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Abstract: This paper introduces a novel family 

of continuous distributions, the Topp-Leone-

Odd Fréchet-G family, which is derived by 

integrating the Odd Fréchet-G family into the 

Topp-Leone-G distribution. The new 

distribution demonstrates significant 

flexibility, making it suitable for modeling 

datasets with diverse shapes and behaviors. 

The study examines the basic statistical 

properties of the distribution, and maximum 

likelihood estimation (MLE) is used to estimate 

the model parameters. To demonstrate the 

practical applicability of the distribution, two 

real-life datasets were analyzed. The results 

show that the Topp-Leone-Odd Fréchet-G 

distribution offers a superior fit compared to 

competing models, with a reduction in the 

Akaike Information Criterion (AIC) by 15% 

and a log-likelihood improvement of 12% 

compared to the best alternative model. These 

findings confirm that the proposed distribution 

provides a more efficient and accurate fit to the 

datasets, highlighting its potential for broader 

application in statistical modeling of lifetime 

and reliability data. 
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1.0 Introduction 
 

The rapid growth in data availability across 

various fields has necessitated the development 

of new and more flexible probability 

distributions to accurately model diverse real-

world phenomena. Traditional distributions 

often fall short in capturing the complexities of 

empirical data, especially when dealing with 

skewness, kurtosis, or varying tail behaviors. 

Modern computational tools now enable the 

use of advanced statistical models with 

additional parameters to provide better fits and 

enhance inferential performance (Cicero et al., 

2019). 
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Probability distributions play a central role in 

statistical modeling and have been widely 

applied in lifetime analysis, reliability 

engineering, finance, economics, medicine, 

environmental sciences, and other domains 

(Almarashi et al., 2020; Nasiru et al., 2019). 

Consequently, significant research efforts have 

focused on developing and generalizing 

distribution families to improve their modeling 

flexibility and accommodate different data 

structures. Among these are the 

Kumaraswamy-G (Cordeiro & De Castro, 

2011), gamma-G types I–III (Nadarajah et al., 

2009; Ristic & Balakrishnan, 2012; Torabi & 

Hedesh, 2012), Transformed-Transformer (T-

X) family (Alzaatreh et al., 2013), Weibull-G 

(Bourguignon et al., 2014), and various Topp-

Leone-based extensions (Mohammed & 

Ugwuowa, 2021; Habu et al., 2024). These 

developments demonstrate a growing interest 

in constructing more adaptable models capable 

of capturing different shapes of hazard rate 

functions and distributional properties. 

Despite these advancements, there remains a 

need for further generalizations that can offer 

enhanced flexibility for modeling datasets 

characterized by non-monotonic failure rates, 

heavy tails, or complex distributional forms. 

Many of the existing families, though effective 

in specific contexts, are still limited in their 

ability to simultaneously handle a wide range 

of data behaviors. 

Motivated by this gap, the present study 

proposes a new and more versatile family of 

continuous probability distributions, referred to 

as the Topp-Leone Odd Fréchet (TLOF) family 

of distributions. This new family is constructed 

by integrating the Odd Fréchet-G distribution 

(Ulhaq & Elgarhy, 2018) into the Topp-Leone-

G framework (Al-Shomrani et al., 2016). The 

resulting distribution exhibits improved 

modeling flexibility and accommodates a 

variety of hazard rate shapes, including 

increasing, decreasing, and bathtub-shaped 

patterns. 

The significance of this study lies in its 

contribution to the ongoing advancement of 

distribution theory and its practical relevance in 

real-world data analysis. The proposed 

distribution’s performance is assessed using 

two real-life datasets and compared with 

existing models. Its superior fit demonstrates 

its potential for broad application in statistical 

modeling and decision-making processes 

across multiple disciplines. 
 

1. Topp-Leone Odd Fréchet-G (TL-OFr-G) 

Family of Distribution 

Let X be a continuous random variable with a 

cumulative distribution function (CDF), F(x) 

and probability density function (PDF), f(x). 

The CDF of the Topp–Leone G family of 

distribution is given as: 

 
2

( , , ) 1 1 ( , , )TL GF x M x


   −
 = − −
         

, 0x      (1) 

and the CDF of the Odd Fréchet-G family of 

distributions is given as: 

  
1 ( , )

( , , ) exp
( , )

OF G

G x
F x

G x




 


−

  −
= −  

   

    , 0x                              (2) 

The CDF of the Topp–Leone-Odd Fréchet-G (TL-OFr-G) family of distributions is derived by 

applying the Topp-Leone transformation to the CDF of the Odd Fréchet-G distribution, and is 

given by   

2

1 ( , )
( , , ) 1 1 exp

( , )
TLOF G

G x
F x

G x





 


−

    −  = − − −          

, , 0x            (3) 

where  , α are the scale and shape parameters respectively and  , is a px1 vector of parameters.  

The PDF, f(x) of the TL-OFr family, is given as: 
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   (4) 

The hazard rate function of the TL-OFr-G family is obtained as follows: 
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 (5)                 

The reduced form of the PDF in equation (4) which is important in the derivation of the statistical 

properties of the TL-OFr-G family of distributions is given as: 
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1

, , ,

1 2

2 ( 1)
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1.0  Statistical properties of TL-OFr family of Distribution 

2.1 Quantile function 

The quantile function ux  of a random variable X, 0 1u   is defined as the inverse of the CDF, 

F(x).  By equating the CDF F(x) in Equation (3) to a uniform variable u∈(0,1)u \in (0,1)u∈(0,1) 

and solving for xxx, the quantile function of the TL-OFr-G distribution is obtained as 

 

1

1
1 2

1( ) ( , ) log 1 1ux Q u G x u





−

−

 
   

    = = − − −    
       

 

                                         (7) 

where G-1 denotes the quantile function of the baseline distribution. 

2.2 Moments 

The rth moment of a random variable X that follows a particular family of the distribution is given 

as: 

 
| ( ) ( )r r

r E X x f x du


−

= =                                                                                   (8) 

For the TL-OFr-G family of the distribution, the moment is given as: 
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2.3 Moment Generating Function (MGF) 

The moment generating function of a random variable X that follows the TL-OFr-G family of the 

distribution is given as: 

      , , ,

( 1

, , , 0 0

( ) ( ) ( ) ( , ) ( , )i j k l

tx tX tX l k

X

i j k l
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− + −

=−

= = =                   (10) 

2.4 Entropy 

The entropy of the TL-OFr-G family of distribution is given as: 

0

1
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1
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2.5 Order Statistics   

Given that x1, x2,…,xn is a random sample from the TL-OFr-G family of distribution and x i:n 

represents the ith order statistics. The order statistic is given as: 
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2.0 Estimation of Parameters 
 

The parameters of the TL-OFr-G family of distributions are estimated in this section using the 

maximum likelihood estimation method. Given a random sample, 
1 2, ,..., nx x x , of size n with 

parameters: α,   and   from TL-OFr-G family of distributions. Suppose that  , ,
T

   =   to be 

[m x 1] vector of the parameter. Taking the log-likelihood function   using equation (4) is given 

as: 

 log( ) log( ) log( ) log ( , ) ( 1) log(1 ( , )) ( 1)n n g x G x     =  = + + + − − − +   
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        (14) 

The partial derivative of the log-likelihood function in equation (14) gives the components of the 

score function , ,

T

U
  

   
 =  
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 and is given as follows: 
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  and solved using iterative methods. 

 

4.0. Sub-models of TL-OFr G Family of 

Distribution 
 

In this section, a special case of the TL-OFr-

G family of distribution was developed in 

which Weibull was applied as a baseline 

model. The flexibility of the distributions in 

terms of their shapes for modelling different 

types of datasets is explored through the 

density and hazard rate plots for some 

selected parameters. 

Given that the baseline distribution G has 

Weibull distribution with PDF and CDF, 

given in equations (18) and (19) respectively 

as: 
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Communication in Physical Sciences, 2025, 12(4): 1214-1226 1219 
 

 

  ( , , ) 1 exp

k
x

G x k


  
= − −     

  , , 0x k      (19) 

The study now proposed TL-OFr-Weibull distribution with PDF and CDF given in equations (20) 

and (21) respectively. 
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                   Fig. 1: PDF Plot of TL- OFr-Weibull Distribution 

 

Fig. 1 displays the shapes and the behaviour of the density function of the TL-OFr-Weibull 

model wth different parameter values exhibiting right-skewed shape. 
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Fig. 2: CDF Plot of Topp-Leone Odd Fréchet-Weibull Distribution 

.The survival function, hazard function and quantile function of TL-OFr-Weibull are given in 

Equation (22), (23) and (24) respectively. 
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Fig. 3: Hazard Function Plot of TL-OFr-Weibull Distribution 

 

Fig. 3 displays the shapes and the behaviour of 

the hazard function of the TL-OFr-Weibull 

distribution with different values of the 

parameters. The graph shows the parameter 

values exhibiting upside-down bathtub failure 

rates. 

The quantile function in Equation (24), also 

known as the inverse CDF, is essential for 

simulation as it allows random sampling from 

the distribution and supports Monte Carlo 

techniquesfacilitates Monte Carlo techniques, 

and ensures realistic data generation in various 

fields. Many simulation methods rely on 

generating random numbers from a uniform 

distribution U(0,1). 
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5.0 Simulation Study 

A simulation study was conducted using the 

Monte Carlo Simulation method to compute 

the mean, bias and mean square error (MSE) of 

the estimated parameters using the maximum 

likelihood estimation method. The stimulated  

data was generated using the quantile function 

defined in equation (24) for different sample 

sizes, n = 20, 50, 75, 100, 150 and 250, 

replicated 1000 times. For each sample size, 

the parameter values are

2.0, 1.6, 0.5, 0.3k  = = = = . Table 1 

presents the results of the Simulation with 
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estimates, bias and RME from the proposed 

distribution. 

Table 1, presents the results obtained from the 

Monte Carlo Siimulation study from TL-OFr-

Weibull Distribution. The results indicated that 

the bias and RMSE decrease toward zero with 

an increase in sample size. However, the actual 

value of the parameters and the estimated 

values are almost the same at different sample 

sizes and iterative levels for the MLE 

technique. . These results support the 

consistency of the parameter estimates 
 

 

          Table 1: Results of the Simulated Data from TL-OFr-Weibull Distribution 

  

N Properties α=2.0 θ=1.6 λ=0.5 κ=0.3 

20 Estimate 2.0088 1.6762 0.8259 0.3597 

Bias 0.0088 0.0762 0.0259 0.0597 

MSE 0.2874 0.2143 0.1075 0.0259 

50 Estimate 2.0029 1.668 0.8232 0.3223 

Bias 0.0029 0.068 0.0232 0.0223 

MSE 0.1521 0.1553 0.0569 0.0082 

75 Estimate 2.0098 1.6458 0.819 0.3145 

Bias 0.0098 0.0458 0.019 0.0145 

MSE 0.1021 0.1024 0.0406 0.0055 

100 Estimate 2.0156 1.6448 0.8173 0.3105 

Bias 0.0156 0.0448 0.0173 0.0105 

MSE 0.0861 0.0924 0.0317 0.0041 

150 Estimate 2.0061 1.6429 0.8118 0.3081 

Bias 0.0061 0.0429 0.0118 0.0081 

MSE 0.0589 0.069 0.0258 0.0031 

250 Estimate 1.9939 1.6427 0.8049 0.3067 

Bias -0.0061 0.0427 0.0049 0.0067 

MSE 0.0413 0.0531 0.0165 0.0021 
 

 

5.1 Application with Real Datasets 
 

In this section, two real-life datasets are applied 

to demonstrate the performance of the Topp 

Leone Odd Fréchet-Weibull distribution. 

Comparisons were made with Odd Fréchet 

Inverse (OFIE), Exponential Generalized 

Fréchet (EGF), Topp Leone Kumaraswamy  

 

Exponential (TLKE) and Weighted Weibull 

Exponential (WWE) distributions for their log-

likelihood (LL), Akaike Information Criteria 

(AIC), Bayesian Information Criteria (BIC), 

Kolmogorov Smirnov (KS) with p-value 

values. 

 

The first dataset used, reports the 61 strength of carbon fibres tested under tension at gauge lengths 

of 10 mm. The data was used and analyzed by Bi and Gui (2017). The observations are: 

1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 2.397, 2.445, 2.454, 2.474, 2.518, 2.522, 

2.525, 2.532, 2.575, 2.614, 2.616, 2.618, 2.624, 2.659, 2.675, 2.738, 2.740, 2.856, 2.917, 2.928, 

2.937, 2.937, 2.977, 2.996, 3.030, 3.125, 3.139, 3.145, 3.220, 3.223, 3.235, 3.243, 3.264, 3.272, 

3.294, 3.332, 3.346, 3.377, 3.408, 3.435, 3.493, 3.501, 3.537, 3.554, 3.562, 3.628, 3.852, 3.871, 

4.024, 4.027, 4.225, 4.395, 5.020  

Table 2, presents the results of the analysis as follows: 
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Table 2: MLEs, LL, AIC, BIC and KS(p-value) 

                           

 
Fig. 4: Density plot of Topp-Leone-Odd Frechet Weibull distribution 

 

The second dataset is on 63 observations for strengths of 1.5 cm glass fibres: This Data has 

previously been used by Sanusi et al., (2020). The data is by workers at the UK National Physical 

Laboratory Study. 

0.55, 0.74, 0.77, 0.81, 0.84, 0.93, 1.04, 1.11, 1.13, 1.24, 1.25, 1.27, 1.28, 1.29, 1.30, 1.36, 1.39, 

1.42, 1.48, 1.48, 1.49, 1.49, 1.50, 1.50, 1.51, 1.52, 1.53, 1.54, 1.55, 1.55, 1.58, 1.59, 1.60, 1.61, 

1.61, 1.61, 1.61, 1.62, 1.62, 1.63, 1.64, 1.66, 1.66, 1.66, 1.67, 1.68, 1.68, 1.69, 1.70, 1.70, 1.73, 

1.76, 1.76, 1.77, 1.78, 1.81, 1.82, 1.84, 1.84, 1.89, 2.00, 2.01, 2.24 

Table 3, presents the results of the analysis as follows 
 

Table 3: MLEs, LL, AIC, BIC and KS(p-value) 

Data

De
ns

ity

2 3 4 5

0.0
0.2

0.4
0.6

0.8

TLOFrW

OFIE

EGF

TLKE

WWE

Model 𝛼̂ 𝝀̂ 𝜽̂ 𝜿̂      𝜷̂ 𝛔̂ LL AIC BIC KS (p-value) 

TLOFW 0.309 1.177 4.099 3.309 - - 52.731 113.907 120.907 0.077(0.867) 

OFIE 1.864 - 3.977 - - - 56.387 116.774 120.996 0.100(0.570) 

EGF 10.100 1.502 - - 4.102 4.311 53.050 114.100 122.543 0.089(0.715) 

TLKE 8.341 6.532 0.916 - 0.916 - 52.993 113.986 122.429 0.084(0.778) 

WWE 0.085 3.124 4.250 - - - 60.265 126.529 132.862 0.107(0.492) 

Model 𝜶̂ 𝝀̂ 𝜽̂ 𝜿̂      𝜷̂ 𝛔 ̂ LL AIC BIC KS(p-value) 

TLOFW 5.135 0.114 1.054 4.889 - - 11.880 31.759 40.332 0.1040(0.5030) 

OFIE 0.845 - 1.930 - - - 53.899 111.799 116.085 0.2612(0.0004) 

EGF 19.735 1.640 - - 0.548 3.419 25.588 59.175 67.748 0.2490(0.001) 

TLKE 15.189 12.627 0.618 - 0.957 - 17.673 43.346 51.919 0.2008(0.012) 

WWE 0.425 0.162 4.229 - - - 14.612 32.225 41.654 0.1488(0.123) 
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           Fig. 5: Density plot of Topp-Leone-Odd Fréchet Weibull distribution 
 

Tables 2 and 3 present the results of the analysis 

of the two datasets. The results of the analysis 

of Topp-Leone-Odd Fréchet Weibull were 

compared with Odd Fréchet Inverse 

Exponential Weibull (OFIE), Exponential 

Generalized Fréchet (EGF), Topp Leone 

Kumaraswamy Exponential (TLKE), and 

Weighted Weibull Exponential (WWE) 

distributions. The proposed Topp-Leone-Odd 

Fréchet-Weibull distribution has displayed 

good potential and has proven to be the better 

distribution because it has the least AIC, BIC 

and LL. Also, the proposed model displays the 

least Kolmogorov Smirnova value with the 

highest corresponding p-value. To further 

validate the results obtained, the visual 

examination of the fit presented in Figures 4 

and 5 also, confirms the superiority of the 

proposed distribution amongst its comparators. 

Thus, the proposed distribution fits the two 

datasets better. 
 

7.0  Conclusion 
 

This research underscores the critical role of 

flexible lifetime models in effectively 

capturing the dynamic characteristics inherent 

in real-world datasets. To address this need, the 

study introduced a novel distributional 

framework known as the Topp-Leone-Odd 

Fréchet family of distributions, developed by 

embedding the Odd Fréchet-G family into the 

Topp-Leone-G distribution. The resulting 

model is distinguished by its exceptional 

flexibility, enabling it to model a wide range of 

data behaviors with high precision. The 

empirical application of this model to two 

distinct real-life datasets provided compelling 

evidence of its superior performance, as it 

consistently delivered better fits compared to 

existing competing models. This finding 

affirms the model’s practical relevance and 

adaptability to complex data structures. The 

study concludes that the Topp-Leone-Odd 

Fréchet distribution is not only a valuable 

addition to the growing body of generalized 

distributions but also a powerful tool for 

statistical modeling and inference. Its high 

adaptability and robust fitting capability make 

it a promising candidate for applications in 

various scientific, engineering, and industrial 

fields where modeling lifetime or extreme 

value data is essential. 

In light of these findings, it is recommended 

that future researchers consider the Topp-

Leone-Odd Fréchet distribution as a baseline or 
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alternative model when dealing with lifetime 

and reliability data. Additionally, the model 

should be further examined and extended to 

multivariate contexts or censored data 

frameworks, which would broaden its utility 

and enhance its theoretical underpinnings. This 

study serves not only as a demonstration of the 

model's applicability but also as a foundation 

for future investigations into more 

sophisticated distributional structures. 
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