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Abstract: The integration of memristors and 

meminductors into fractional-order chaotic 

systems has opened up new avenues for 

exploring complex dynamics. This research 

investigates difference synchronization in 

memristive and meminductive fractional-order 

chaotic systems evolving from diverse initial 

conditions. Active control techniques are 

employed to achieve difference 

synchronization among three such systems. 

Numerical simulations validate the 

effectiveness of the active control techniques. 

This study contributes to the understanding of 

synchronization in complex systems and offers 

insights into potential applications. 
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1.0 Introduction 
 

Synchronization expresses a notion of strong 

correlations between coupled systems. In its 

most elementary and intuitive form, 

synchronization refers to the tendency to have 

the same dynamic behaviour. The 

synchronization of chaotic systems is the 

tendency of coupled systems to undergo 

closely related motions (Pecora and Carroll, 

1990). It can also be seen as a way to couple 

chaotic systems to let them achieve identical 

dynamics asymptotically with time (Hegazi et 

al, 2013). Types of chaos synchronization 

developed by researchers include complete 

synchronization (Razminia and Baleanu, 

2013), generalized synchronization (Yang et 

al, 2016), phase synchronization (Yu et al, 

2011), lag synchronization (Sourav et al, 

2012), anti-phase synchronization (Taghvafard 

and Erjaee, 2011), and projective 

synchronization (Li et al, 2006). In the course 

of further research works, some 

synchronization schemes such as difference 

synchronization (Dongmo et al, 2018), 

combination synchronization (Ojo et al, 2022), 

combination–combination (or dual 

combination) synchronization (Ojo et al, 2016; 

Junwei et al, 2015), compound-combination 

synchronization (Ojo et al, 2015), and double 

compound synchronization (Al Themairi et al, 

2022) have been discovered. Moreover, in 

secure communication, it is realized that 
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combination synchronization can be used to 

split signals into several parts, each part loaded 

in different chaotic drive systems, which 

provides better security to the transmitted 

signals.  

Fractional-order systems have been shown to 

exhibit more complex dynamics than integer-

order systems, and hence, studying the 

synchronization of fractional-order chaotic 

systems gives a better understanding of the 

complex dynamical behaviour of coupled 

systems. The study of synchronization of 

fractional-order chaotic systems is a relatively 

new and emerging field that has gained a lot 

of attention in recent years (Borah and Roy, 

2017). The exponential growth in research 

works on the synchronization of fractional 

order chaotic is due to its potential real-life 

applications in secure communication, image 

encryption, chaos-based cryptography, and 

many more (Serdouk et al, 2023; Tang et al, 

2022; Mitkowski et al, 2022; Xinyu et al, 2021; 

Borah and Roy, 2020; Yang et al, 2016). As a 

result of the potential applications of 

synchronization of fractional-order chaotic 

systems, many synchronization methods, 

types, and schemes have been developed as it 

is done for integer order systems (Zhang and 

Wu, 2020; Wang, 2018; Ogunjo et al, 2017; 

Song et al, 2017; Zhou and Zhu, 2017; Wang, 

et al, 2016). Despite several reported papers on 

the synchronization of fractional order chaotic 

systems, none have been reported on the 

difference synchronization of chaotic 

memristive-meminductive systems to the 

best of our knowledge. 
 

2. 0 Definition of fractional order 

differential model 
 

Fractional order refers to a mathematical 

concept that involves using non-integer 

exponents or orders in equations. The 

Grunwald–Letnikov definition of fractional 

order systems, the fractional order derivative 

of order 𝑞 can be written as (Podlubny, 

1999). 

 𝐷𝑡
𝑞𝑓(𝑡) =  Lim

ℎ→0

1

ℎ𝑞
∑ (−1)𝑗 (

𝑞
𝑗 ) 𝑓(𝑡 − 𝑗ℎ)∞

𝑗=0                                             

where 0 ˂ 𝑞 ˂ 1 and, 𝑡 is the integration time, 

ℎ is the time step.  

The binomial coefficients can be written in 

terms of the Gamma function as: 

(
𝑞
𝑗 ) =  

Γ(𝑞 + 1)

Γ(𝑗 + 1)Γ(𝑞 − 𝑗 + 1)′
 

The Riemann Liouville definition of 

fractional derivative is given as: 

        𝐷𝑡
𝑞𝑓(𝑡) =

1

Γ(𝑛−𝑞)

𝑑𝑛

𝑑𝑡𝑛 ∫
𝑓(𝑇)

(𝑡−𝑇)𝑞−𝑛+1

𝑡

𝑎
𝑑𝑇                     

where 𝑛 − 1 < 𝑞 ≤ 𝑛, 𝑛 𝜖 𝑁, for 𝑞 𝜖 (0,1). 

The Caputo fractional derivatives can be 

written as: 

               𝐷𝑡
𝑞𝑓(𝑡) =

1

Γ(𝑛−𝑞)
∫

𝑓(𝑛)(𝑇)

(𝑡−𝑇)𝑞−𝑛+1 𝑑𝑇
𝑡

0
  

where 𝑛 − 1 < 𝑞 ≤ 𝑛, 𝑛 𝜖 𝑁, for 𝑞 𝜖 (0,1). T 

is the integration variable. 

Fractional-order mathematical models have 

limitless applications in various disciplines 

such as physics, chemistry, medicine, 

engineering, economics and many more 

(Boulaaras et al, 2023; Mitkowski et al, 2022; 

Valentim et al, 2021; Magin, 2010). 

 
 

3.0 Description of difference 

synchronization scheme in fractional order 

systems 
 

This section gives a generalized mathematical 

formulation of difference synchronization 

between two drives and one response 

fractional order system. Consider the 

following fractional order systems 

𝐷𝑡
∝𝑖

𝑝𝑖 = 𝑓1(𝑝)             (1) 

𝐷𝑡
∝𝑖

𝑤𝑖 = 𝑓2(𝑤)               (2) 

𝐷𝑡
∝𝑖

𝑞𝑖 = 𝑓3(𝑞𝑖) + 𝑈(𝑝, 𝑤, 𝑞)        (3) 

where  𝑝 = (𝑝1, 𝑝2, , … , 𝑝𝑛𝑖)
𝑇 ; 𝑤 =

(𝑤1, 𝑤2, , … , 𝑤𝑛2)𝑇; 𝑞 = (𝑞1, 𝑞2, , … , 𝑞𝑛3)𝑇 are 

the state variables of the drive systems and the 

response system. Furthermore, 𝑓1: ℝ𝑛1 →
ℝ𝑛3; , 𝑓2: ℝ𝑛1 → ℝ𝑛3; , 𝑓3: ℝ𝑛1 → ℝ𝑛3 are the 

continuous state vector functions and 

𝑈(𝑝, 𝑤, 𝑞): ℝ𝑛1 × ℝ𝑛2 × ℝ𝑛3 → ℝ𝑛3 are the 

control functions to be designed via the 

active control technique.   
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Definition: if there exit nonzero matrices 

𝐴, 𝐵, 𝐶 in equations (1), (2), and (3) 

respectively such that  lim
𝑡→∞

‖𝐶𝑞 − (𝐵𝑤 −

𝐴𝑝)‖ = 0 where ‖. ‖ represent the norm of 

the matrix 
 

4. 0 Model description 

 

Based on the proposed memristor and 

meminductor models, a simple chaotic 

circuit that contains only three- element 

model where the memristor and 

meminductor are in parallel with a capacitor 

(Borah, 2021): 

𝐷𝑡
∝1

𝑥1 = −(𝑎𝑥2
2 − 𝑏)𝑥1 − (𝛾𝑥4 + 𝛽)𝑥3𝐷𝑡

𝛼2
𝑥2 = −𝑐𝑥1 − 𝑑𝑥2 + 𝑒𝑥1

2𝑥2 

𝐷𝑡
𝛼3

𝑥3 = 𝑥1 

                                                     𝐷𝑡
∝4

𝑥4 = 𝑥3                    (1) 

 

where 𝑥1 = the voltage across the capacitor.  

𝑥2= the state variable of the memristor.  

𝑥4= the state variable of the meminductor. 

α = is the bifurcation parameter and in the 

range. α to [0.94, 1]. 

The chaotic phase attractor of the 

memristive-meminductive chaotic systems 

(1) is depicted in Fig. 1 

             

 
 

Fig. 1: Visualization display of phase portrait of the chaotic attractor of the memristive-

meminductive chaotic systems using system parameter set (a = 0.1, b = 0.4, c = 0.2, d 

= 0.1, e = 4, γ = 0.1, β =3 with the initial conditions (1, 1.8, 1, 1). 

 

5.0  Difference synchronization of four fractional order memristive-meminductive  

chaotic systems 
 

The memristive-meminductive chaotic systems (2) and (3) are taken as the drive systems 

and the memristive-meminductive chaotic system (4) is taken as the response system to 
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achieve difference synchronization. 

𝐷𝑡
∝1

𝑥1 = −(𝑎𝑥2
2 − 𝑏)𝑥1 − (𝛾𝑥4 + 𝛽)𝑥3 

𝐷𝑡
𝛼2

𝑥2 = −𝑐𝑥1 − 𝑑𝑥2 + 𝑒𝑥1
2𝑥2 

𝐷𝑡
𝛼3

𝑥3 = 𝑥1 

                                      𝐷𝑡
∝4

𝑥4 = 𝑥3                                                (2)     

𝐷𝑡
∝1

𝑦1 = −(𝑎𝑦2
2 − 𝑏)𝑦1 − (𝛾𝑦4 + 𝛽)𝑦3 

𝐷𝑡
𝛼2

𝑦2 = −𝑐𝑦1 − 𝑑𝑦2 + 𝑒𝑦1
2𝑦2 

𝐷𝑡
𝛼3

𝑦3 = 𝑦1 

         𝐷𝑡
∝4

𝑦4 = 𝑦3                                                       (3) 

 

𝐷𝑡
∝1

𝑧1 = −(𝑎𝑧2
2 − 𝑏)𝑧1 − (𝛾𝑧4 + 𝛽)𝑧3 + 𝑢1 

𝐷𝑡
𝛼2

𝑧2 = −𝑐𝑧1 − 𝑑𝑧2 + 𝑒𝑧1
2𝑧2 + 𝑢2 

𝐷𝑡
𝛼3

𝑧3 = 𝑧1 + 𝑢3 

                                                          𝐷𝑡
∝4

𝑧4 = 𝑧3 + 𝑢4                                               (4) 

where u1, u2, u3, and u4 are the controllers to be designed. 

The active control technique is utilized to realize the difference synchronization of these 

identical chaotic systems. The error system is      defined as follows: 

𝑒1 = (𝑥1 − 𝑦1) − 𝑧1 

𝑒2 = (𝑥2 − 𝑦2) − 𝑧2 

𝑒3 = (𝑥3 − 𝑦3) − 𝑧3 

                                                         𝑒4 = (𝑥4 − 𝑦4) − 𝑧4                                          (5) 

Substituting equations (2)-(4) into fractional order time derivative of equation (5) yields the 

following result the error system defined in equation (6)-(9) 

𝐷𝑡
∝1

𝑒1 = 𝐷𝑡
∝1

𝑥1 − 𝐷𝑡
∝1

𝑦1 − 𝐷𝑡
∝1

𝑧1 

                                   𝐷𝑡
∝1

𝑒1 = 𝑏𝑒1 − 𝛽𝑒3 − 𝑢1 + 𝑓1                                                (6) 

where, 𝑓1 = −𝑎𝑥2
2𝑥1 − 𝛾𝑥4𝑥3 + 𝑎𝑦2

2𝑦1 + 𝛾𝑦4𝑦3 + 𝑎𝑧2
2𝑧1 + 𝛾𝑧4𝑧3  

 

𝐷𝑡
∝2

𝑒2 = 𝐷𝑡
∝2

𝑥2 − 𝐷𝑡
∝2

𝑦2 − 𝐷𝑡
∝2

𝑧2 

                                      𝐷𝑡
∝2

𝑒2 = −𝑐𝑒1 − 𝑑𝑒2 − 𝑢2 + 𝑓2                                           (7) 

where 𝑓2 = 𝑒𝑥1
2𝑥2 − 𝑒𝑦1

2𝑦2 − 𝑒𝑧1
2𝑧2  

        

𝐷𝑡
∝3

𝑒3 = 𝐷𝑡
∝3

𝑥3 − 𝐷𝑡
∝3

𝑦3 − 𝐷𝑡
∝3

𝑧3 

                                               𝐷𝑡
∝3

𝑒3 = 𝑒1 − 𝑢3                                                                  (8) 

𝐷𝑡
∝4

𝑒4 = 𝐷𝑡
∝4

𝑥3 − 𝐷𝑡
∝4

𝑦3 − 𝐷𝑡
∝4

𝑧3 

     𝐷𝑡
∝4

𝑒4 = 𝑒3 − 𝑢4                                                               (9) 

In order to eliminate the nonlinear terms, the control functions are redefined as follows: 

 

                          𝑢1 = 𝑓1 − 𝑣1 

                          𝑢2 = 𝑓2−𝑣2                                                                                           (10) 

                          𝑢3 = −𝑣3 

                          𝑢4 = −𝑣4 

where 𝑉 = [𝑣1, 𝑣2, 𝑣3, 𝑣4 ]𝑇 can be defined as 𝑉 = (𝜆𝐼 − 𝐵)𝑒. Now, 𝜆 is the eigenvalues, 𝐼 is 
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the identity matrix, and 𝐵 is the coefficients matrix of the error state in equations (6)-(8) that 

are linear in 𝑒1, 𝑒2, 𝑒3, 𝑒4. So, 𝑉 is defined as follows: 

          [

𝑣1
𝑣2
𝑣3

𝑣4

] = [

𝜆 0 0 0
0 𝜆 0 0
0
0

0
0

𝜆 0
0 𝜆

] − [

𝑏 0 −𝛽 0
−𝑐 −𝑑 0 0
1
0

0
0

0 0
1 0

] [

𝑒1
𝑒2
𝑒3

𝑒4

]                                   (11) 

Substituting equations (10) into (11)  

𝑢1 = 𝑓1 − (𝜆 − 𝑏)𝑒1 − 𝛽𝑒3 

𝑢2 = 𝑓2 − 𝑐𝑒1 − (𝜆 + 𝑑)𝑒2 

𝑢3 = 𝑒1 − 𝜆𝑒3 

              𝑢4 = 𝑒3 − 𝜆𝑒4                   (12) 

To realize stable synchronization, 

eigenvalues 𝜆 is chosen such that the matrix 

in equation (10) is negative definite. Then, 

substitute equations (10) into (11) to obtain the 

desired control functions. The numerical 

results obtained from this analytical procedure 

is depicts in the Fig. 2 and 3 below. 

 
Fig. . 2: Dynamics of the state variables after the control function are applied at 𝒕 = 𝟓𝟎. 
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Fig. 3: Dynamics of the error variables when the control is applied at 𝒕 = 𝟓𝟎. 

 

The difference synchronization scheme is a 

newly introduced scheme which has been used 

to synchronize three integer-order chaotic 

systems but has not been applied to fractional-

order chaotic systems. In light of this, this 

research work applied the difference 

synchronization that was formerly developed 

for integer order nonlinear chaotic systems to 

fractional order systems and confirmed the 

effectiveness via numerical simulation. Having 

derived the analytical criteria via the active 

control, the analytical criteria were applied to 

three fractional order memristive-

meminductive chaotic systems evolving 

from different initial conditions, where one is 

regarded as the drive system and one as the 

response system. The system parameters are 

as follow (a = 0.1, b = 0.4, c = 0.2, d = 0.1, 

e = 4, γ = 0.1, β =3) with the initial 

conditions (1,1.8, 1,1) and (2, -1,1,2). The 

numerical simulations result in Fig.  2 shows 

that the system followed different 

trajectories when the control functions were 

deactivated for 0 < 𝑡 < 50. However, when 

the control functions were activated at 50 <
𝑡 < 100, both the drive and response 

systems achieved identical dynamics which 

is clear evidence of synchronization. Further 

evidence of difference synchronization is 

depicted in Fig.  3 where the error dynamics 

moved chaotically when the control 

functions were deactivated for 0 < 𝑡 < 50 

and then stabilized to zero when the control 

functions were activated for 50 < 𝑡 < 100. 

The analytical and numerical results confirm 

the achievement of difference 

synchronization in three fractional 

memristive-meminductive systems. 
 

6.0 Conclusion  
 

In conclusion, this research demonstrates the 

feasibility and effectiveness of achieving 

difference synchronization in memristive and 

meminductive fractional-order chaotic systems 

through active control techniques. By 

extending the concept of difference 

synchronization to fractional-order systems, 
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this study contributes to the growing body of 

knowledge on synchronization in complex 

dynamical systems. The numerical simulations 

validate the proposed method, showcasing the 

ability to synchronize chaotic systems evolving 

from different initial conditions. This research 

underscores the importance of exploring 

synchronization phenomena in fractional-order 

systems and highlights the potential 

applications of such synchronization in various 

fields including secure communication and 

chaos-based cryptography. 

In view of the above, we present the following 

recommendations  

(i) Experimental Validation: Future 

research should focus on 

experimentally validating the proposed 

synchronization scheme in real 

memristive-meminductive circuits. 

Experimental validation will provide 

more robust evidence of the 

effectiveness of the proposed approach 

and its applicability in practical 

systems. 

(ii) Extension to Multi-System 

Synchronization: Investigate the 

extension of the proposed difference 

synchronization scheme to synchronize 

multiple memristive-meminductive 

systems. Exploring synchronization 

among multiple chaotic systems can 

lead to insights into complex network 

dynamics and their applications in 

information processing and 

communication. 

(iii) Robustness Analysis: Conduct 

robustness analysis of the 

synchronization scheme against 

parameter variations, noise, and 

external disturbances. Understanding 

the robustness of synchronization in 

fractional-order chaotic systems will 

enhance its reliability and applicability 

in real-world scenarios. 

(iv) Exploration of Applications: Further 

explore potential applications of 

difference synchronization in 

fractional-order systems, particularly in 

secure communication, image 

encryption 
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