G family 
 

Moments play a vital role in the application 

of statistics and most necessary probability 

distribution features are studied via 

moments. The expression for the rth moment 

of a random variable X, which adheres to the 

Generalized Odd Gompertz-G (GOG-G) 

family is as follows: 

, ( ) , ,

0 0 0 00 0

( ) ( ; , , , ) ( ; ) ( )r r r r

GOG G k l k l k l k l

k l k l

E X x f x dx x Z h x dx Z E X  
     

− +

= = = =

=  =  =              (15) 

Where , ( )

0

( ) ( ; )r r

k l k lE X x h x dx



+=   

2.6. Moment-generating function of the 

GOG-G family 
 

The moment-generating function for a 

random variable X, which belongs to the 

GOG-G family, is expressed as: 

,

,

0 00

( ) ( ) ( ; , , , ) ( )k ltxGOG G tx tx

x GOG G k l

k l

M t E e e f x dx Z E e  
  

−

−

= =

= =  =    (16) 

where ,

( )

0

( ) ( ; )k ltx tx

k lE e e h x dx



+= 

2.7. Entropy of the GOG-G Family  
 

Entropy serves as a metric to gauge the level 

of diversity or unpredictability in a random 

variable X Renyi, (1961). Statistically, the 

entropy of the GOG-G family is defined as 

follows: 

, ( )

0 00 0 0

1 1
( ) log ( ; , , , ) log ( ; )

1 1
R GOG G k l k l

k l

I f x dx f Z h x dx dx  
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   


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= =

 
 =  =  

− −  
     

( ), ( 1)

0 0 0

1
( ) log ( ; )

1
R k l k l

k l

I Z h x dx

  


+ +

= =

 
 =  

−  
                (17) 

Where 0  and 1   
 

2.8. Order Statistics of the GOG-G Family 
 

Suppose we have a random sample with 

values 
1 2, ,..., nX X X  from the GOG-G 

distribution, and we denote the 

corresponding order statistics 

as
1: 2: :...n n n nX X X  . In this context, the 

expression for the thi order statistic can be 

stated as: 

    
1

:

!
( ; , , , ) ( ; , , , ) ( ; , , , ) 1 ( ; , , , )

( 1)( )!

i n i

i n
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           

− −
 =   − 

− −
 

1

, ( ) , ( ) , ( )

0 0 0 0 0 0

!
( ; ) 1 ( ; ) ( ; )

( 1)( )!

i n i

k l k l k l k l k l k l

k l k l k l

n
Z h x Z H x Z H x

i n i
  

− −
     

+ + +

= = = = = =

     
=  −       − −      

       (18) 

 

2.9. Estimation of parameters of the GOG-

G family  
 

Assuming we have 1 2 3, , , ... , nx x x x  observed 

values from the proposed GOG-G family 

with , ,    parameters, and we have a 

 1m   parameter vector. The log-likelihood 

function, denoted as  , is formulated as 

follows: 
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The partial derivatives of equation (19) concerning the ( , , , )    parameters are provided as 

follows 
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2.10. Sub-model of the GOG-G family  
 

When incorporating an Exponential 

distribution into the GOG-G family, a novel 

distribution emerges. The cumulative 

distribution function (CDF) and probability 

density function (PDF) of the Exponential 

distribution, which serves as the 

foundational distribution with a parameter 

denoted as , can be mathematically 

described as follows:  

( ; ) 1 xB x e  −= −          (24) 

( ; ) 0, 0xb x e x  −=           (25) 

By incorporating equations (24) and (25) 

into equations (3), (4), (5), (6), and (7), will 

provide the cumulative distribution 

function ( )F x , probability density 

function ( )f x , survival function ( )S x , 

hazard function ( )h x , and the quantile 

function ( )Q u of the Generalized Odd 

Gompertz-Exponential (GOG-E) 

distribution. 
 

 

2.11. Graph of the special sub-model of the 

GOG-G family  
 

The plots of the density function, 

distribution function, survival function and 

hazard function of the GOG- Exponential 

distribution at different parameter values is 

as follows; 
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Fig.  1: pdf of the Generalized Odd Gompertz-Exponential Distribution 

0 2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

x

C
um

m
ul

at
iv

e 
di

st
rib

ut
io

n 
fu

nc
tio

n

1 0.2 0.8 0.3

2.5 0.3 0.7 0.4

1.5 0.1 1 0.2

2 0.3 0.7 0.4

 
Fig. 2: cdf of the Generalized Odd Gompertz-Exponential Distribution 
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Fig. 3: Survival function of the Generalized Odd Gompertz-Exponential Distribution 
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Fig. 4: Hazard function of the Generalized Odd Gompertz-Exponential Distribution 

 
 

3.0 Monte Carlo Simulation and 

Application 

3.1. Monte Carlo Simulation  
 

The commonly employed set of 

computational methods known as "Monte 

Carlo simulation" is applied to generate 

numerical results based on replicated 

random samples. This methodology is 

utilized to address the challenge of 
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evaluating risk when modelling lifetime 

data. 
 

3.1.1. Simulation study 
 

To evaluate the trustworthiness of the GOG-

E model, a simulation study was carried out 

using the Monte Carlo Simulation method. 

This study aimed to calculate the mean, bias, 

and root mean square error of the model 

parameters estimated through maximum 

likelihood estimation. Simulated data was 

generated by applying the quantile function 

defined in equation (7), and this process was 

repeated 1,000 times for various sample 

sizes: n = 20, 50, 100, 250, 500, and 1,000. 

In each of these simulation runs, the 

parameters were held constant at specific 

values. 

 

Table 1: MLEs, bias and RMSE for some values of parameters 

 

 ( =1,  =1.5,  =0.5,  =2) 

n Parameters Estimated 

Values 

Bais RMSE 

20   
  

  
  

1.0997 

1.6876 

0.5608 

1.9986 

0.0997 

0.1876 

0.0608 

-0.0014 

0.5931 

0.5227 

0.1494 

0.6026 

50   

  

  
  

1.0877 

1.5859 

0.5186 

2.0378 

0.0877 

0.0859 

0.0186 

0.0378 

0.4790 

0.3170 

0.0846 

0.4904 

100   
  

  
  

1.0859 

1.5725 

0.5100 

2.0431 

0.0859 

0.0725 

0.0100 

0.0431 

0.3369 

0.2334 

0.0607 

0.3594 

250   
  

  
  

1.0691 

1.5407 

0.4998 

2.0617 

0.0691 

0.0407 

-0.0002 

0.0617 

0.2620 

0.1526 

0.0302 

0.2483 

500   
  

  
  

1.0606 

1.5327 

0.4991 

2.0423 

0.0606 

0.0327 

-0.0009 

0.0423 

0.1959 

0.1147 

0.0222 

0.1860 

1000   
  

  
  

1.0416 

1.5204 

0.4988 

2.0303 

0.0416 

0.0204 

-0.0012 

0.0303 

0.1371 

0.0742 

0.0132 

0.1442 

 

Table 1 illustrates that the bias and root 

mean square errors (RMSEs) diminish as the 

sample size grows larger. This trend shows 

that the estimates are converging towards the 

actual values, signifying improved accuracy 

and reliability. It highlights that the 

estimates are both consistent and efficiency 

as the sample size increases.  

 

 

3.2. Application 
 

In this context, we demonstrate the 

applicability of the Generalized Odd 

Gompertz-Exponential Distribution (GOG-

ED) using a real dataset obtained from 

Arshad et al., (2021) and was previously 

used by Kotz and Dorp (2004). We 

computed the maximum likelihood estimates 

and assessed the goodness-of-fit measures 
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using R software. We then compared the 

results with those of other distributions, 

namely the Odd Gompertz Exponential 

(OGE), Gompertz Exponential (GE), 

Kumaraswamy Exponential (KE), 

Exponentiated Weibull-Exponential (EW-E), 

and Exponential (Ex) distributions. 

In determining the best out of the competing 

models, the Akaike Information Criterion, 

Akaike (1974) “AIC” was employed and is 

statistically expressed as:  

AIC 2 2 .LL K= − + Where “LL” stands for 

log-likelihood function and K is the number 

of model parameters in the model. 

The data narrates the 85 hailing times of 

civil engineering dataset obtained from 

Arshad et al., (2021) as follows; 

4.79, 4.75, 5.40, 4.70, 6.50, 5.30, 6.00, 5.90, 

4.80, 6.70, 6.00, 4.95, 7.90, 5.40, 3.50, 4.54, 

6.90, 5.80, 5.40, 5.70, 8.00, 5.40, 5.60, 7.50, 

7.00, 4.60, 3.20, 3.90, 5.90, 3.40, 5.20, 5.90, 

4.40, 5.20, 7.40, 5.70, 6.00, 3.60, 6.20, 5.70, 

5.80, 5.90, 6.00, 5.15, 6.00, 4.82, 5.90, 6.00, 

7.30, 7.10, 4.73, 5.90, 3.60, 6.30, 7.00, 5.10, 

6.00, 6.60, 4.40, 6.80, 5.60, 5.90, 5.90, 8.60, 

6.00, 5.80, 5.40, 6.50, 4.80, 6.40, 4.15, 4.90, 

6.50, 8.20, 7.00, 8.50, 5.90, 4.40, 5.80, 4.30, 

5.10, 5.90, 4.70, 3.50, 6.80 

 

Table 2: Parameters Estimates and Goodness of Fit Measures for civil engineering data 

with 85 hailing times 

 

Model                                    Parameter Estimates and Goodness of Fit 

      ̂                  ̂         ̂                 ̂                          -LL               AIC 

GOGE 10.3578 2.3295 0.3513 0.6166 - 136.0699 280.1399 

OGE 0.1168 0.1358 2.2030 - - 147.5815 301.1631 

Ex 0.1757 - - - - 232.7956 467.5913 

GE 0.0163 0.8348 0.7680 - - 145.4489 296.8978 

KE 5.7391 3.3890 0.2543 - - 155.4583 316.9165 

EWE 0.8696 0.0068 1.0046 0.7831 - 143.6837 295.3674 

 

Data

De
ns

ity

3 4 5 6 7 8 9

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7 GOGE

OGE

Ex

GE

KE

EWE

 
Fig. 5: Histogram Plots of the Distributions on the civil engineering data with 85 hailing 

times  

Table 2 presents the results of the maximum 

likelihood estimation for the parameters of 

the novel distribution and five other 

reference distributions. In evaluating the 

goodness of fit, it was noted that the 

proposed distribution demonstrated the 

lowest AIC value, closely followed by EWE. 

A visual inspection of the fit, as illustrated in 

Fig. 5, provides additional confirmation that 

the proposed distribution surpasses the 

comparison distributions. Therefore, among 

the considered distributions, the GOG-ED  is 
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identified as the most appropriate for 

modelling the data related to civil 

engineering, specifically the 85 hailing 

times. 
 

4.0 Conclusion 
 

In this article, we introduced and delved into 

an innovative continuous probability 

distribution called the Generalized Odd 

Gompertz-G Family of Distribution. We 

thoroughly examined various statistical 

aspects associated with this novel 

distribution, including the explicit moment, 

quantile function, entropy, reliability 

function, hazard function, and order 

statistics. The parameters of the distribution 

were estimated using the maximum 

likelihood technique. Simulation results 

were presented to evaluate the performance 

of this new distribution. Additionally, we 

applied the distribution to analyze a real 

dataset, emphasizing the significance and 

versatility of this novel distribution. The 

results show that the Generalized odd 

Gompertz Exponential Distribution 

outperforms the existing models considered, 

highlighting its potential applicability in a 

broad spectrum of practical scenarios for 

data modelling. 
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