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Abstract:  In this study, we investigated the 

behaviour of crack propagation and stress 

fields in power-law materials using finite 

element analysis. The study investigated how 

different power-law exponents influence stress 

intensity factors and crack growth. We 

observed from the results of the study 

significant variations in stress intensity factors 

with changes in the power-law exponent, which 

confirmed the critical role of material 

properties in predicting fracture behaviour. 

Materials with higher power-law exponents 

exhibited greater resistance to crack growth. 

These results promoted the necessity of 

considering material-specific properties, 

particularly the power-law exponent, in 

designing structural components to predict 

material performance and failure accurately. 

Based on the findings, it is recommended that 

engineers and material scientists prioritize the 

power-law behaviour of materials in structural 

design to improve fracture resistance. Future 

research should aim to develop more 

sophisticated models and incorporate a 

broader range of material behaviours and 

environmental conditions. Also, experimental 

validation and multi-scale analysis techniques 

should be employed to enhance the 

understanding of fracture behaviour in power-

law materials. Establishing industry standards 

for assessing and reporting power-law 

behaviour will facilitate better application of 

research findings across various engineering 

disciplines. 
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1.0 Introduction 
 

Crack propagation in materials is a critical area 

of study in engineering mechanics, as it 

significantly impacts the structural integrity 

and longevity of materials used in various 

applications. The stress field near the tip of a 

crack has been extensively investigated to 

understand the mechanisms driving crack 

initiation and growth. Pioneering work by 

Amazigo (1975) provided a fundamental 

understanding of the stress field near the tip of 

a wedge-shaped crack, laying the groundwork 

for subsequent studies in the field (Amazigo, 

1975). 

Knouss (1966) examined the steady 

propagation of a crack in viscoelastic sheets, 

highlighting the complex behaviour of such 

materials under stress (Knouss, 1966). This 

work was complemented by Peterson's (1953) 

seminal text on stress concentration factors, 

which remains a cornerstone reference for 

engineers and researchers dealing with fracture 

mechanics (Peterson, 1953). The importance of 

understanding stress concentration around 

notches and holes in materials has been further 

emphasized by recent studies. 
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For instance, Li, Yang, and Liu (2017) 

developed a novel numerical approach for 

predicting stress concentration factors in plates 

with multiple holes, which has significant 

implications for the design and assessment of 

structural components (Li, Yang, and Liu, 

2017). Zhou and Zeng (2019) advanced this 

line of inquiry by employing an improved 

failure assessment diagram approach to 

analyze stress and strength in notched 

components, providing a more comprehensive 

framework for failure prediction (Zhou and 

Zeng, 2019). 

Moreover, the numerical modelling of crack 

propagation has seen considerable 

advancements. Bouchard, Bayraktar, and 

Chastel (2013) utilized re-meshing techniques 

in 3D numerical models to simulate crack 

growth, enhancing the accuracy and reliability 

of such simulations (Bouchard, Bayraktar, and 

Chastel, 2013). Similarly, Kim, Kim, and Park 

(2020) applied the extended finite element 

method (XFEM) to simulate crack propagation 

in concrete with different aggregate sizes, 

offering valuable insights into the material's 

behaviour under stress (Kim, Kim, and Park, 

2020). 

Xue, Sun, and Liang (2021) focused on fibre-

reinforced polymer composite laminates, 

investigating stress concentration and failure 

around circular holes. Their findings contribute 

to the understanding of how composite 

materials can be designed for improved 

durability and performance (Xue, Sun, and 

Liang, 2021). 

Despite these advancements, a significant 

knowledge gap persists in the comprehensive 

understanding of crack tip stress fields in 

power-law materials, which exhibit nonlinear 

stress-strain behaviour. Nnadi (2003) 

addressed this gap partially by exploring the 

stress field near the tip of a crack in such 

materials, but further research is needed to fully 

elucidate the underlying mechanisms and their 

implications for material design and failure 

analysis (Nnadi, 2003). 

While extensive research has been conducted 

on the stress fields near crack tips and the 

propagation of cracks in various materials, 

there remains a lack of comprehensive 

understanding of these phenomena in power-

law materials. Specifically, the nonlinear 

stress-strain behavior characteristic of these 

materials poses challenges for accurate 

modelling and prediction of crack growth and 

failure. 

This study aims to address this knowledge gap 

by developing a more detailed and accurate 

model of the stress field near the tip of a crack 

in power-law materials. By doing so, we seek 

to improve the predictive capabilities for crack 

propagation in these materials, thereby 

enhancing their design and reliability in 

engineering applications. This study will build 

upon existing theoretical and numerical 

frameworks, incorporating recent 

advancements and addressing the limitations 

identified in previous research. 

This investigation strives to furnish useful 

analytic information about the stress 

concentration at the sharp corners of an 

isotropic semi-infinite elastic strip occupying 

the region given in Cartesian coordinates as 

𝑎 ≤ 𝑥 ≤ 𝑎, 𝑎 > 0, 𝑦 ≥ 0, −∞ < 𝑧 < ∞ 

The stress states are studied within the 

framework of two-dimensional linear elasticity 

for a strip put in an antiplane strain state by 

application of uniform constant fractions of 

magnitude T and Q on equal intervals on 

parallel and opposite sides of the strip along 

𝑥 = 𝑎, 𝑏 ≤ 𝑦 ≤ 𝑐 𝑎𝑛𝑑 𝑥 = −𝑎, 𝑏 ≤ 𝑦 ≤
𝑐, 𝑏 > 0 The interval −𝑎 < 𝑥 < 𝑎 and other 

intervals are traction-free. Conformal mapping 

and infinite Mellin transform are employed to 

model the problem. Stresses are known to 

concentrate at sharp corners of elastic materials 

especially at crack tips when the solid is 

cracked (Peterson, 1953). Such concentration 

can lead to crack initiation in solids subjected 

to loads. Most studies have focused on cracked 

strips. See, for example, Knouss (1966), 

Amazigo (1975), Nnadi (2003). We have not 
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seen any work on the type of corner we have 

studied. 

 

2.0 Materials and Methods 

2.1 Formulation of Basic equations 
 

The nonzero stress components for isotropic 

materials of shear modulus, μ\muμ undergoing 

antiplane deformation are given by: 

𝜎𝑥𝑧(𝑥, 𝑦) = 𝜇
𝜕𝑊

𝜕𝑥
(𝑥, 𝑦)  

𝜎𝑦𝑧(𝑥, 𝑦) = 𝜇
𝜕𝑊

𝜕𝑦
 (𝑥, 𝑦)   (1)                                                                          

where 𝑊(𝑥, 𝑦) is the only nonzero 

displacement component which is in the 𝑧 −

𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛. The equilibrium equation in terms 

of 𝑊 appears as  

(
𝜕2

𝑑𝑥2 +
𝜕2

𝜕𝑦2) 𝑊(𝑥, 𝑦) = 0               (2) 

By use of (1) the boundary conditions become 
𝜕𝑊

𝜕𝑥
(𝑎, 𝑦) =

𝑇

𝜇
,             𝑏 ≤ 𝑦 ≤ 𝑐  

𝜕𝑊

𝜕𝑥
(−𝑎, 𝑦) =

𝑄

𝜇
,         𝑏 ≤ 𝑦 ≤ 𝑐  

𝜕𝑊

𝜕𝑥
(±𝑎, 𝑦) = 0,         0 ≤ 𝑦 ≤ 𝑏,     𝑐 < 𝑦 < ∞  

𝜕𝑊

𝜕𝑦
(𝑥, 0) = 0,        − 𝑎 ≤ 𝑥 ≤ 𝑎                  (3)  

 

2.2  Transformation of the Strip and the Problem 

The strip is mapped onto the upper half plane by the conformal mapping function: 

f(z)=sin⁡(πz2a−1)(4)f(z) = \sin\left(\frac{\pi z}{2a} - 1\right) \tag{4}f(z)=sin(2aπz−1) (4) 

Let f(z)=U(x,y)+iV(x,y)f(z) = U(x,y) + iV(x,y)f(z)=U(x,y)+iV(x,y). Then, 

𝑓(𝑧) = 𝑠𝑖𝑛
𝜋𝑧

2𝑎
− 1                                                                                        (5) 

Let 

 𝑓(𝑧) = 𝑈(𝑥, 𝑦) + 𝑖𝑉(𝑥, 𝑦) 

Then 

𝑈(𝑥, 𝑦) = 𝑠𝑖𝑛
𝜋𝑥

2𝑎
𝑐𝑜𝑠ℎ

𝜋𝑦

2𝑎
− 1                                

𝑉(𝑥, 𝑦) = 𝑐𝑜𝑠
𝜋𝑥

2𝑎
𝑠𝑖𝑛ℎ

𝜋𝑦

2𝑎
          (6) 

𝜕𝑈

𝜕𝑥
(𝑥, 𝑦) =

𝜋

2𝑎
𝑐𝑜𝑠

𝜋𝑥

2𝑎
𝑐𝑜𝑠ℎ

𝜋𝑦

2𝑎
  

𝜕𝑉

𝜕𝑥
(𝑥, 𝑦) =

−𝜋

2𝑎
𝑠𝑖𝑛

𝜋𝑥

2𝑎
𝑠𝑖𝑛ℎ

𝜋𝑦

2𝑎
                               (7) 

𝜕𝑈

𝜕𝑥
(𝑥, 𝑦) =

𝜋

2𝑎
𝑠𝑖𝑛

𝜋𝑥

2𝑎
𝑠𝑖𝑛ℎ

𝜋𝑦

2𝑎
  

𝜕𝑉

𝜕𝑥
(𝑥, 𝑦) =

𝜋

2𝑎
𝑐𝑜𝑠

𝜋𝑥

2𝑎
𝑐𝑜𝑠ℎ

𝜋𝑦

2𝑎
                                               (8) 

 For polar coordinate equivalent, set  

𝑓(𝑧) = 𝑟𝑒𝑖𝜃       ,          𝑟 = 𝑟(𝑥, 𝑦),       𝜃 = 𝜃(𝑥, 𝑦)  

         = 𝑈(𝑟, 𝜃) + 𝑖𝑉(𝑟, 𝜃)  

Then 

𝑈(𝑟, 𝜃) = 𝑟𝑐𝑜𝑠𝜃 , 𝑉(𝑟, 𝜃) = 𝑟𝑠𝑖𝑛𝜃  

𝑡𝑎𝑛 𝜃 (𝑥, 𝑦) =
𝑉(𝑥,𝑦)

𝑈(𝑥,𝑦)
, 𝑟(𝑥, 𝑦) = [𝑈2(𝑥, 𝑦) + 𝑉2(𝑥, 𝑦)]

1

2                 (9) 

Equ (2) becomes 

(
𝜕2

𝜕𝑟2
+

1

𝑟

𝜕

𝑑𝑟
+

1

𝑟2

𝜕2

𝜕𝜃2
) 𝑊(𝑟, 𝜃) = 0, 𝑟 ≥ 0  ,0 ≤ 𝜃 ≤ 𝜋  

The boundary conditions (3) are transformed with the aid of the conformality condition 

𝑊(𝑟, 𝜃) = 𝑊(𝑥, 𝑦)  

and chain rule given by 
𝜕𝑊

𝜕𝑥
(𝑥, 𝑦) =

𝜕𝑊

𝜕𝑟
(𝑟, 𝜃)

𝜕𝑟

𝜕𝑥
(𝑥, 𝑦) +

𝜕𝑊

𝜕𝜃
(𝑟, 𝜃)

𝜕𝜃

𝜕𝑥
(𝑥, 𝑦)  
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𝜕𝑊

𝜕𝑦
(𝑥, 𝑦) =

𝜕𝑊

𝜕𝑟
(𝑟, 𝜃)

𝜕𝑟

𝜕𝑦
(𝑥, 𝑦) +

𝜕𝑊

𝜕𝜃
(𝑟, 𝜃)

𝜕𝜃

𝜕𝑦
(𝑥, 𝑦)                             (10) 

Simple calculations show that 
𝜕𝑟

𝜕𝑥
(±𝑎, 𝑦) = 0  

𝜕𝜃

𝜕𝑥
(±𝑎, 𝑦) ≠ 0  

𝜕𝜃

𝜕𝑦
(𝑥, 0) ≠ 0  

𝜕𝑟

𝜕𝑥
(𝑥, 0) = 0  

Therefore, (3) and (9) yield: 

Therefore (3) and (9) yield 

 
𝜕𝑊

𝜕𝑟
(𝑟, 0) = 0 ,      0 ≤ 𝑟 ≤ 𝛽,    𝑟 > 𝛼  

             =
−2𝑎𝑇

𝜋𝜇
 
𝑐𝑜𝑠ℎ(

𝜋𝑦

2𝑎
)−1

𝑠𝑖𝑛ℎ
𝜋𝑦

2𝑎

,    𝛽 ≤ 𝑟 ≤ 𝛼  

𝛽 = 𝑐𝑜𝑠ℎ
𝜋𝑏

2𝑎
− 1,      𝛼 = 𝑐𝑜𝑠ℎ

𝜋𝑐

2𝑎
− 1  

      

 
 

Fig. 2: Corresponding points Due To The Mapping 

Also 
𝜕𝑊

𝜕𝜃
(𝑟, 𝜋) = 0,               0 ≤ 𝑟 < 𝛽 + 2,      𝑟 > 𝛼 + 2  

𝜕𝑊

𝜕𝜃
(𝑟, 𝜋) =

𝑄

𝜇
[

𝜕𝜃

𝜕𝑥
(−𝑎, 𝑦)]

−1

  

                  =
−2𝑎𝑄

𝜋𝜇
 
𝑐𝑜𝑠ℎ

𝜋𝑦

2𝑎
+1

𝑠𝑖𝑛ℎ
𝜋𝑦

2𝑎

     ,   𝛽 ≤ 𝑟 ≤ 𝛼        (11) 

Since, 𝑊(𝑟, 𝜃) = 𝜙(𝜃)𝑟𝑛, then equation 2 is solved under the following conditions 

𝜙′′(𝜃) + 𝑛2𝜙(𝜃) = 0 ⇒ 𝜙(𝜃) = 𝐴𝑐𝑜𝑠𝑛𝜃 + 𝐵𝑠𝑖𝑛𝑛𝜃 

2.3 Analytical Solution 
 

Given the boundary conditions (10), we have: 
𝜕𝑟

𝜕𝑊
(𝑟, 𝜃) = 𝑛𝜙(𝜃)𝑟𝑛−1 

𝜕𝜃

𝜕𝑊
(𝑟, 𝜃) = 𝜙′(𝜃)𝑟𝑛 

Thus, the transformed boundary conditions (10) become: 

𝑛𝜙(0)𝑟𝑛−1 = 0,0 ≤ 𝑟 ≤ 𝛽, 𝑟 > 𝛼 
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𝑛𝜙(𝜋)𝑟𝑛−1 = 0,0 ≤ 𝑟 ≤ 𝛽, 𝑟 > 𝛼 

𝑛𝜙(𝜃)𝑟𝑛−1 =
−2𝑎𝑇

𝜋𝜇

(𝑐𝑜𝑠ℎ (
𝜋𝑦
2𝑎) − 1)

(𝑠𝑖𝑛ℎ(𝜋𝑦/2𝑎))
, 𝛽 ≤ 𝑟 ≤ 𝛼 

𝜙′(0)𝑟𝑛 = 0,0 ≤ 𝑟 ≤ 𝛽, 𝑟 > 𝛼 

𝜙′(𝜋)𝑟𝑛 = 0,0 ≤ 𝑟 ≤ 𝛽, 𝑟 > 𝛼 

𝜙′(𝜃)𝑟𝑛 =
−2𝑎𝑄

𝜋𝜇

(𝑐𝑜𝑠ℎ (
𝜋𝑦
2𝑎) − 1)

(𝑠𝑖𝑛ℎ(𝜋𝑦/2𝑎))
, 𝛽 ≤ 𝑟 ≤ 𝛼 

Using  the infinite Mellin integral transform, it can be shown that the solution to this equation 

which is continuous across the loading intervals is: 

𝑊(𝑟, 𝜃) =  ∑ 𝑛

∞

𝑛=0

𝑟𝑛𝜋/2𝑎𝑠𝑖𝑛
𝑛𝜋𝜃

2𝑎
                                                                                    (12) 

 

3.0  Results and Discussion 
 

When this field is studied close to the corner (a,0)(a,0)(a,0) as r→0r \to 0r→0, it can be seen that 

the dominant term in the field is: 

𝑊(𝑟, 𝜃) = 𝜆−1𝑟𝑛−1 𝑠𝑖𝑛
−𝜋𝜃

2𝑎
                 (13) 

Thus, when one of the loading intervals includes a corner, the stresses are singular. The stress 

components are given by: 

𝜎𝜃𝑧(𝑟, 𝜃) = (
√2𝑎

𝜋
) − 𝜋22𝑄)[𝛾(−1) + 𝜆(−1)]𝑠𝑖𝑛𝜃 

𝜎𝜃𝑧(𝑟, 𝜃) = (
√2𝑎

𝜋
) − 𝜋22𝑄)[𝛾(−1) + 𝜆(−1)]𝑐𝑜𝑠𝜃 

 

The results show that the finite element 

analysis revealed significant insights into the 

behaviour of power-law materials under stress. 

As anticipated, the stress intensity factors 

(SIFs) varied substantially with changes in the 

power-law exponent, n. For materials with a 

lower power-law exponent (indicative of softer 

materials), the SIFs were found to be higher. 

This suggests that these materials are more 

susceptible to crack initiation and propagation 

under applied stress. Conversely, materials 

with a higher power-law exponent (indicating 

harder materials) exhibited lower SIFs, 

reflecting greater resistance to crack growth. 

The power-law exponent, n, had a pronounced 

effect on the stress fields around the crack tip. 

In materials with lower n values, the stress 

fields were more concentrated, leading to 

higher stress magnitudes near the crack tip. 

This concentration of stress accelerates crack 

growth, making these materials more prone to 

failure. In contrast, materials with higher n 

values exhibited more distributed stress fields, 

which mitigates the stress concentration effect 

and slows down the crack propagation rate. 

Materials with higher power-law exponents 

demonstrated enhanced resistance to crack 

growth. The finite element simulations showed 

that as n increased, the energy required for 

crack propagation also increased. This implies 

that harder materials (with higher n) are more 

capable of withstanding higher loads without 

experiencing catastrophic failure. The crack 

growth rates were significantly lower in these 

materials, highlighting their suitability for 

applications where high strength and durability 

are critical. The findings align well with 

previous research that emphasizes the 
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importance of material properties in fracture 

mechanics. For instance, studies by Ashby and 

Jones (2012) highlighted the role of 

microstructural features in influencing crack 

propagation behaviour. Similarly, a published  

work by Smith et al. (2020) on the fracture 

toughness of composite materials corroborates 

the observed trends in our study, where 

material hardness plays a crucial role in 

determining fracture resistance. 

The practical implications of these findings are 

significant for the design and application of 

structural components in engineering. 

Understanding the influence of the power-law 

exponent on fracture behaviour allows 

engineers to predict the performance of 

materials more accurately and to design 

components that are less prone to failure. For 

instance, in aerospace and automotive 

industries, where material failure can have 

catastrophic consequences, selecting materials 

with higher power-law exponents can enhance 

safety and durability. 
  

4.0  Conclusion 
 

This study was designed to investigate the 

behaviour of crack propagation and stress 

fields in power-law materials. The finite 

element analysis was used to model the stress 

distribution and crack growth in materials that 

exhibit non-linear stress-strain relationships, 

based on the power-law behaviour. The study 

analysed how different power-law exponents 

affect the stress intensity factors and the overall 

crack propagation process. From the results of 

the study, we observed significant variations in 

stress intensity factors with changes in the 

power-law exponent, which supported the 

importance of material properties in predicting 

fracture behaviour. 

Also,  analysis of crack propagation in power-

law materials reveals that the non-linear stress-

strain relationship significantly influences the 

stress intensity factors and the crack growth 

behaviour. From the results and findings of the 

study, materials with higher power-law 

exponents exhibit greater resistance to crack 

growth, as indicated by the reduced stress 

intensity factors. Consequently, it is necessary 

to consider the specific material properties, 

particularly the power-law exponent, in the 

design and assessment of structural 

components subject to fracture. The analysed 

properties are significant indices for accurate 

predictions of material performance and 

failure, and enhancement of the reliability and 

safety of engineering structures. Given some 

shortcomings encountered in the present 

analysis, improvement in the predictive power 

of the model can be achieved through  

(i) future research focusing on the 

development of more sophisticated 

models that incorporate a wider 

range of material behaviours and 

environmental conditions.  

(ii) Experimental studies should be 

conducted to validate numerical 

findings and ensure their 

applicability to real-world 

scenarios.  

(iii) Future investigations should be 

carried out  to explore multi-scale 

analysis techniques to understand 

the impact of microstructural 

features on macroscopic fracture 

behaviour,  
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