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Abstract: This study investigates the presence 

of nonlinear dynamics and chaotic behaviour 

in air temperature, atmospheric pressure, and 

relative humidity using data collected from 

Lagos, Nigeria. Power spectral density 

analysis revealed an aperiodic nature with 

possible non-linear processes governing the 

time series. Recurrence quantification analysis 

(RQA) was employed to quantify the 

determinism and chaoticity within the data. 

Results suggest that all three variables (relative 

humidity, air temperature, and atmospheric 

pressure) exhibit evidence of both deterministic 

and chaotic behaviour. Deterministic 

behaviour was highest for air temperature, 

followed by pressure and then humidity. 

Conversely, chaoticity was highest for relative 

humidity, followed by pressure and then air 

temperature. These findings suggest complex 

underlying dynamics within the troposphere, 

potentially influenced by the region's 

convective nature and intense precipitation 

events. The observed determinism indicates 

some level of predictability, particularly for air 

temperature, while the chaoticity highlights the 

inherent complexity of atmospheric processes. 
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1.0 Introduction 
 

Weather refers to the atmospheric state at a 

specific time and location. Factors such as 

atmospheric temperature, pressure, humidity, 

and wind are influential in shaping the weather 

conditions of a place (Amajama, et al., 2023; 

Abimbola, et al., 2021; Jacobson, 1999; 

Ukhurebor and Umukoro, 2018; Guidara, et al., 

2018). Most of the weather events take place in 

the troposphere which is the lower layer of the 

atmosphere near the Earth's surface (Ofure, et 

al., 2017). The radio waves that pass through 

this layer are affected in both phase and 

amplitude by this nondispersive layer.  

Variations in these tropospheric meteorological 

parameters affect the properties of the 

atmosphere as a communication medium and 

are the main source of radio signal interference 

(Igwe, et al., 2021; Eichie, et al., 2017; Sabu, 

et al., 2017; Isikwe, et al., 201 3; Joseph, 2016, 

2016). Density, a crucial atmospheric property, 

fluctuates in response to weather variations 

(Okeke, et al., 2019; Elechi and Otasowie, 

2015; Helhel, et al., 2008). Tropospheric 

density changes can affect how 

electromagnetic waves refract through 

different media with different densities, which 
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can affect the propagation properties 

(Amajama, et al., 2023; Familusi, et al., 2022; 

Agbo, et al., 2013; Adediji and Ajewole, 2008; 

Willoughby, et al., 2003). The degradation of 

radio signals in the troposphere can be 

categorized into two parts: background 

troposphere effects and turbulence. The slowly 

moving portion caused by the large-scale 

component, which corresponds to the input 

region, is primarily referred to as the 

background troposphere (Dong, 2019; 

Kolmogorov, 1968). The refractive index is a 

useful tool for characterizing radio wave 

propagation in the troposphere. When the 

refractive index is greater than 1, the 

propagation velocity slows down as the signal 

passes through the troposphere thereby 

introducing delay errors. 

Generally, different delay errors can occur 

because of different atmospheric conditions.  

Because of the troposphere's heterogeneity, 

atmospheric variables like humidity, pressure, 

and temperature change depending on the 

height and spatial distribution of the refractive 

index, which bends the propagation path and 

introduces bending errors. Tropospheric 

turbulence encompasses the dynamic 

fluctuations resulting from small-scale vortices 

and aligns with the inertial subrange of 

turbulent motion. Under some severe weather 

situations, the meteorological factors fluctuate 

rapidly and intensely, causing random 

oscillations in the amplitude and phase of the 

signal (Dong, 2019). This tropospheric 

turbulence can be considered as a nonlinear 

process and chaotic behaviour that can be 

present in different regions of the atmosphere 

(Enugonda et al., 2023). In the context of the 

atmosphere, some works have been carried out 

on radio refractivity using nonlinear dynamics 

and chaotic approaches (Ogunjo et al.,2013; 

Adediji and Ogunjo, 2014; Fuwape and 

Ogunjo, 2016; Adelakun et al., 2019; Ojo et al., 

2019, Adeniji, et al., 2021; Fuwape, et al., 

2017). The Multifractal Detrended Fluctuation 

Analysis MFDFA method was applied to study 

climate impacts and breakpoints in climate data 

and to understand how nonlinearity and 

multifractality occur in temperature data 

(Ogunjo, et al., 2021; Lana, et al., 2020; Silva, 

2020; Agbazo, et al., 2019; Garcia-Marin, et 

al., 2019; Herrera-Grimaldi et al., 2019; 

Krzyszczak et al., 2019; Karatasou and 

Santamouris, 2018; Baranowski, et al., 2015), 

relative humidity data (Bejoy, et al., 2023) and 

wind data (Telesca and Lovallo, 2011). 

Due to the non-availability of dynamical 

equations describing the underlying processes 

of the atmosphere, there is a need to investigate 

the nonlinearity and degree of chaoticity of 

atmospheric temperature, pressure, and 

humidity as they are responsible for the 

heterogeneity of the atmosphere.  
 

1.1 Data and Pre-processing 
 

Measurements of daily relative humidity, air 

temperature and atmospheric pressure were 

recorded at 5-min time intervals for a period of 

one year (1st January – December 2008) and 

collected from National Space Research and 

Development Agency (NASRDA).  The data 

points used for the analysis range from 8064 to 

8928 for the twelve months of the year. The 

study area is in the University of Lagos, Akoka 

weather station in the city of Lagos which lies 

in south-west Nigeria with a wet equatorial 

type of climate influenced by its nearness to the 

equator and the Gulf of Guinea.  It is located at 

latitude 6° 25ˈand 18.53ˈˈN and between 

longitude 3° 19ˈ and 21.50ˈˈE with an altitude 

of 3.3m. The interaction between the warm, 

humid maritime tropical air mass and the hot 

and dry continental air mass from the interior 

gives the state two seasons; a wet season from 

April to October and a dry season from 

November to March (Fasona et al., 2005). 

 

2.0  Materials and Methods 

2.1 Power Spectral Density 
 

According to Valsakumar, et. al, 1997, Let 𝑥(𝑡) 

be one of the state variables describing the 
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chaotic dynamical system. The time 

autocorrelation function of 𝑥(𝑡) is defined as 

𝑐(𝑡) = lim
𝑇→∞

1

𝑇
∫ 𝑑𝑡′𝑥(𝑡′)

𝑇−|𝑡|

0

𝑥(𝑡′

+ |𝑡|).                                  (1) 

The power spectrum 𝐶(𝑓) is defined as the 

Fourier transform of the autocorrelation 

function 

𝐶(𝑓)

= ∫ 𝑐(𝑡)𝑒𝑖2𝜋𝑓𝑡𝑑𝑡
∞

−∞

                                     (2) 

Power spectrum can also be equivalently 

defined as the modulus square of its Fourier 

amplitude per unit time. This is given by 

𝐶(𝑓)

= lim
𝑇→∞

1

𝑇
|∫ 𝑥(𝑡)𝑒𝑖2𝜋𝑓𝑡𝑑𝑡

𝑇

0

|

2

                                                                                 (3) 

𝐶(𝑓) is defined in (2) and (3), therefore, is 

being taken to be the true power spectrum. 

 The next step is to  define the power spectrum 

𝑃(𝑓, 𝑁, 𝜏) of such a discrete scalar time series 

such that it agrees with 𝐶(𝑓) in the limit 𝜏 → 0 

and 𝑁 → ∞. The discrete version of the 

autocorrelation is defined as  

𝑐𝑗(𝑁) = 〈
1

𝑁
∑ 𝑥𝑙𝑥𝑙+|𝑗|

𝑁−1−|𝑗|

𝑙=0

〉            (4) 

 

The purpose of this averaging is to guarantee 

that, in the limit 𝑁 → ∞, the autocorrelation 

function of the continuous-time process 𝑐(𝑡) 

computed at 𝑡 = 𝑗𝜏 and the discrete-time series 

𝑐𝑗(𝑁)  are the same.  𝑃(𝑓, 𝑁, 𝜏) is then defined 

as 

𝑃(𝑓, 𝑁, 𝜏) = 𝜏 ∑ 𝑐𝑗(𝑁)

(𝑁−1)

𝐽=−(𝑁−1)

𝑒𝑗2𝜏𝑓𝜏𝑗                                                   (5) 

It is also possible to express 𝑃(𝑓, 𝑁, 𝜏) like equation (3). Let 𝑋(𝑓, 𝑁, 𝜏) be the discrete Fourier 

transform of {𝑥𝑗}, 

𝑋(𝑓, 𝑁, 𝜏) = ∑ 𝑥𝑗

𝑁−1

𝐽=0

𝑒𝑗2𝜏𝑓𝜏𝑗                                                                  (6) 

and the corresponding power spectrum is  

𝑃(𝑓, 𝑁, 𝜏) =
𝜏

𝑁
〈|𝑋(𝑓, 𝑁, 𝜏)|2〉                                                           (7) 

𝑃(𝑓, 𝑁, 𝜏) is referred to in this study as the computed power or just the power spectrum. In the 

following limit, the computed power spectrum 𝑃(𝑓, 𝑁, 𝜏) equals the true power spectrum 𝐶(𝑓). 

𝐶(𝑓) = lim
𝜏→0

lim
𝑁→∞

𝑃(𝑓, 𝑁, 𝜏)                                                                 (8) 

2.2 Determination of embedding dimension 

and time delay 
 

Two crucial parameters that must be 

determined for the recurrence analysis from a 

time series are the embedding dimensions (m) 

and the delay time (τ), both of which are 

extensively discussed in the literature (Kantz 

and Schreiber 1997). The two common 

methods for estimating the ideal time delay (τ) 

are the mutual information approach and the 

autocorrelation method. In literature, the first 

approach is recommended for nonlinear time 

series analysis and is defined in Takens (1981). 

𝐼(𝜏)

= − ∑ 𝑝𝑖 𝑗 𝐼𝑛
𝑝𝑖 𝑗(𝜏)

𝑝𝑖𝑝𝑗
𝑖 𝑗

                                                                                         (9) 

where 𝑝𝑖𝑗  represents the joint probability of 

finding a time series value in the ith interval and 

a time series value in the jth interval following 

a time 𝜏, and 𝑝𝑖 represents the probability of 

finding a time series value in the ith interval in 

the partition. 

The following metrics are used to quantify the 

deterministic structure and complexity of RPs: 
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(i)Maxline (𝐿𝑚𝑎𝑥) is the longest line segment 

measured parallel to the main diagonal in the 

plot.  

𝐷𝐼𝑉 =
1

𝐿𝑚𝑎𝑥
 , 𝐿 𝑚𝑎𝑥({𝑙𝑖;  𝑖 =

1, . . . . . . . 𝑁𝑙})
𝑚𝑎𝑥

                                   (10) 

According to Eckmann et al., (1987), the 

highest positive Lyapunov exponent was 

inversely related to the longest diagonal line 

structure.  

(ii)Determinism (DET) is the ratio of 

recurrence points forming diagonal structures 

(of at least length) to all recurrence points. 

𝐷𝐸𝑇 =
∑ 𝑙𝑃(𝑙)𝑁

𝑙=𝑙𝑚𝑖𝑛

∑ 𝑅𝑖 𝑗
𝑁
𝑖 𝑗

                            (11) 

where  𝑃(𝑙) is the frequency distribution of the 

diagonal line lengths (for a diagonal parallel to 

the main diagonal); 𝑙 is the length of the line 

structure. Long diagonal lines depict periodic 

signals (e.g. sine waves), short diagonal lines 

depict chaotic signals and no diagonal lines 

depict stochastic signals (e.g., random 

numbers) Webber and Zbilut (2005).  
 

3.0 Results and Discussion 
 

3.1 Power spectral density analysis 
 

We display in  Fig. 1 (a-f) the Power spectral 

density diagrams for some selected months 

(January and December) for relative humidity, 

air temperature, and atmospheric pressure for 

both wet and dry seasons using equation (7). 

The power spectral density (PSD) diagrams of 

relative humidity, air temperature, and 

atmospheric pressure provide information on 

the character of fluctuations in the time series 

data. The (PSD) diagrams are derived based on 

the periodogram PSD estimation method which 

describes how the power of a time series is 

distributed with frequency. In all cases, there 

are no regular sharp peaks which is the 

representative of aperiodic nature of climate 

signals with the power increasing as the 

frequency goes down. There is the existence of 

periodic components in these time series which 

implies low predictability of these time series 

and also, the existence of the higher harmonics 

in the spectra indicates that the processes 

underlying the time series are not linear, but 

there is some kind of nonlinearity (Bigdeli and 

Lafmejani, 2016; Timmer, et al., 2000; 

Grassberger and Procaccia, 1983). It is 

observed that climate signals are found to 

exhibit an exponential decay followed by a 

much slower decay ( like an algebraic decay) 

which are the hallmark of power spectra of 

chaotic dynamical systems (Marwan and 

Braun, 2023; Serykh and Sonechkin, 2019; 

Valsakumar et. al, 1997).   
 

3.2 Choice of delay time and embedding 

dimension 
 

Fig.  2 depicts the mutual information plotted 

against time delay for Relative humidity, air 

temperature and atmospheric Pressure. It is 

observed that the first minimum on the curve of 

mutual information versus time delay occurs at 

τ ≥ 54, τ ≥ 66 and τ ≥ 65 which are the suitable 

choices of time delay for relative humidity, air 

temperature and atmospheric pressure, 

respectively. Fig. 3 shows the plot of the 

percentage of the false nearest neighbour 

(FNN) versus the embedding dimension (𝑚). 

The proper reconstruction of the state space 

from the available data is essential in modelling 

and prediction to successfully estimate the 

invariant properties of the embedded attractor ( 

Matilla-García, et al., 2021). The choice of the 

embedding dimension is essential in knowing 

the number of variables that can unfold the 

attractor in phase space and also, in extracting 

information about the system dynamics 

(Adeniji et al., 2019). If we embed the time 

series once (i.e., into two dimensions) using 

some time delay, then we can use the 

coordinates of those data points to examine 

whether the distance between them has 

changed appreciably. The coordinates of those 

data points can be used to determine whether 

there has been a discernible change in the 

distance between them if we embed the time 

series once (i.e., into two dimensions) using a 

https://www.researchgate.net/profile/Tobias-Braun-7?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://sciprofiles.com/profile/106030?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name
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time delay. False neighbours are identified 

when the distance between neighbours varies 

noticeably after embedding; this suggests that 

more embedding of the data is required. The 

attractor's shape remains unaltered after 

embedding, indicating that the current 

embedding size is enough, and they are referred 

to as true neighbours if their distance does not 

change significantly. This can be carried out for 

progressively increasing embedding 

dimensions 𝑚, and we select a value for 𝑚 at 

the point where either following embeddings 

remain unchanged or the number of FNN 

reduces to zero (Wallot and and Mønster, 

2018). The suitable choices of the false nearest 

neighbour depicted in Fig. 2 for relative 

humidity, air temperature and atmospheric 

pressure are dimensions 𝑚 ≥ 10, 𝑚 ≥ 7 and 𝑚 

≥ 14, respectively.  

 
Fig.  1: Power spectral density in January for (a) relative humidity, (b) air temperature (c) 

atmospheric pressure, and December for (d) relative humidity (e)air temperature (f) 

atmospheric pressure.  
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Fig.  2:  Average mutual information versus Time delay (τ). 

 

3.3 Recurrence Quantification Analysis 

(RQA) 
 

Several methods have been proposed for 

choosing the radius of the attractor.  A too-

small value allows no recurrent patterns, too 

large values may result in false recurrences 

(Ding, et al., 2008). Several rules of thumb 

have been proposed, such as a value 

corresponding to 1% of REC (Zbilut, et al., 

2002), 𝜀 = 0.1𝜎, where ε is the recurrence 

threshold,  𝜎 is the standard deviation of the 

time series, a value that does not exceed 10% 

of the mean or the maximum of the phase space 

(Ding, et al., 2008; Schinkel, et al., 2008). In 

this study, the method of 5-6% of the maximal 

space diameter of the attractor is chosen for the 

recurrence threshold suggested in Majid et al., 

2023. The recurrence threshold is chosen to be 

0.05𝑑𝐴 ≤  𝜀 ≤  0.06𝑑𝐴  where ε is the 

recurrence threshold, and 𝑑𝐴  is the maximum 

attractor diameter. Euclidean norm is used for 

the recurrence quantifiers. 

RQA values are displayed in Table 1, which 

shows the values of the divergence for the 

twelve months ranging from 0.0909 to 0.5000 

for relative humidity, 0.003802 to 0.017289 for 

air temperature and 0.05 to 0.333333 for 

atmospheric pressure. Determinism 

(predictability) values range from 0.0372671 to 

0.322709 for relative humidity, 0.942476 to 

0.972998 for air temperature, and 0.132972 to 

0.658588 for atmospheric pressure, 

respectively. 

From the bar chart in Fig.  4, we observed that 

there is evidence of deterministic chaos and 

fluctuation in the dynamical behaviour of 

relative humidity, air temperature and 

atmospheric pressure. The highest chaoticity is 

exhibited in relative humidity, followed by 

atmospheric pressure while air temperature 

exhibited the lowest throughout the year. The 

high chaoticity exhibited in relative humidity is 

attributed to the high concentration of water 

vapor which also increases the complexity of 

the troposphere.  The variations in chaoticity 

are linked to the dynamical transitions caused 

by different changes in climate and 

characteristics of intermittence in the 

troposphere. It could also be attributed to the 

fact that West Africa is convective, especially 

with precipitation and intense rain rates 

provided by the mesoscale convective system 

according to Kof et al., 2014. 

 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/western-africa
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/convective-system
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Fig.  3:  Percentage of false nearest neighbour versus embedding dimension (𝒎) for (a) 

relative humidity (b) atmospheric pressure (c) air temperature. 

From the bar chart in Fig.  5, there is evidence 

of determinism (DET) in the dynamical 

behaviour of relative humidity, air temperature 

and atmospheric pressure throughout the year. 

The highest determinism (predictability) is 

observed in air temperature, followed by 

atmospheric pressure while the lowest is 

observed in relative humidity.  The highest 

determinism observed in air temperature 

implies a high length of prediction of the future 

evolution of the dynamics underlying air 

temperature, followed by atmospheric pressure 

while the lowest is observed in relative 

humidity. From the quantification analysis 

using RQA the underlying dynamics of relative 

humidity, air temperature and atmospheric 

pressure are classified as either quasi-periodic 

or low-dimensional chaotic. 
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Table 1: Recurrence quantifiers for relative humidity, air temperature, and atmospheric 

pressure. 
 

Month Relative Humidity Air temperature Atmospheric pressure 

DIV DET DIV DET DIV DET 

Jan 0.333333 0.147436 0.004557 0.970917 0.142857 0.28953 

Feb 0.25 0.179431 0.009744 0.962231 0.25 0.132972 

Mar 0.5 0.0372671 0.007242 0.942476 0.166667 0.262402 

Apr 0.333333 0.194805 0.005545 0.960653 0.083333 0.486576 

May 0.5 0.081081 0.003802 0.968707 0.076923 0.487591 

Jun 0.090909 0.268501 0.005449 0.967549 0.142857 0.512392 

Jul 0.090909 0.322709 0.010481 0.972924 0.05 0.658588 

Aug 0.25 0.13289 0.012594 0.947748 0.1 0.390265 

Sep 0.083333 0.317378 0.008592 0.95958 0.066667 0.542105 

Oct 0.333333 0.096491 0.005603 0.947208 0.25 0.270627 

Nov 0.166667 0.169912 0.017289 0.967398 0.333333 0.209627 

Dec 0.2 0.236464 0.012123 0.972998 0.2 0.358283 

 

 
Fig.  4: Divergence (Chaoticity) for the relative humidity, air temperature and atmospheric 

pressure 
 

 
Fig.  5:  Determinism (DET) for the relative humidity, air temperature and atmospheric 

pressure 
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4.0  Concluson 
 

The analysis of atmospheric temperature, 

pressure, and humidity data from Lagos, 

Nigeria revealed evidence of both deterministic 

and chaotic behaviour within these variables. 

Deterministic behaviour was most prominent 

in air temperature, indicating a greater degree 

of predictability compared to relative humidity 

and atmospheric pressure. Conversely, relative 

humidity exhibited the highest level of 

chaoticity, signifying a more complex and 

unpredictable system. These findings point 

towards intricate underlying dynamics 

governing the troposphere in this region, likely 

influenced by factors such as its convective 

nature and frequent heavy precipitation events. 

This study provides a valuable starting point 

for further exploring the nonlinear dynamics of 

the troposphere. Future research efforts could 

benefit from: 

• Expanding the analysis to incorporate 

additional atmospheric variables for a 

more comprehensive understanding of 

tropospheric interactions. 

• Investigating the influence of seasonal 

variations on the observed dynamics 

using data spanning multiple years. 

• Employing more advanced techniques, 

such as machine learning algorithms, to 

enhance the prediction capabilities for 

atmospheric processes. By 

incorporating these recommendations, 

future studies can delve deeper into the 

complexities of the troposphere and 

contribute to improved weather 

forecasting models. 
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