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Abstract: The paper discusses the convergence of 

Sinc collocation scheme for the solution of 

Fredholm integral equation of the second kind. A 

modified composite trigonometric function is 

employed as a variable transformation function 

for this procedure. We first show that the 

constructed variable transformation function 

decays exponentially and thus satisfies the 

conditions for the error bound associated with 

single exponential transformation functions. Next, 

the convergence analysis of the scheme showing 

exponential convergence is discussed. Finally, 

some numerical examples are presented to 

illustrate the efficiency and stability of the 

numerical scheme. 
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1.0 Introduction  

The Fredholm integral equations of the second 

kind frequently arise in the study of many 

physical and engineering problems covering 

fields like quantum mechanics, fluid dynamics, 

and signal processing. Obtaining the solution of 

these integral equations efficiently and accurately 

is crucial for advancing theoretical and applied 

research. One of the recent and promising 

approaches to address this challenge is the Sinc-

collocation method, which has garnered attention 

for its potential to deliver high precision with 

relatively low computational effort. 

The Sinc-collocation method is developed using 

the combination of Sinc function and a variable 

transformation function such as composite 

trigonometric functions. The scheme leverages 

the properties of the Sinc function which is known 

for its excellent approximation capabilities. This 

procedure provides an efficient numerical method 

and offers a robust framework for tackling 

Fredholm integral equations of the second kind.  

Recently, there has been a steady and growing 

interest in the study of integral equations based on 

collocation methods. The efficiency of Sinc 

methods in approximating functions with rapid 

convergence rates was highlighted by Stenger 

(2011). This has also served as the basis for the 

development of collocation schemes with 

different variable transformation functions and 

the rise of new research with a focus on 

collocation points Okayama (2023). New studies 

have explored the enhancements achievable 

through composite trigonometric functions John 

et al (2024), it was also shown to be a flexible and 

powerful means to represent complex periodic 

behaviours inherent in many physical systems 

(Wei & Yang, 2019). Furthermore, the expansion 

of the scheme into other research areas as 

witnessed in Zabihi, F. (2024) is promising, thus 
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pointing to a greater involvement of the scheme in 

the newer area of science and engineering. 

The convergence analysis of the Sinc-collocation 

scheme based on composite trigonometric 

functions, is a critical area of study. It provides the 

theoretical and practical validation for the method 

by showing that the numerical solutions converge 

to the exact solution with the increase in a number 

of collocation points. In earlier research, the 

convergence of the collocation scheme was 

considered by Maleknejad et al 2011 for 

Fredholm Integral equations of the second kind 

based on the tanh function. Both Zarebnia & 

Rashidinia (2010) and John (2016) studied the 

convergence of the collocation scheme for 

Volterra integral equations of the second kind 

with the tanh function employed as a variable 

transformation function. Zhang et al. (2022) in 

their recent investigations have demonstrated the 

potential of this approach, he also highlighted its 

applicability to a wide range of problems with 

varying degrees of complexity. 

This paper discusses the convergence properties 

of the Sinc-collocation scheme with composite 

trigonometric functions for solving Fredholm 

integral equations of the second kind. We aim to 

contribute to the broader understanding and 

application of these numerical techniques in 

solving integral equations by building on recent 

advancements and providing a rigorous but 

comprehensible analysis of the scheme.  

 
 

In this paper, the convergence of the collocation scheme  

{𝑤𝑎(𝑥𝑘) − 𝐾𝐹[𝑤𝑎](𝑥𝑘)}𝑢−𝑁−1 + ∑ 𝛿𝑘𝑗 − ℎ𝑘(𝑥𝑘, 𝑡𝑗)𝜑′(𝑗ℎ)𝑢𝑗

𝑁

𝑗=−𝑁

+ {𝑤𝑏(𝑥𝑘) − 𝐾𝐹[𝑤𝑏](𝑥𝑘)}𝑢𝑁+1

= 𝑔(𝑥𝑘)                                                                                                              (1) 

 for the approximate solution 𝑢 of Fredholm linear integral equation of the second kind 

𝑢(𝑥) = 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡 +  𝑔(𝑥),
𝑏

𝑎

 𝑎 ≤ 𝑥 ≤ 𝑏                                     (2) 

was considered; where 𝑘(𝑥, 𝑡), 𝑔(𝑥) are smooth functions and 𝜆 is a scalar.  

We will employ in this work a composite trigonometric function, John et al (2024) 

𝑥 = 𝜑(𝑡) = 𝑠𝑖𝑛 (𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑒𝑡

√𝛼
)) =

1

√1 + 𝛼𝑒−2𝑡
, 𝑡 ∈ (−∞, ∞)           (3) 

as a variable transformation function in the Sinc collocation scheme for the solution of linear Fredholm 

integral equations of the second kind (2). 

 

2.0  Preliminaries 

2.1 Approximation on the Real Line 
 

Let the trapezoidal rule for approximation on the real ℝ be defined by 

𝑇ℎ = ℎ ∑ 𝐹(𝑗ℎ), ℎ > 0                                                                                                 (4)

∞

𝑗= −∞

 

then for the integral  

𝐼 = ∫ 𝐹(𝑢)𝑑𝑢                                                                                                                     (5)  
∞

−∞

 

of the function F(u) is defined on ℝ as 

      𝐹(𝑢) ≈ ∑ 𝐹(𝑗ℎ)𝑆(𝑗, ℎ)(𝑢),    𝑢 ∈ ℝ                                                                    (6)  

𝑁

𝑗=−𝑁
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we have 

∫ 𝐹(𝑢)𝑑𝑢 ≈ ∑ 𝐹(𝑗ℎ) ∫ 𝑆(𝑗, ℎ)(𝑢)𝑑𝑢 = ℎ ∑ 𝐹(𝑗ℎ).                                  (7)

𝑁

𝑗=−𝑁

∞

−∞

𝑁

𝑗=−𝑁

∞

−∞

 

The function 𝑆(𝑗, ℎ)(𝑡) in (7) is known as Sinc function Stenger (1993) 

and defined by the formula 

𝑆(𝑗, ℎ)(𝑡) = 𝑆 (
𝑡

ℎ
− 𝑗) =  

𝑠𝑖𝑛𝜋(
𝑡
ℎ

− 𝑗)

𝜋(
𝑡
ℎ

− 𝑗)
 , 𝑗 = 0, ±1, ±2, …                                        (8)  

Furthermore, given that 𝑡𝑘 = 𝑘ℎ, 

𝑆(𝑗, ℎ)(𝑘ℎ) = {
0, 𝑘 ≠ 𝑗
1, 𝑘 = 𝑗

. 
 

2.2 Approximation on a Finite Interval 𝜦 = (𝒂, 𝒃) 
 

On the finite interval (𝑎, 𝑏), equation (3) has the representation 

𝑥 = 𝜑(𝑡) = 𝑎 +
𝑏 − 𝑎

√1 + 𝛼𝑒−2𝑡
,                                                                                        (9) 

and satisfies the map 𝜑(−∞, ∞) → (𝑎, 𝑏), with  

    𝑥′ = 𝜑′(𝑡) =
(𝑏 − 𝑎)𝛼𝑒−2𝑡

(1 + 𝛼𝑒−2𝑡)
3

2⁄
                                                                                    (10) 

and  

        𝑡 = 𝜑−1(𝑥) =
1

2
𝑙𝑜𝑔 (

𝛼(𝑥 − 𝑎)2

(𝑏 + 𝑥 − 2𝑎)(𝑏 − 𝑥)
).                                                 (11) 

 

Considering equations (4) and (7) above, the integral 

𝐼 = ∫ 𝑓(𝑥)𝑑𝑥 = ∫ 𝑓(𝜑(𝑡)𝜑′(𝑡)𝑑𝑡 ≈   ℎ ∑ 𝑓(𝜑(𝑗ℎ))𝜑′(𝑗ℎ).

𝑁

𝑗=−𝑁

              (12)
∞

−∞

𝑏

𝑎

 

Also, from (10), we note that 

𝜑′(𝑡) =
(𝑏 − 𝑎)𝛼𝑒−2𝑡

(1 + 𝛼𝑒−2𝑡)
3

2⁄
= 𝑂(exp(−2(1 − 𝜖)𝑡)) as 𝑡 → ∞.                             (13) 

0 < 𝜖 < 1. 
Following Mori & Mohammad (2003), we assume that 𝑓(𝑥) satisfies 

𝑓(𝑥) = {
𝑂((𝑥)𝛼−1) 𝑎𝑠 𝑥 → 0

𝑂((1 − 𝑥)𝛼−1) 𝑎𝑠 𝑥 → 1 
for 𝛼 > 0,                                                    (14) 

and from (13), we have, 

𝑓(𝜑(𝑡))𝜑′(𝑡) = 𝑂(exp(−2(𝛼 − 𝜖)|𝑡|)) as 𝑡 → ±∞                                     (15) 

Definition 2.1 

A function 𝑓 is said to decay single exponentially with respect to a conformal map φ if there exist 

positive constants  and C such that 
|𝑓(φ(t))φ′(𝑡)| ≤ 𝐶𝑒𝑥𝑝(−𝛼|𝑡|)                                                                              

for all 𝑡 ∈  ℝ and scalar 𝛼. 
Hence, we consider the variable transformation function φ(t) to be a single exponential function. 
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2.3 Convergence Theorems for Single Exponential Sinc Approximation 

Definition 2.1 

Let 𝑑 > 0, then 𝐷𝑑 denotes a strip region of width 2𝑑 defined by 𝐷𝑑 = {𝑧 ∈ 𝐶: |𝑖𝑚 𝑧| < 𝑑}. 

 

Definition 2.2 Okayama et al (2011) 

Let α be a positive constant, and let 𝐷 be a bounded and simply connected domain which satisfies 

(𝑎, 𝑏)  ⊂  𝐷. Then 𝐿𝛼(D) denotes the family of functions 𝑓 that satisfy the following conditions: (i) 𝑓 

is analytic in 𝐷; (ii) there exists a constant 𝐶 such that for all 𝑧 in 𝐷 

                        |𝑓(𝑧)| ≤  𝐶|𝑄(𝑧)|𝛼                                                                                           (16)  
where the function 𝑄 is defined by 

𝑄(𝑧)  =  (𝑧 −  𝑎)(𝑏 −  𝑧). 
For the implementation of the single exponential transformation in the above Definition 2.2, the 

domain 𝐷 considered to be the region 𝜑(𝐷𝑑) = {𝑧 = 𝜑(𝜇): 𝜇 ∈ 𝐷𝑑} such that 

𝜑(𝐷𝑑) = {𝑧 ∈ 𝐶: |arg 
1

2
𝑙𝑜𝑔 (

𝛼(𝑥 − 𝑎)2

(𝑏 + 𝑥 − 2𝑎)(𝑏 − 𝑥)
)| < 𝑑}.                                    (17)  

 

Theorem 1 Stenger (1993) 

Let 𝑓 ∈ 𝐿𝛼𝜑(𝐷𝑑) for 𝑑 with 0 < 𝑑 < 𝜋,  let 𝑁 be a positive integer and let ℎ be selected by the 

formula 

ℎ = √
𝜋𝑑

𝛼𝑁
 

then there is a constant C independent of 𝑁, such that 

max
𝑎≤𝑥≤𝑏

|𝑓(𝑥) − ∑ 𝑓(𝜑(𝑗ℎ)𝑆(𝑗, ℎ)({𝜑}−1(𝑥))

𝑁

𝑗=−𝑁

| ≤ 𝐶√𝑁𝑒−√𝜋𝑑𝛼𝑁  .                         (18) 

The choice of ℎ is optimal and satisfies (18) based on Sugihara (2002). 

Theorem 2 Okayama et al (2011) 

Let (𝑓𝑄) ∈ 𝐿𝛼𝜑(𝐷𝑑) for 𝑑 with 0 < 𝑑 < 𝜋,  let 𝑁 be a positive integer and let ℎ be selected by the 

formula 

ℎ = √
𝜋𝑑

𝛼𝑁
 

then there is a constant 𝐶 independent of 𝑁, such that 

 

|∫ 𝑓(𝑡)𝑑𝑡
𝑏

𝑎

−  ℎ ∑ 𝑓(𝜑(𝑗ℎ)𝑆(𝑗, ℎ)({𝜑}′(𝑗ℎ))

𝑁

𝑗=−𝑁

| ≤ 𝐶𝑒−√𝜋𝑑𝛼𝑁                                 (19) 

 

 

Definition 2.3 Okayama et al (2011) 

Let 𝐷 be a bounded and simply connected domain, then we denote by 𝐻𝐶(𝐷) the family of all 

functions that are analytic in 𝐷 and continuous in 𝐷̅. The function space is complete with the norm 
‖∙‖𝐻𝐶(𝐷) defined by 
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               ‖𝑓‖𝐻𝐶(𝐷) = max
𝑧∈𝐷̅

|𝑓(𝑧)|.                                                                                            (20)   

Definition 2.4 Stenger (2000) 

Let 𝛼 be a constant with 0 < 𝛼 < 1 and let 𝐷 be a bounded and simply connected domain such that 

(𝑎, 𝑏) ⊂ 𝐷. Then the space 𝑀𝛼(𝐷) consists of all functions 𝑓 that satisfies the following conditions 

(i) 𝑓 ∈ 𝐻𝐶(𝐷); 
(ii) there exists a constant C for all 𝑧 in 𝐷 such that 

 

for 

 𝜌(𝑧) = exp (𝜑−1(𝑧), 
 

|𝑓(𝑧) − 𝑓(𝑎)| = 𝑂(|𝜌(𝑧)|𝛼) 𝑎𝑠 𝑧 → 𝑎, 
                        |𝑓(𝑧) − 𝑓(𝑏)| = 𝑂(|𝜌(𝑧)|𝛼) 𝑎𝑠 𝑧 → 𝑏.                                (21) 

According to Stenger (1993), the translated function 

        𝑇[𝑓](𝑥) = 𝑓(𝑥) −
𝑓(𝑎) + 𝜌(𝑥)𝑓(𝑏)

1 + 𝜌(𝑥)
∈ 𝐿𝛼(𝐷)                                                         (22)   

 

if 𝑓 ∈ 𝑀𝛼(𝐷) and the approximation 

𝑇[𝑓](𝑥) ≈ ∑ 𝑇[𝑓](𝜑(𝑗ℎ)𝑆(𝑗, ℎ)(𝜑−1(𝑥)).

𝑁

𝑗=−𝑁

                                                                (23) 

Combining equations (22) and (23), 

𝑓(𝑥) ≈ 𝑃𝑁[𝑓](𝑥) = ∑ 𝑇[𝑓](𝜑(𝑗ℎ)𝑆(𝑗, ℎ)(𝜑−1(𝑥)) +
𝑓(𝑎) + 𝜌(𝑥)𝑓(𝑏)

1 + 𝜌(𝑥)
.

𝑁

𝑗=−𝑁

      (24) 

Let the auxiliary basis function be defined by 

𝜔𝑎(𝑥) =
1

1 + 𝜌(𝑥)
, 𝜔𝑏(𝑥) =

𝜌(𝑥)

1 + 𝜌(𝑥)
,                                                                         (25) 

then the generalized approximation to 𝑓(𝑥) is of the form 

𝑃𝑁[𝑓](𝑥) = 𝑓(𝑎)𝜏𝑎(𝑥) + ∑ 𝑇[𝑓](𝜑(𝑗ℎ)𝑆(𝑗, ℎ)(𝜑−1(𝑥)) + 𝑓(𝑏)𝜏𝑏(𝑥).           (26)

𝑁

𝑗=−𝑁

 

Theorem 3 

Let 𝑓 ∈ 𝑀𝛼(𝜑(𝐷𝑑))for 𝑑 with 0 < 𝑑 < 𝜋, let 𝑁 be a positive integer and ℎ defined as 

ℎ = √
𝜋𝑑

𝛼𝑁
 

then there exists a constant C independent of 𝑁 such that 

           ‖𝑓 − 𝑃𝑁𝑓‖𝐶([𝑎,𝑏]) ≤ 𝐶√𝑁𝑒−√𝜋𝑑𝛼𝑁                                                                         (27)  

Remark: this condition holds since 𝜑 is a single exponential function. 

 

3.0 The Sinc Collocation Method 

3.1 Construction of the Sinc Collocation Scheme 
 

Let 𝑢(𝑥) ∈ 𝑀𝛼(𝜑(𝐷))  and 𝑢𝑁(𝑥) be the exact and approximate solution of (1), while 𝑢(𝑥𝑗) and 𝑢𝑗  

are the exact and approximate solutions at a sinc point 𝑥𝑗 respectively. 
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According to Okayama et al (2011),    

𝑢(𝑥) = 𝑢(𝑥−𝑁−1)𝑤𝑎(𝑥) + ∑ 𝑢(𝑥𝑗)𝑆(𝑗, ℎ)({𝜑}−1(𝑥)) + 𝑢(𝑥𝑁+1)𝑤𝑏(𝑥)                       (28)

𝑁

𝑗=−𝑁

  

will satisfy (1) at Sinc points of 𝜑, since it is a linear combination of the sinc functions 𝑆(𝑗, ℎ)(𝑡) and 

the auxiliary basis functions 𝜔𝑎(𝑥) and 𝜔𝑏(𝑥). Here, the basis functions are considered to be fixed and 

the collocation points are defined as 

             𝑥𝑖 = {
𝑎, 𝑖 = −𝑁 − 1
𝜑(𝑖ℎ), 𝑖 = −𝑁 … 𝑁
𝑏, 𝑖 = 𝑁 + 1.

                                                                                               (29) 

With the collocation points defined as above, we set the approximate solution  𝑢 of (2) as 

𝑢𝑁(𝑥) = 𝑢−𝑁−1𝑤𝑎(𝑥) + ∑ 𝑢𝑗𝑆(𝑗, ℎ)({𝜑}−1(𝑥)) + 𝑢𝑁+1𝑤𝑏(𝑥)                                 (30)

𝑁

𝑗=−𝑁

 

and the integral in (2) becomes 

∫ 𝑘(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝑏

𝑎

= 𝐾𝑁[𝑤𝑎](𝑥)𝑢−𝑁−1 + ℎ ∑ 𝑘(𝑥, 𝑡𝑗)𝜑′(𝑗ℎ)𝑢𝑗

𝑁

𝑗=−𝑁

+ 𝐾𝑁[𝑤𝑏](𝑥)𝑢𝑁+1

+ 𝑂𝑒−
𝜋𝑑
ℎ                                                                                                         (31) 

Noting that 𝑆(𝑗, ℎ)({}−1(𝑥𝑘) = 𝑆(𝑗, ℎ)({}−1(𝜑(𝑘ℎ)) = 𝑆(𝑗, ℎ)(𝑘ℎ) = 𝛿𝑘𝑗. 

with 

𝐾𝑁[𝑓](𝑥) = ℎ ∑ 𝑘(𝑥, 𝑡𝑗)𝑓(𝑥𝑗)𝜑(𝑗ℎ)

𝑁

𝑗=−𝑁

.                                                                            (32)      

Using (30) - (32) in (2), we obtain the collocation formula (1) is obtained as 

(2𝑁 + 3)  × (2𝑁 + 3) system of linear equations,   

                                                        (𝐸𝑛 − 𝐾𝑛)𝑢𝑛 = 𝑔𝑛                                                                       (33) 

in compact form 

with 

𝐸𝑛 = 𝑤𝑎(𝑥𝑘) + ∑ 𝑆(𝑗, ℎ)({𝜑}−1(𝑥𝑘)) + 𝑤𝑏(𝑥𝑘)

𝑁

𝑗=−𝑁

                                               

𝐾𝑛 = 𝐾𝑁[𝑤𝑎](𝑥𝑘) + ℎ ∑ 𝑘(𝑥𝑘 , 𝑡𝑗)𝜑′(𝑗ℎ) + 𝐾𝑁[𝑤𝑏](𝑥𝑘)

𝑁

𝑗=−𝑁

                                     

𝑔𝑛 = [𝑔(𝑎), 𝑔(𝑥−𝑁), … , 𝑔(𝑥𝑁), 𝑔(𝑏)]𝑇                                                                        
 𝑢𝑛 = [𝑢−𝑁−1, 𝑢−𝑁 , … 𝑢𝑁 , 𝑢𝑁+1]𝑇 .                                                                                      

By solving the above system of equations for  𝑢𝑛 and using the result in (30), we obtain the 

approximate solution 𝑢𝑁(𝑥) to (2). 
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3.2 Convergence of Sinc Collocation Method Fredholm Integral Equations of Second Kind 
 

Let [𝑎, 𝑏] be a finite interval and ‖. ‖𝐶[𝑎,𝑏] defines a norm in the interval. Also, let 𝑔, 𝑘𝑄 ∈ 𝐶[𝑎, 𝑏] for 

𝑥, 𝑡 ∈ [𝑎, 𝑏]. Let 𝜑, 𝜑−1(𝑡) be defined as in (3) and let N be a positive integer. 

We will give the following Lemma. 

Lemma 3.1 

Let 𝑢(𝑥) represent the exact of (2), and let 𝑘(𝑥, . )𝑄(. ) ∈ 𝐶[𝑎, 𝑏], 𝑘(. , 𝑡)𝑄(𝑡) ∈ 𝐶[𝑎, 𝑏] and 𝑔 ∈
𝐶[𝑎, 𝑏] for all 𝑥, 𝑡 ∈ [𝑎, 𝑏]. If 𝑢(𝜑(𝑡)) is analytic in the domain 𝐷𝑑, then there exists a constant 𝐶𝑑 

independent of N such that 

‖(𝐸𝑛 − 𝐾𝑛)𝑢̅𝑛 − 𝑔𝑛‖ ≤ 𝐶𝑑 exp −√𝜋𝑑𝛼𝑁                                                                           (34) 

where  

ℎ = √
𝜋𝑑

𝛼𝑁
 

and 

𝑢̅𝑛 = (𝑢(𝑥−𝑁−1), … , 𝑢(𝑥𝑁+1)𝑇                                                                                           (35) 

with 

𝑢(𝑥𝑗)𝑎𝑛𝑑 𝑢𝑗  being the exact and approximate solution of (2) respectively at the collocation points 

𝑥𝑗 = 𝜑(𝑗ℎ). 

Proof: 

From (28) and (1), let the 𝑟𝑡ℎ component of the vector (𝐸𝑛 − 𝐾𝑛)𝑢̅𝑛 − 𝑔𝑛be given by  
|𝑟𝑘| = ‖[(𝐸𝑛 − 𝐾𝑛)𝑢̅𝑛 − 𝑔𝑛]‖                                                                                            (36) 

= |𝑢(𝑥−𝑁−1)𝑤𝑎(𝑥𝑘) + ∑ 𝑢(𝑥𝑗)𝑆(𝑗, ℎ)({𝜑}−1(𝑥𝑘)) + 𝑢(𝑥𝑁+1)𝑤𝑏(𝑥𝑘) 

𝑁

𝑗=−𝑁

 

−{𝐾𝑁[𝑤𝑎](𝑥𝑘)𝑢(𝑥−𝑁−1) + ℎ ∑ 𝑘(𝑥𝑘, 𝑡𝑗)𝜑′(𝑗ℎ)𝑢(𝑡𝑗)

𝑁

𝑗=−𝑁

+ 𝐾𝑁[𝑤𝑏](𝑥𝑘)𝑢(𝑥𝑁+1)} − 𝑔𝑛(𝑥𝑘)| 

 

≤ |𝐾𝑁[𝑤𝑎](𝑥𝑘)𝑢(𝑥−𝑁−1) + ℎ ∑ 𝑘(𝑥𝑘, 𝑡𝑗)𝜑′(𝑗ℎ)𝑢(𝑡𝑗)

𝑁

𝑗=−𝑁

+ 𝐾𝑁[𝑤𝑏](𝑥𝑘)𝑢(𝑥𝑁+1)|

+ 𝑂𝑒−
𝜋𝑑
ℎ                                             

≤ 𝐶 exp (−𝜋𝑑. √𝛼𝑁
𝜋𝑑⁄ ) 

= 𝐶𝑑 exp(−√𝜋𝑑𝛼𝑁) 

Thus, 

‖(𝐸𝑛 − 𝑉𝑛)𝑢̅𝑛 − 𝑔𝑛‖ = ( ∑ |𝑟𝑘|2

𝑁

𝑘=−𝑁

)

1
2⁄

                                                                   

≤ 𝐶𝑑exp −√𝜋𝑑𝛼𝑁.                                                                                                          (37) 

Using Lemma 3.1, the bound on the difference 𝑢(𝑥) − 𝑢𝑁(𝑥) of exact solution and the approximate 

solution can be estimated using the max norm. This is demonstrated in the theorem below. 

Theorem 1 
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Assuming the conditions of Lemma 3.1 is satisfied, let 𝑢(𝑥) 𝑎𝑛𝑑 𝑢𝑁(𝑥) be the exact solution and 

approximate solution of (2) respectively, then for ℎ and 𝑁 satisfying (35), there exist constants 𝐶2 and 

𝐶3 independent of N such that 

max
𝑥∈(𝑎,𝑏)

|𝑢(𝑥) − 𝑢𝑁(𝑥)| ≤ (𝐶2 + 𝐴𝑁𝐶3) exp −√𝜋𝑑𝛼𝑁                                               (38) 

Proof: 

Let us first define the analytic solution 𝑃𝑁(𝑥) of equation (2) at Sinc points 𝑥 = 𝑥𝑗 . We have from (28) 

and (2), 

{𝑤𝑎(𝑥𝑘) − 𝐾𝑁[𝑤𝑎](𝑥𝑘)}𝑢(𝑥−𝑁−1) + ∑ 𝛿𝑘𝑗 − ℎ𝑘(𝑥𝑘 , 𝑡𝑗)

𝑁

𝑗=−𝑁

𝜑′(𝑗ℎ)𝑢(𝑡𝑗)

+ {𝑤𝑏(𝑥𝑘) − 𝐾𝑁[𝑤𝑏](𝑥𝑘)}𝑢(𝑥𝑁+1) = 𝑔(𝑥𝑘)                               (39) 

Now, by triangle inequality, 
|𝑢(𝑥) − 𝑢𝑁(𝑥)| ≤ |𝑢(𝑥) − 𝑃𝑁(𝑥)| + |𝑃𝑁(𝑥) − 𝑢𝑁(𝑥)|                                        (40) 

By Lemma 3.1 and equation (34) 
|𝑢(𝑥) − 𝑃𝑁(𝑥)|

≤ |𝑉𝑁[𝑤𝑎](𝑥𝑘)𝑢(𝑥−𝑁−1) + ℎ ∑ 𝑘(𝑥𝑘, 𝑡𝑗)𝜑′(𝑗ℎ)𝑢(𝑡𝑗)

𝑁

𝑗=−𝑁

+ 𝑉𝑁[𝑤𝑏](𝑥𝑘)𝑢(𝑥𝑁+1)|

+ 𝑂𝑒−
𝜋𝑑
ℎ    

                      ≤ 𝐶2 exp −√𝜋𝑑𝛼𝑁                                                                                      (41)   
by (37). 

For the second term on the right of (40), we have, 
|𝑃𝑁(𝑥) − 𝑢𝑁(𝑥)| = |{𝑤𝑎(𝑥𝑘) − 𝐾𝑁[𝑤𝑎](𝑥𝑘)}𝑢(𝑥−𝑁−1) 

+ ∑ 𝛿𝑘𝑗 − ℎ𝑘(𝑥𝑘, 𝑡𝑗)

𝑁

𝑗=−𝑁

𝜑′(𝑗ℎ)𝑢(𝑡𝑗) + {𝑤𝑏(𝑥𝑘) − 𝐾𝑁[𝑤𝑏](𝑥𝑘)}𝑢(𝑥𝑁+1) 

−{{𝑤𝑎(𝑥𝑘) − 𝐾𝑁[𝑤𝑎](𝑥𝑘)}𝑢−𝑁−1 + ∑ 𝛿𝑘𝑗 − ℎ𝑘(𝑥𝑘 , 𝑡𝑗)𝜑′

𝑁

𝑗=−𝑁

(𝑗ℎ)𝑢𝑗 + {𝑤𝑏(𝑥𝑘) − 𝐾𝑁[𝑤𝑏](𝑥𝑘)}𝑢𝑁+1}| 

≤ ∑ |ℎ𝑘(𝑥𝑘, 𝑡𝑗)𝜑′||𝑢(𝑡𝑗) − 𝑢𝑗|.

𝑁+1

𝑗=−𝑁−1

 

Assuming that for 𝑀 ∈ 𝑅+, 

ℎ (| ∑ |𝑘(𝑥𝑘, 𝑡𝑗)𝜑′(𝑗ℎ𝐽(𝑗, ℎ)(𝑥𝑘)|

𝑁+1

𝑗=−𝑁−1

|

2

)

1
2⁄

≤ 𝑀                                               (42) 

holds uniformly for 𝑥 ∈ (𝑎, 𝑏) based on the assumptions of the kernel (Lemma 3.1), then by Schwartz 

inequality, 
|𝑃𝑁(𝑥) − 𝑢𝑁(𝑥)| 

≤  ℎ (| ∑ |𝑘(𝑥𝑘, 𝑡𝑗)𝜑′(𝑗ℎ)|

𝑁+1

𝑗=−𝑁−1

|

2

)

1
2⁄

(| ∑ |𝑢(𝑡𝑗) − 𝑢𝑗|

𝑁+1

𝑗=−𝑁−1

|

2

)

1
2⁄
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≤ 𝑀‖𝑢̅𝑛 − 𝑢𝑛‖. 
We note that by (33), 

𝑢𝑛 = (𝐸𝑛 − 𝐾𝑛)−1𝑔𝑛. 
Hence, 

‖𝑢̅𝑛 − 𝑢𝑛‖ = ‖𝑢̅𝑛 − (𝐸𝑛 − 𝐾𝑛)−1𝑔𝑛‖ ≤ ‖(𝐸𝑛 − 𝐾𝑛)−1‖‖(𝐸𝑛 − 𝐾𝑛)𝑢̅𝑛 − 𝑔𝑛‖ 

≤ 𝐶3𝐴𝑁 exp −√𝜋𝑑𝛼𝑁                                                                                            (43) 

where 𝐴𝑁 = ‖(𝐸𝑛 − 𝐾𝑛)−1‖ and 𝐶3 is independent of 𝑁. 

Combining (41) and (42), we have, 

max
𝑥∈(𝑎,𝑏)

|𝑢(𝑥) − 𝑢𝑁(𝑥)| ≤ (𝐶2 + 𝐴𝑁𝐶3) exp −√𝜋𝑑𝛼𝑁                                                         (44) 

which completes the proof. 
 

4.0 Numerical Results 
 

We present some examples in this section to illustrate the implementation of the Sinc collocation 

scheme (1). In the following calculations, 𝜆 = 1 from (2) and following Sugihara (2002),  𝛼 = 1, 𝑑 =
𝜋

2
 with the step size 

ℎ = √
𝜋𝑑

𝛼𝑁
=

𝜋

√2𝑁
. 

The maximum absolute error between the exact solution 𝑢(𝑥)and the approximate solution 𝑢𝑁(𝑥) at 

sinc points 𝑥𝑘 given by |𝐸𝑁(ℎ(𝜑))| concerning 𝐿∞ norm is given by 

|𝐸𝑁(ℎ(𝜑))| =
𝑚𝑎𝑥

𝑘 = −𝑁 − 1, −𝑁, … 𝑁, 𝑁 + 1
|𝑢(𝑥𝑘) − 𝑢𝑁(𝑥𝑘)|.                                     (45) 

The numerical stability of the scheme was monitored using the condition number 𝜅(𝑍) of the 

coefficient matrix 𝑍 = 𝐸𝑛 − 𝐾𝑛 of the system (36) based on infinity norm and defined by 

𝜅(𝑍) = ‖𝑍‖∞‖𝑍−1‖∞.                                                                                                            (46) 

The computations were carried out using MATLAB® software. 

Example 1 

𝑢(𝑥) = − ∫ 𝑒𝑥𝑡𝑢(𝑡)𝑑𝑡
1

0

+ 𝑥𝑒𝑥 +
𝑥𝑒𝑥+1 + 1

(𝑥 + 1)2
 

with exact solution 𝑢(𝑥) = 𝑥𝑒𝑥, Wazwaz (2011). 

Example 2 

𝑢(𝑥) = ∫ 𝑥𝑡𝑎𝑛−1𝑡𝑢(𝑡)𝑑𝑡
1

0

+
1

1 + 𝑥2
−

𝜋2

32
𝑥 

with 
1

1 + 𝑥2
 

as exact solution, Wazwaz (2011). 

 

Table 1: Maximum error and condition number for Example 1 

 

N |𝑬𝑵(𝒉(𝝋))| 𝜿(𝒁) 

10 1.2713  × 10−4 11.3× 10−0 

20 8.3677  × 10−7 11.3× 10−0 

30 4.5933  × 10−9 11. 3× 10−0 
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40 5.0328  × 10−10 11.3× 10−0 

50 1.3064  × 10−11 11.3× 10−0 

 

Table 2: Maximum error and condition number for Example 2 

 

N |𝑬𝑵(𝒉(𝝋))| 𝜿(𝒁) 

10 1.3232  × 10−5 4.96× 10−0 

20 3.5035× 10−8 4.97× 10−0 

30 1.4070  × 10−10 4.97× 10−0 

40 7.7305  × 10−13 4.97× 10−0 

50 1.3178  × 10−13 4.97× 10−0 

 

 
 

Fif. 1: Exact and approximate solution for Example 1 

 
Fig. 2: Maximum absolute error for Example 1 
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Fig. 3: Exact and approximate solution for example 2 

 
  

Fig. 4: Maximum absolute error for example 2 
 

5.0 Conclusion  
 

Our work in this paper was to demonstrate the 

convergence of Sinc collocation method with 

composite trigonometric function for the 

solution of Fredholm integral equations of the 

second kind. The theoretical results showed 

improved convergence of where (N) is the 

number of function evaluations. The research 

provided a rigorous convergence analysis with 

the help of recent advancements in that field of 

study which also contributed to a deeper 

understanding and application of the scheme. 

The foundation of the analysis relied on the 

already established results of single exponential 

Sinc approximation using collocation points. 

The theoretical result of the scheme as seen in 

the formulated theorem showed that the error 

between the exact solution and approximate 

solution converges exponentially in the order 

𝑂(exp −𝐶√𝑁 concerning the increase in 
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collocation points (N) and a constant 𝐶 under 

specific conditions. 

Furthermore, the results of the numerical 

examples as seen in Tables 1 and 2  as well as 

Figs. 1 to 4 showcased the efficiency of the 

method by demonstrating a decrease in the 

maximum absolute error between the exact and 

approximate solutions as the number of 

collocation points increased. The stability of the 

scheme was also studied by monitoring the 

condition numbers of the coefficient matrix of 

the linear system of equations arising from the 

collocation scheme. This is also reported in 

Tables 1 and Table 2 of the results for numerical 

illustrations.  

In summary, a theoretical framework and 

numerical illustrations to support the 

convergence and effectiveness of the Sinc-

collocation method with composite 

trigonometric functions for solving Fredholm 

integral equations of the second kind was 

presented in this work. The efficiency of the 

method is demonstrated to encourage 

researchers seeking to apply the method to 

similar equations. 

In subsequent work, we hope to extend the 

analysis to consider a broader class of Fredholm 

integral equations and also explore adaptive 

collocation strategies to optimize the 

convergence rate; an investigation into the 

computational cost of the method as compared 

to alternative approaches would to give valuable 

insights for practical applications will also be 

considered. 
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