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Abstract: The work of Gabriel Cramer (1704-

1752) that yielded the formula for solving an 

arbitrary number of unknown in a square linear 

system of equations has witnessed in the recent 

past, several methods of proofs regardless of the 

supposed high computational cost. It is our 

purpose in this research to proffer an 

alternative method of proof to Cramer’s formula 

for solving square linear system of equations. 
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1.0 Introduction 
 

The Swiss mathematician Gabriel Cramer 

(1704-1752) published the rule for solving 𝑛 by 

𝑛 system of linear equations which has come to 

bear his name (Debnath, 2013) though 

literature has it that the rule has been in use 

before his publication (Mc-Laurin, 1748; 

Boyer, 1966) and (Hedman , 1999) still the 

credit goes to him considering his contribution 

in giving the concept a finishing touch. The  

 

 

 

subject of the solution to the problem of solving 

a system of linear equations is particularly of 

interest in all fields of science and engineering 

(Ufuoma, 2013, 2019). Before now, several 

scholars have given various versions of proof 

of the Cramer’s formula with the knowledge 

that the finding fathers; Colin Maclaurin (1698-

1746) and Gabriel Cramer (1704-1752) to 

whom this formula is attributed did not give a 

formal proof of the formula rather, explained 

how to build the formula for more general 

cases. It is important to note that both Cramer 

and Maclaurin wrote down the solution of a 

system of 3 linear equations with 3 unknowns, 

as ratios of two quantities, which does not 

necessarily translate to the notion of the 

determinant as a closed-form function, as 

introduced by Alexandre-Theophile 

Vandermonde (1735-1796) in 1771 

(Vandermonde, 1771). However, the rule given 

by Maclaurin to choose the appropriate sign for 

each summand is wrong; on the contrary, 

Cramer's idea to count the number of 

transpositions (derangements) in the 

permutation attached to a given term flawlessly 

reproduces the right one. Hence one may 

conclude that Cramer's Rule is genuine due to 

Cramer (Kosinsky, 2001). Thus, the gap we 

proposed to fill in this work is to provide an 

alternative proof to Cramer’s formula for 

solving square linear system of equations 

which is of independent interest when 

compared with the existing proofs in the 

literature. In particular, amongst the authors 

that proved this formula in the literature, none 

were able to show that Cramer’s formula is a 

mere corollary to the result they established. 
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1.1 Definitions and Notations 
 

Let 𝑅𝑛(𝐶𝑛) denote the set of real (complex) 𝑛-

tuple vectors (column vectors) such that  

𝑅𝑛×1 = {𝑥̅ ∶ 𝑥̅ = (𝑥1, 𝑥2, ⋯ , 𝑥𝑛)
𝑇 , 𝑥𝑗 ∈ 𝑅 ∀ 𝑗

= 1,2,⋯ , 𝑛} 

𝑥𝑖 is the 𝑖-th component of the vector 𝑥̅. By 

convention 𝑅𝑛×1 = 𝑅𝑛 denotes the set of 

column vectors while 𝑅1×𝑛 denotes the set of 

row vectors, that is  

𝑅1×𝑛 = {𝑥̅ ∶ 𝑥̅ = (𝑥1, 𝑥2, ⋯ , 𝑥𝑛), 𝑥𝑖 ∈ 𝑅 ∀ 𝑖
= 1,2,⋯ , 𝑛} 

𝑅𝑚×𝑛 (𝐶𝑚×𝑛) denote the set of all real 

(complex)  𝑚 × 𝑛 matrices then 

𝑅𝑚×𝑛 = {𝐴 ∶ 𝐴 = (𝑎𝑖𝑗), 𝑎𝑖𝑗 ∈ 𝑅 ∀ 𝑖

= 1,2,⋯ ,𝑚 , 𝑗 = 1,2,⋯ , 𝑛} 

𝑎𝑖𝑗 is the (𝑖, 𝑗)-th component (entry) of the 

matrice 𝐴, 𝑖, 𝑗 ∈ [𝑛] = {1,2,3,⋯ , 𝑛}. 
An 𝑛 square system (𝑛 equations and 𝑛 

unknowns) is said to be linear if for 𝑎𝑖𝑗 ∈ 𝑅; 

𝑖, 𝑗 ∈ [𝑛] = {1,2,3,⋯ , 𝑛}, 𝑥𝑗 ∈ 𝑅 ∀ 𝑗 =

1,2,⋯ , 𝑛 the following equations holds 

 
𝑎11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥3 +⋯+ 𝑎1𝑛𝑥𝑛 = 𝑏1
 𝑎21𝑥1 + 𝑎22𝑥2 + 𝑎23𝑥3 +⋯+ 𝑎2𝑛𝑥𝑛 = 𝑏2
𝑎31𝑥1 + 𝑎32𝑥2 + 𝑎33𝑥3 +⋯+ 𝑎3𝑛𝑥𝑛 = 𝑏3
⋮                ⋮              ⋮                        ⋮                ⋮

𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 + 𝑎𝑛3𝑥3 +⋯+ 𝑎𝑛𝑛𝑥𝑛  = 𝑏𝑛  }
 
 

 
 

                                     (1) 

 

Its equivalent matrix equation is given by 

𝐴𝑥̅ = 𝐵                                                                       (2) 
Where  

𝐴 =

(

 
 

𝑎11   𝑎12  𝑎13⋯𝑎1𝑛
𝑎21   𝑎22   𝑎23⋯𝑎2𝑛
𝑎31   𝑎32   𝑎33⋯𝑎3𝑛
⋮        ⋮        ⋮   ⋱   ⋮

𝑎𝑛1   𝑎𝑛2   𝑎𝑛3⋯𝑎𝑛𝑛)

 
 
 ; 𝑥̅ = (

𝑥1
𝑥2
⋮
𝑥𝑛

) ;  𝐵 = (

𝑏1
𝑏2
⋮
𝑏𝑛

) 

 

Definition 1. A determinant of order 𝑛, or size 𝑛 × 𝑛, see (Hamiti, 2002; Barnard and Child, 1959; 

Scott, 1904; Ferrar, 1957)) is the sum 

 

𝐷 = det(𝐴) = |𝐴| = |
|

𝑎11   𝑎12  𝑎13⋯𝑎1𝑛
𝑎21   𝑎22   𝑎23⋯𝑎2𝑛
𝑎31   𝑎32   𝑎33⋯𝑎3𝑛
⋮        ⋮        ⋮   ⋱   ⋮

𝑎𝑛1   𝑎𝑛2   𝑎𝑛3⋯𝑎𝑛𝑛

|
| = ∑ 𝜇𝑗1𝑗2𝑗3⋯𝑗𝑛𝑎1𝑗1𝑎2𝑗2𝑎3𝑗3⋯𝑎𝑛𝑗𝑛

𝑗1𝑗2𝑗3⋯𝑗𝑛∈ 𝑆𝑛

 (3) 

 

Summing over the permutation set (symmetric permutation group) 𝑆𝑛, where 

 

𝜇𝑗1𝑗2𝑗3⋯𝑗𝑛 = {
+1;  𝑖𝑓 𝑗1𝑗2𝑗3⋯𝑗𝑛 𝑖𝑠 𝑎𝑛 𝑒𝑣𝑒𝑛 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛
−1;  𝑖𝑓 𝑗1𝑗2𝑗3⋯𝑗𝑛 𝑖𝑠 𝑎𝑛 𝑜𝑑𝑑 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛

 

 

1.2 Properties of determinants 
 

Let 𝐴 and 𝐵 be any 𝑛 ×  𝑛 matrices. 

1. If 𝐴 is a triangular matrix, i.e. 𝑎𝑖𝑗  =  0 

whenever 𝑖 >  𝑗 or, whenever 

𝑖 <  𝑗, then 𝑑𝑒𝑡(𝐴)  = 𝑎11𝑎22𝑎33  · · ·  𝑎𝑛𝑛. 

2. If 𝐵 results from A by interchanging two 

rows or columns, then 𝑑𝑒𝑡(𝐵) = −𝑑𝑒𝑡(𝐴). 
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3. If B results from A by multiplying one row 

or column with a number c, then 𝑑𝑒𝑡(𝐵) =
 𝑐 𝑑𝑒𝑡(𝐴). 
4. If 𝐵 results from A by adding a multiple of 

one row to another row, or a multiple of one 

column to another column, then 𝑑𝑒𝑡(𝐵) =
 𝑑𝑒𝑡(𝐴). 
These four properties can be used to compute 

the determinant of any matrix, using Gaussian 

elimination (Eves, 1990; Bunch and Hopcroft, 

1974; Gjonbala and Salihu, 2010). This is an 

algorithm that transforms any given matrix to a 

triangular matrix, only by using the operations 

from the last three items above. Since the effect 

of these operations on the determinant can be 

traced, the determinant of the original matrix is 

known, once Gaussian elimination is 

performed. It is also possible to expand a 

determinant along a row or column using 

Laplace’s formula, which is efficient for 

relatively small matrices. To do this along the 

row i, say, we write 

 

det(𝐴) =

{
 
 

 
 ∑𝑎𝑖𝑗𝐶𝑖𝑗

𝑛

𝑗=1

=∑(−1)𝑖+𝑗𝑎𝑖𝑗𝑀𝑖𝑗

𝑛

𝑗=1

 ∀ 𝑖 (𝑟𝑜𝑤 𝑤𝑖𝑠𝑒)

.

∑𝑎𝑖𝑗𝐶𝑖𝑗

𝑛

𝑖=1

=∑(−1)𝑖+𝑗𝑎𝑖𝑗𝑀𝑖𝑗

𝑛

𝑖=1

 ∀ 𝑗 (𝑐𝑜𝑙𝑢𝑚𝑛 𝑤𝑖𝑠𝑒)

 

 

where the 𝐶𝑖𝑗 represent the matrix cofactors, 

i.e., 𝐶𝑖𝑗 is (−1)𝑖+𝑗 times the minor 𝑀𝑖𝑗, which 

is the determinant of the matrix that results  

 

 

from A by removing the i-th row and the j-th 

column, and n is the size of the matrix.   

From the definition above one easily observe 

using Laplace’s (theorem) formula that the 

corollary follows 

 

Corollary 1.1 Let 𝑘 and 𝑝 be positive integers in [𝑛], then we have  

 

∑𝑎𝑖𝑘𝐶𝑖𝑝

𝑛

𝑖=1

=∑𝑎𝑘𝑗𝐶𝑝𝑗

𝑛

𝑗=1

= {
det(𝐴)   𝑖𝑓  𝑘 = 𝑝 (first Laplace theorem)

.
  0        𝑖𝑓  𝑘 ≠ 𝑝 (second Laplace theorem)

 

 

2. 0 Review of Some Previous Proofs 

Let  

  

𝐴𝑟′|𝐵 =

(

 
 
 

𝑎11
𝑎21
𝑎31
𝑎41
⋮
𝑎𝑛1

  

𝑎12
𝑎22
𝑎32
𝑎42
⋮
𝑎𝑛2

 

⋯
⋯
⋯
⋯
⋮
⋯

 

𝑎1,𝑟−1
𝑎2,𝑟−1
𝑎3,𝑟−1
𝑎4,𝑟−1
⋮

𝑎𝑛,𝑟−1

 

𝑏1
𝑏2
𝑏3
𝑏4
⋮
𝑏𝑛

 

𝑎1,𝑟+1
𝑎2,𝑟+1
𝑎3,𝑟+1
𝑎4,𝑟+1
⋮

𝑎𝑛,𝑟+1

 

⋯
⋯
⋯
⋯
⋮
⋯

  

𝑎1𝑛
𝑎2𝑛
𝑎3𝑛
𝑎4𝑛
⋮
𝑎𝑛𝑛

 

)

 
 
 

 

 

be the coefficient matrix of the system whose  

𝑟𝑡ℎ the column is replaced by (restricted to)  the 

column vector 𝐵 of the coefficient matrix of the 

system with the corresponding determinant 

denoted as 𝐷𝑟′|𝐵. (Cramer, 1750; Ufuoma, 

2013; Okoli and Nsiegbe, 2021, 2022), 

proposes the following theorem for solving a 

square system of linear equations.  
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Theorem 2.1 (Cramer's Theorem) If the 

matrix of coefficients A of a system (1.1), (4.1) 

is non-singular, then the unique solution 
(𝑥1, 𝑥2, 𝑥3, ⋯ , 𝑥𝑛) to the system is given by 

 

𝑥𝑟 =
𝐷𝑟′|𝐵

|𝐴|
  ∀ 𝑟 = 1,2,3,⋯ , 𝑛        (4) 

The first proof of Cramer's Rule was 1841 and 

appeared in a paper by Carl Gustav Jacob 

Jacobi (1804-1851). This is not the oldest proof 

ever published. In 1825, for instance, Heinrich 

Ferdinand Scherk (1798-1885) published a 17 

page long proof by induction on the number of 

unknowns sketched in (Muir, 1960). Because 

of its poor informative content and lengthiness, 

researchers seem to pay less attention to it 

(Maurizio, 2014). 

Proof 1 (Jacobi): For arbitrary but fixed 𝑝 ∈
[𝑛], using the i-th equation of (1); 

 

𝑎𝑖1𝑥1 + 𝑎𝑖2𝑥2 + 𝑎𝑖3𝑥3 +⋯+ 𝑎𝑖𝑛𝑥𝑛  = 𝑏𝑛 

⟹  ∑𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

= 𝑏𝑖 

⟹ 𝐶𝑖𝑝∑𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

= 𝐶𝑖𝑝𝑏𝑖 ;  ⟹  ∑𝑎𝑖𝑗  𝐶𝑖𝑝 𝑥𝑗

𝑛

𝑗=1

= 𝐶𝑖𝑝𝑏𝑖;  ⟹  ∑∑𝑎𝑖𝑗  𝐶𝑖𝑝 𝑥𝑗

𝑛

𝑗=1

𝑛

𝑖=1

=∑𝐶𝑖𝑝𝑏𝑖

𝑛

𝑖=1

 

By corollary 1.1, it follows that for 𝑗 = 𝑝 we shall have 

∑𝑎𝑖𝑝𝐶𝑖𝑝

𝑛

𝑖=1

𝑥𝑝  = 𝐶𝑖𝑝𝑏𝑖;  ⟹  𝑥𝑝 (∑𝑎𝑖𝑝𝐶𝑖𝑝

𝑛

𝑖=1

 ) = 𝐶𝑖𝑝𝑏𝑖;  ⟹  𝑥𝑝 det(𝐴) = 𝐷𝑝′|𝐵 

 

⟹ 𝑥𝑝 =
𝐷𝑝′|𝐵

det(𝐴)
 

 

The next proof that followed soon after was by 

Nicola Trudi (1811-1884), a professor of 

infinitesimal calculus at the University of 

Naples in his work Teoria de' determinants e  

 

 

loro applicazioni. Using the idea of Trudi we 

shall give a proof which is slightly different 

from Trudi's method of proof as contained in 

(Brunetti, 2014). In fact, this seems to marry 

Jacobi’s and Trudi’s method of proof. 

Proof 2 (Trudi): Now suppose we put the system in equation (1.1) as 

𝑥1(

𝑎11
𝑎21
⋮
𝑎𝑛1

)+ 𝑥2(

𝑎12
𝑎22
⋮
𝑎𝑛2

)+⋯+ 𝑥𝑝 (

𝑎1𝑝
𝑎2𝑝
⋮
𝑎𝑛𝑝

)+⋯+ 𝑥𝑛(

𝑎1𝑛
𝑎2𝑛
⋮
𝑎𝑛𝑛

) = (

𝑏1
𝑏2
⋮
𝑏𝑛

) 

⟹  ∑(

𝑎1𝑗
𝑎2𝑗
⋮
𝑎𝑛𝑗

)𝑥𝑗

𝑛

𝑗=1

= (

𝑏1
𝑏2
⋮
𝑏𝑛

) 

⟹ 𝐶𝑖𝑝  ∑(

𝑎1𝑗
𝑎2𝑗
⋮
𝑎𝑛𝑗

)𝑥𝑗

𝑛

𝑗=1

= 𝐶𝑖𝑝(

𝑏1
𝑏2
⋮
𝑏𝑛

) ; ⟹ ∑𝐶𝑖𝑝(

𝑎1𝑗
𝑎2𝑗
⋮
𝑎𝑛𝑗

)𝑥𝑗

𝑛

𝑗=1

= 𝐶𝑖𝑝(

𝑏1
𝑏2
⋮
𝑏𝑛

) 



Communication in Physical Sciences, 2024, 11(1): 127-135 131 
 

 

;  ⟹  ∑∑𝐶𝑖𝑝(

𝑎1𝑗
𝑎2𝑗
⋮
𝑎𝑛𝑗

)𝑥𝑗

𝑛

𝑗=1

𝑛

𝑖=1

=∑𝐶𝑖𝑝(

𝑏1
𝑏2
⋮
𝑏𝑛

)

𝑛

𝑖=1

 

By corollary 1, it follows that for 𝑗 = 𝑝 we shall have 

∑𝐶𝑖𝑝(

𝑎1𝑝
𝑎2𝑝
⋮
𝑎𝑛𝑝

)

𝑛

𝑖=1

𝑥𝑝  = 𝐶𝑖𝑝𝑏𝑖;  ⟹  𝑥𝑝 (∑𝑎𝑖𝑝𝐶𝑖𝑝

𝑛

𝑖=1

 ) = 𝐶𝑖𝑝𝑏𝑖;  ⟹  𝑥𝑝 det(𝐴) = 𝐷𝑝′|𝐵 

⟹ 𝑥𝑝 =
𝐷𝑝′|𝐵

det(𝐴)
 

It was noted in (Brunetti, 2014) that Trudi's 

proof has been rediscovered in (Whitford and 

Klamkin, 1953) and included in some modern 

widespread textbooks (e.g. (Lang, 2004) and 

(Cohen et al, 2010)). It also appears on the 

Italian Wikipedia page devoted to Cramer's 

Rule (Regola, 2014). Nevertheless, most 

textbooks on linear algebra (we just mention 

the classic (Curtis, 1963), (Robinson, 2006), 

and the recently published Italian textbook 

(Lomonaco, 2013)) choose to prove Cramer's 

Rule via the adjoint matrix, which is in Proof 3. 

Proof 3 Since A is non-singular, the matrix 

equation 𝐴𝑋 =  𝐵 is equivalent to 

𝑋 = 𝐴−1𝐵 ;  ⟹ 𝑋 =
𝑎𝑑𝑗(𝐴)

det(𝐴)
𝐵 

For a fixed 𝑝 ∈ [𝑛], then the p-th component of 

𝑎𝑑𝑗(𝐴)𝐵 is 𝐷𝑝′|𝐵, so that  

𝑥𝑝 =
𝐷𝑝′|𝐵

det(𝐴)
 

The next proof as contained in the paper 

(Robinson, 1970), is the oldest source found in 

print as contained in (Brunetti, 2014). Such 

proof has been adopted by (Horn and Johnson, 

1985). As noted in (Carison et al, 1992), it 

gives practice in the important skill of 

exploiting the structure of sparse matrices, 

hence it should be worthy of more 

consideration. 

Proof 4 Let I be the identity matrix. Observe that for a fixed 𝑝 ∈ [𝑛], 

𝑥𝑝 = det(𝐼𝑝′|𝐵) 

Thus,  

𝐴(𝐼𝑝′|𝐵) = (𝐴𝑝′|𝐵) 

By the properties of determinant, it follows that 

det(𝐴) 𝑑𝑒𝑡(𝐼𝑝′|𝐵) = 𝑑𝑒𝑡(𝐴𝑝′|𝐵) 

 ⟹ 𝑑𝑒𝑡(𝐼𝑝′|𝐵) =
𝑑𝑒𝑡(𝐴

𝑝′|𝐵
)

det(𝐴)
 ;  ⟹ 𝑥𝑝 =

𝐷
𝑝′|𝐵

det(𝐴)
  

 

For the remaining two proofs which is due to Richard Ehrenborg (Ehrenborg, 2004) and (Brunetti, 

2014) one may wish to see (Brunetti, 2014). 
 

3.0 Results 
 

It is important to note that the Cramer’s rule 

measures the ratio of two determinants 

(quantities), where one has a running variable 

(the numerator part) while the other has not (the 

denominator part). In a more general setting, 

unlike that of Cramer’s, we will define a 

parameter that measures the ratio of two 

determinants such that they are both indexed by 

a running variable as follows. Let for 𝑝, 𝑟 ∈ [𝑛] 
we define 
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𝑣𝑝,𝑟 =
𝐷𝑟
𝐷𝑝

=
𝐷𝑟′|𝐵

𝐷𝑝′|𝐵
                                                                     (5) 

We may simply replace 𝐷𝑟′|𝐵 by 𝐷𝑟 for any 

positive integer 𝑟. So by the definition of this 

parameter, we have not assumed the 

Cramer’s rule since 𝑝 ≠ 0 (i.e. 𝑝 ∈ [𝑛]). To 

see the generic nature of this parameter, 

which also accommodates the result of 

Cramer’s we write 

 𝑣𝑝,𝑟 =

{
 
 

 
 
𝐷𝑟
𝐷0
   𝑖𝑓   𝑟 ≠ 𝑝; 𝑝 = 0

 
𝐷𝑟
𝐷𝑝
  𝑖𝑓   𝑟 ≠ 𝑝; 𝑝, 𝑟 > 0

1      𝑖𝑓           𝑝 = 𝑟

                                                      (6) 

 

So that now 𝑝 ∈ [𝑛] ∪ {0} and 𝑟 ∈ [𝑛]. Observe if we restrict 𝑝 to the singleton set {0} (i.e. 𝑝 =
0), 𝑣𝑝,𝑟 immediately yield the Cramer’s rule, that is 

𝑣0,𝑟 =
𝐷𝑟
𝐷0
= 𝑥𝑟                                                                     (7) 

But if we restrict 𝑝 to the set [𝑛] (i.e. 𝑝 ∈ [𝑛]), 
then 𝑣𝑝,𝑟 defines an entirely different quantity 

that is independent of the determinant of the 

coefficient matrix for the given system which 

is not the case for Cramer’s rule. In the sequel, 

we shall give additional implications of this 

parameter 𝑣𝑝,𝑟 as we now proceed to prove a 

modified version of Cramer’s formula and 

show that the Cramer’s formula is a corollary 

(can easily be deduced) from the modified 

version of our result. 

Theorem 3.1 If the coefficients matrix 𝐴 of the 

system (1) is non-singular, then the unique 

solution (𝑥1, 𝑥2, 𝑥3, ⋯ , 𝑥𝑛) to the system is 

given by  

𝑥𝑝  =
𝑏𝑖𝐷𝑝

∑ 𝑎𝑖𝑗𝐷𝑗
𝑛
𝑗=1

  ∀ 𝑖 ∈ [𝑛], 𝑝 = 1,2,3,⋯ , 𝑛                                   (8) 

Proof:  

For 𝑝, 𝑗 ∈ [𝑛], let 𝑣𝑝,𝑗 =
𝐷𝑗

𝐷𝑝
 and 𝑥𝑗 = 𝑣𝑝,𝑗𝑥𝑝, using the i-th equation of (1); 

𝑎𝑖1𝑥1 + 𝑎𝑖2𝑥2 + 𝑎𝑖3𝑥3 +⋯+ 𝑎𝑖𝑛𝑥𝑛  = 𝑏𝑛 

⟹  ∑𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

= 𝑏𝑖 

⟹  ∑𝑎𝑖𝑗𝑣𝑝,𝑗𝑥𝑝

𝑛

𝑗=1

= 𝑏𝑖 ;  ⟹  ∑𝑎𝑖𝑗
𝐷𝑗

𝐷𝑝
𝑥𝑝

𝑛

𝑗=1

= 𝑏𝑖 ;  ⟹ 𝑥𝑝   ∑𝑎𝑖𝑗𝐷𝑗

𝑛

𝑗=1

= 𝑏𝑖𝐷𝑝 

⟹ 𝑥𝑝  =
𝑏𝑖𝐷𝑝

∑ 𝑎𝑖𝑗𝐷𝑗
𝑛
𝑗=1

  ∀ 𝑖 ∈ [𝑛], 𝑝 = 1,2,3,⋯ , 𝑛 

This completes the proof of the theorem. 

Lemma 3.2 let the entries of the column matrix (𝐷1′|𝐵 , 𝐷2′|𝐵  , ⋯ , 𝐷𝑛′|𝐵)
𝑇
 represent the determinant 

defined above then the determinant det(𝐴) (|𝐴| 𝑜𝑟𝐷0 ) of the coefficient matrix 𝐴 is given by 

𝐷0 =
1

𝑏𝑖
(∑𝑎𝑖𝑗𝐷𝑗′|𝐵

𝑛

𝑗=1

) ∶ ∀  𝑖 ∈ [𝑛]                                         (9)  
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Proof. 

Recall that the system (1) above can be written as  

 ∑𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

= 𝑏𝑖 ;    𝑖 = 1,2,3, …  , 𝑛 

Now if 𝑝 = 0, by definition  𝑣0,𝑟 =
𝐷
𝑟′|𝐵

𝐷0
= 𝑥𝑟, so we shall have that 

𝑏𝑖 =  ∑𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

= 
1

𝐷0
∑𝑎𝑖𝑗𝐷𝑗′|𝐵

𝑛

𝑗=1

 ;⟹ 𝐷0 = 
1

𝑏𝑖
∑𝑎𝑖𝑗𝐷𝑗′|𝐵

𝑛

𝑗=1

 

This completes the proof of the lemma. 

Corollary 3.3 let the entries of the column matrix (𝐷1′|𝐵 , 𝐷2′|𝐵 , ⋯ , 𝐷𝑛′|𝐵)
𝑇
 represent the determinant 

defined above, if 𝑝 ∈ {0} (i.e. 𝑝 = 0) then theorem 3.1 reduces to theorem 1.1. 

Now observe that using the result of theorem 3.1 and lemma 3.2, it follows that 

𝑥𝑟  =
𝑏𝑖𝐷𝑟 

∑ 𝑎𝑖𝑗𝐷𝑗
𝑛
𝑗=1

=
𝐷𝑟

 
1
𝑏𝑖
∑ 𝑎𝑖𝑗𝐷𝑗
𝑛
𝑗=1

=
𝐷𝑟
 𝐷0

=
𝐷𝑟

 det(𝐴)
 

 

4.0 Conclusion 
 

So far we have proved Cramer’s formula for 

solving square linear system of equations in a 

manner which is of independent interest 

when compared with the existing proofs of 

the authors mentioned above as contained in 

the literature. Also we showed that Cramer’s 

formula is a mere corollary to the result in 

theorem 3.1. 

The importance of this lemma 3.3 is that it eliminates 

the computation of 𝐷0 from the matrix of coefficients 

A of the system (1), thus reducing the amount of time 

required to complete the computation and 

guaranteeing the fact that for 𝑗 = 1,2,3, …  , 𝑛 the 

collection { 𝐷𝑗′|𝐵} completely determine the solution 

set { 𝑥𝑗 ∶ 𝑗 = 1,2,3,…  , 𝑛} of the linear system (1) 

respectively, unlike in the case of (Cramer 1750;  

Babarinsa and Kamarulhaili, 2017, 2019;  Kitaro , 

2018; Ufuoma, 2013, 2019) respectively, which 

requires the direct computation of 𝐷0 from the matrix 

of coefficients A of the system unlike that of (Okoli 

and Nsiegbe, 2021, 2022).  

We provided an alternative proof to Cramer’s 

formula for solving square linear system of equations 

which is of independent interest when compared with 

the existing proofs in the literature. In particular, 

amongst the authors that proved this formula in the 

literature, none were able to show that Cramer’s 

formula is a mere corollary to the result they 

established. 
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