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Abstract: This study explores the eigenstates of 

an electron in a finite quantum well using the 

Schrödinger wave equation. Quantum 

mechanics, a fundamental theory in physics, 

describes the properties of molecules, atoms, 

and subatomic particles through quantization 

of energy and wave-particle duality. A 

quantum well, a nanometer-thin layer in 

semiconductor materials, confines electrons to 

a two-dimensional layer, resulting in quantized 

energy spectra essential for various electronic 

and optoelectronic devices. Unlike the infinite 

potential well, the finite potential well allows 

for the probability of finding particles outside 

the well, necessitating accurate calculations of 

bound states. This research employs a 

graphical method using MATLAB to solve for 

the eigenstates and eigenenergies of electrons 

in a finite quantum well. By deriving the time-

independent Schrödinger equation, applying 

boundary conditions, and utilizing 

transcendental equations, we determine the 

energy levels and eigenfunctions of the system. 

The study highlights the practical applications 

of quantum wells in modern electronic devices 

and underscores the importance of 

understanding quantum confinement in 

developing advanced technologies. 
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1.0 Introduction 
 

Quantum is the smallest possible and therefore 

indivisible unit of a given quantity or 

quantifiable phenomenon.  Quantum 

mechanics is a branch of mechanics that deals 

with the mathematical description of particles, 

incorporating the concept of quantization of 

energy wave-particle, the uncertainty principle 

and the corresponding principle. It is used to 

describe properties of molecules, atoms and 

subatomic particles.  In quantum mechanics, 

physical problems are solved by algebraic and 

graphic methods. By applying the one-

dimensional Schrodinger time-independent 

wave equation, we can obtain the eigenenergy 
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values and eigenfunction of a particle in a 

square well potential of finite height. 

Quantum mechanics can be thought of roughly 

as the study of physics on very small length 

scale; although there is also certain 

macroscopic system it directly applies to. The 

descriptor “quantum” arises because in contrast 

with classical mechanics certain quantities take 

on only discrete value. In quantum mechanics 

particles have wavelike properties and a 

particular wave equation, the Schrodinger 

equation, governs how these waves behave. 

(Satya, 2016) 

A quantum well is a region of reduced 

dimensionality in a semiconductor material, 

where electrons are confined in the three-

dimensional bulk material to a two-

dimensional layer. This confinement results in 

the electrons having a quantized energy 

spectrum. Quantum wells are used in 

semiconductor devices such as quantum dot 

lasers and can also be used in electronic and 

optoelectronic devices like transistors, solar 

cells, and LEDs. 

Quantum Well is a nanometer-thin layer which 

can confine (quasi) particles (typically 

electrons or holes) in the dimension 

perpendicular to the layer surface,  whereas the 

movement in the other dimension is not 

restricted.(Makino & Zory, 1993). This 

confinement is a quantum effect.   A Quantum 

well is a potential well with only discrete 

energy values. They are formed by 

sandwiching a very thin layer of a small-band 

– gap material. 

The Finite Potential Well also known as the 

finite square well is a concept from quantum 

mechanics. It is an extension of the infinite 

potential well, in which a particle is confined to 

a “box”, but one which has finite potential 

“Well”. Unlike the infinite potential well, there 

is a probability associated with particles being 

found outside the box. The quantum 

mechanical interpretation is unlike the classical 

interpretation, where if the total energy of the 

particle is less than the potential energy barrier 

of the wells it cannot be found outside the box. 

In the quantum interpretation, there is a non–

zero probability of the particle being outside 

the box even then the energy of the particle is 

less than the potential energy barrier of the 

wells.(Chiani & Williams, 2016) 

Eigenstate quantum is a state of a quantized 

dynamic system (such as an atom, molecule or 

crystal) in which one of the variables defining 

the state (such as energy or angular momentum 

has a determinate fixed value. Eigenstate of 

quantum mechanics is the state in which the 

system is an eigenstate of the observable, 

which means that the value of the observable is 

exactly known.In quantum mechanics, a finite 

quantum well is a potential well that confines 

particles in a finite region of space.  The study 

of electrons in a finite quantum well is 

important in the development of electronic 

devices such as transistors and lasers. One of 

the key properties of electrons in a quantum 

well is their energy levels which can be found 

using the Schrodinger equation.  In this project, 

we will use a graphical method to solve for the 

eigenstate of the electron in a finite quantum 

well. Quantum mechanics is mathematics is 

usually introduced through physical systems 

described by one dimensional well. (Griffiths 

& Serway, 2005) 

In an infinite well model, the eigenvalue of an 

electron in a quantum well is approximated in 

excess but in the realistic quantum well where 

there is a barrier there is a need to calculate an 

accurate bound state. In this case, we will be 

using the graphical solution to approximate the 

eigen energy.   

We aim to determine the Graphical Solution  of 

eigenstateelectron In A Finite Quantum Well 

by; understanding the concept of a finite 

quantum well and its potential energy function, 

deriving the Schrodinger equation for a particle 

in a finite quantum well, obtaining the 

graphical solution using Math lab, applying the 

graphical method to solve for the eigenstates 

and  aretheydepended on the good parameter, 

and finally comparing the graphical method 
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with the infinite quantum well methods of 

solution.  

Quantum well devices have been the objects of 

intensive research during the last two decades. 

Some of the devices have matured into 

commercially useful products and form part of 

modern electronic circuits. Some others require 

further development but have the promise of 

being useful commercially shortly. The study 

of the devices is, therefore, gradually becoming 

compulsory for electronics specialists. The 

functioning of the devices, however, involves 

aspects of physics which are  Scanty in the 

literature (Nag, 2006) 

When the size of the confining structure is 

comparable with the wavelength of the particle 

the electronic and optical properties are 

changed. Quantum confining can be done in 

three different ways such as three dimensional 

(3D) when confined in a quantum dot, two-

dimensional (2D) when confined in a quantum 

wire and one-dimensional (1D) when confined 

in the quantum well.A potential well having 

only discrete energy values is known as a 

quantum well (QW). 1D confinement is 

possible in QW. When the QW thickness is 

comparable to the carrier wavelength only then 

the confinement is possible. The allowed 

energies as functions of the barrier height can 

be found numerically by solving a 

transcendental equation (Murphy & Phillips, 

1976).  Quantum well is a nanometer-thin layer 
which can confine (quasi-)particles (typically 
electrons or holes) in the dimension perpendicular 
to the layer surface, whereas the movement in the 
other dimensions is not restricted. 

The confinement is a quantum effect. It has 

profound effects on the density of states for the 

confined particles. For a quantum well with a 

rectangular profile, the density of states is 

constant within certain energy intervals. 

A quantum well is often realized with a thin 

layer of a semiconductor medium, embedded 

between other semiconductor layers of 

wider band gap (examples: GaAs quantum 

well embedded in AlGaAs, or InGaAs in 

GaAs). The thickness of such a quantum well 

is typically ≈ 5–20 nm. Such thin layers can be 

fabricated with molecular beam epitaxy (MBE) 

or metal-organic chemical vapor deposition 

(MOCVD). 

 
Fig.1: diagram of quantum well using 

semiconductor  
 

A potential well in which electrons in a three-

dimensional system are confined to a plane,  i.e. 

to two dimensions. Quantum wells can be made 

with a semiconductor that is sandwiched 

between layers of materials with larger energy 

band gaps. These wells are used to study two-

dimensional systems and also have 

technological applications including a type of 

laser (a quantum well laser). 

Erwin Schrödinger derived the wave equation 

associated with such a microscopic particle 

called the Schrödinger wave equation (S.W.E). 

(Erwin,2014) 

Schrödingerwave Equation is a mathematical 

expression describing the energy and position 

of the electron in space and time, taking into 

account the matter wave nature of the electron 

inside an atom. 
−ħ2𝜕2𝛹

2𝑚𝜕𝑥2 + 𝑉(𝑥)𝛹 = 𝐸𝛹  (1) 

where,ħ = 
h

2π
 is the reduced Planck’s constant. 

h is Planck’s constant. m is the mass of the 

particle, ψ is the wave function, V[x] is the 

function describing the potential energy at each 

point x, E is the energy, a real number, 

https://www.rp-photonics.com/semiconductors.html
https://www.rp-photonics.com/band_gap.html
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sometimes called eigenenergy.The 

Schrödinger wave equation is of two types  

(i) Time-dependent. 

(ii) Time independent 

We consider a particle of mass m, moving with 

velocity V along the x- x-direction (One 

dimension time-dependent). The associated 

displacement is given by the wave function is a 

complex function of displacement x and time 

t.We have  

𝛹(𝑥, 𝑡) = 𝐴𝑒𝑖(𝑘𝑥−𝜔𝑡)   (2) 

Where A is the wave amplitude  

Taking the derivation of equation (1) w.r.t x, 

we obtain  

𝛹(x, 𝑡) =
𝜕𝛹(𝑥,𝑡)

𝜕𝑥
 =ik𝑒𝑖(𝑘𝑥−𝜔𝑡) 

𝛹’’(𝑥, 𝑡) =
𝜕2𝛹(𝑥,𝑡)

𝜕𝑥2 = −𝑘2𝐴𝑒𝑖(𝑘𝑥−𝜔𝑡) 

                 =-𝑘2𝛹(𝑥, 𝑡)  (3) 

where k=
2𝜋

𝜆
 

𝛹′′ =
𝜕2𝛹

𝜕𝑥2  =  −
4𝜋2

𝜆2 𝛹   (4) 

But the de Broglie wavelength associated with 

the particle is 

𝞴=
ℎ

𝑝
=

ℎ

𝑚𝑣
    i.e   p= mv 

1

𝜆2 =
𝑚2𝑣2

ħ2 =
2𝑚

ħ2 (
1

2
𝑚𝑣2)  (5) 

 k.E=
1

2
𝑚𝑣2 

but we define the total energy of the particle E 

be related to the kinetic energy K.E and 

potential energy V as  

E =k.E + V 

K.E = E- V        (6) 

From equation (5) and (6) obtain that  
1

𝜆2
=

2𝑚

ħ2
(𝐸 − 𝑉)   (7) 

Putting the value in equation (4) 
𝜕2𝛹

𝜕𝑥2 = −
8𝜋2

ℎ2 𝑚(𝐸 − 𝑉)𝛹         where ħ=
ℎ

2𝜋
 

𝜕2𝛹

𝜕𝑥2 +
2𝑚

ħ2
(𝐸 − 𝑉)𝛹 = 0  (8) 

Equation 8 therefore represents the time-

independent Schrödinger wave equation  

Recall that the wave equation is given by  

𝛹(𝑥, 𝑡) = 𝐴𝑒𝑖(𝑘𝑥−𝜔𝑡)   (9) 

Differentiating (1.8) w.r.t t 
𝜕𝛹

𝜕𝑡
 =-i𝜔𝐴𝑒𝑖(𝑘𝑥−𝜔𝑡)𝜔 = 2𝜋𝜑 

     =-𝑖2𝜋𝜑𝐴𝑒𝑖(𝑘𝑥−𝜔𝑡)   =−2𝜋𝑖𝜑𝛹 

But, 𝐸 = h𝜑  and  𝜑 =
𝐸

ℎ
 

𝜕𝛹

𝜕𝑡
= - 

2𝜋𝑖𝐸𝛹

ℎ
= - 

2𝜋𝑖

2𝜋ħ
 EΨ 

𝑑𝛹

𝑑𝑥
=

𝑖

𝑖ħ
EΨ 

EΨ = iħ 
𝑑𝛹

𝑑𝑡
 

Equation (7) is the Schrödinger time-dependent 

wave equation. 

To obtain the Schrödinger time-dependent 

wave equation 3-D, we use the result of 

equation (7) in equation (8) 
𝑑2𝛹

𝑑𝑥2 + 
2𝑚 

ħ2  (E-V)Ψ = 0 

𝑑2𝛹

𝑑𝑥2 + 
2𝑚 

ħ2 [𝑖ħ
𝑑𝛹

𝑑𝑡
− 𝑉𝛹]=0 

𝑑2𝛹

𝑑𝑥2 + 
2𝑚 

ħ2 [𝑖ħ
𝑑𝛹

𝑑𝑡
− 𝑉𝛹]= 

Multiply through by 
ħ2

2𝑚
 

ħ2

2𝑚

𝑑2𝛹

𝑑𝑥2  = iħ
𝑑𝛹

𝑑𝑡
 + VΨ 

- 
ħ2

2𝑚

𝑑2𝛹

𝑑𝑥2  +VΨ = iħ 
𝑑𝛹

𝑑𝑡
  (10) 

Equation (10) represents the Schrödinger wave 

equation in 1-D. To obtain the 3-D case, we 

follow the steps as equation (9) 

- 
ħ2

2𝑚
∇2𝛹 + 𝑉𝛹=iħ

𝑑𝛹

𝑑𝑡
   (11) 

Which represents the Schrödinger time-

dependent equation in 3-D? 

Particle in a 1-D infinite potential well, 

consider a particle of mass m in a 1-D box, 

operated by a distance and as depicted in the 

diagrams. 

 
Fig. 2: particle of mass in a 1-D box  
 

The particles inside the box do not lose energy 

as theycollide with the walls and its total 

energy remains constant. The potential energy 

of the particle is thus, infinitely high on both 

sides of the box. 
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Let's assume the potential V on both sides V=0 

inside the box. 

Then, 

V(x) = 0   ∀ 0 < 𝑥 < 𝑎 

V(x) = 00 ∀𝑥 ≤ 0 ∀𝑥 ≥ 𝑎 

In the region inside box where 0<x<a 

V=0 can be described by the Schrödinger 

equation. 
𝑑2𝛹

𝑑𝑥2
 + (

2𝑚

ħ2
)EΨ=0        

     (12) 
𝑑2𝛹

𝑑𝑥2  + 𝑘2𝛹=0 

where K = √
2𝑚𝐸

ħ2  

Equation 1 has a general solution given as  

V(x) A Sin Kx + B Cos Kx       (13) 

where A and B are arbitrary constants. 

Applying the  boundary condition at x=0, 

Ψ(x=0)=0, Ψ(x=0) =B=0 

At Ψ(x<a)  = Ψ(a)=0= A Sin ka=0 

But when A ≠ 0, sin ka =0 and Ka=n𝜋 

K=
𝑛𝜋

𝑎
     (14) 

But n≠ 𝑜when  K=0, E=0 and Ψ=0 , therefore,  

Ψn(a) = A Sin Kx           = A Sin 
𝑛𝜋𝑥

𝑎
   (15) 

To obtain the eigenvalue, we first observed that 

K2 = 
2𝑚𝐸

ħ2  indicating thar En = 
ħ2𝑘2

2𝑚𝐸𝑛
, hence,  

En = 
𝑛2𝜋2ħ2

2𝑚𝐸𝑎2  = 
𝑛2𝜋2

𝑎2

ħ2

8𝜋2𝑚
= 

𝑛2ℎ2

8𝑚
 (16) 

En = 
𝑛2ℎ2

8𝑚𝑎2     (17) 

The energy levelshown in equation 17 is 

fulfilled under the following conditions, n=1, 

E1 = 
ℎ2

8𝑚𝑎2 such that En = n2E1.  When n=2, E2 = 

22E1  = 4E1 and  32 E1 = 9E1 

We can observe the spacing between the energy 

level and the next higher level increase as 

(n+1)2E1 – n2E1 =  

(2n+n2+I)E1-n
2E1 = (2n+1) E1 (18) 

 

 

Also,  the wave function for the wave-particle 

has the solution given as Ψn(x) = A Sin 
𝑛𝜋𝑥

𝑎
∀0≤

𝑥 < 𝑎 and Ψn(x) = 0   ∀𝑥 ≤ 0∀𝑥 ≥ 𝑎 

The total probability that the particle in the box 

is somewhere in the box must be unity 

∫ 𝑝𝑥𝑑𝑥
𝑎

𝑜
 = ∫ /𝛹𝑛/2𝑑𝑥

𝑎

𝑜
=1 

∫ 𝐴2𝑎

0
𝑆𝑖𝑛2 

𝑛𝜋𝑥

𝑎
 dx=1   (19) 

 
 

Fig. 3: Diagram of the energy level 
 

But using the identity operation, sin2a = 
1

2
 (1-

cos 𝜃), the following expressions applies.  

𝐴2

2
∫ [1 − 𝐶𝑜𝑠

𝑛𝜋𝑥

𝑎
] 𝑑𝑥 = 1

𝑎

𝑜

 

𝐴2

2
[𝑥 −

𝑎

𝑛𝜋
𝑆𝑖𝑛

𝑛𝜋𝑥

𝑎
] = 10

𝑎  

𝐴2

2
𝑎 = 1 

Therefore,  

A = √
2

𝑎
    (20) 

Therefore from the normalization condition 

A = √
2

𝑎
 

Putting in equation (18) 

Ψn(x) =√
2

𝑎
 Sin 

𝑛𝜋𝑥

𝑎
   (21) 

Equation (21) is the eigenfunction of the 

particle in a box. The plots of eigenfunctionare 

depicted below. 

 

2.0 Materials and Methods  

2.1 Schrödinger equation for a finite 

potential well  
 

Solutions to the Schrödinger equation must be 

continuous, and continuously 

differentiable. These requirements 

are boundary conditions on the differential 

equations previously derived, that is, the 

matching conditions between the solutions 

inside and outside the well. (Chiani et Williams 

2016) 

This is the same potential as for the infinite 

square well, with ∞ replaced by V0; I’ve 
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shifted the well to center it at x = 0 because the 

resulting symmetry will slightly simplify the 

computer code and the description of the 

solutions. (This is actually an example that can 

be solved exactly, aside from the need to 

numerically solve a transcendental equation to 

match the wavefunction at the well boundary. 

But here I’ll use it to illustrate the much more 

general method of numerically solving the 

TISE.(Schroeder, 2022) 

Involving the Schrödinger equation for a finite 

potential well will produce values of the energy 

levels within the well. 

Consider a potential well centered on the origin 

of width length [𝐿𝑊] and the barrier height 𝑉0 

[𝐻𝑏], inside the well the potential is zero.  

The Schrödinger equation SE 
ħ2

2𝑚

𝜕2𝛹(𝑥)

𝜕𝑥2  + V(x)Ψ = EΨ  (22) 

  
Fig. 4:  Diagram Of Finite Potential Well 

SE implies  
ħ2

2𝑚

𝜕2𝛹(𝑥)

𝜕𝑥2  + ҚΨ(x) = 0   

 (23) 

X=
𝐿𝑊

2
 

Inside the well the energy is larger than the 

potential  

Қ=√
2𝑚𝐸

ħ2  

It implies that 
𝜕2𝛹(𝑥)

 𝜕𝑥2 = −Қ𝛹(𝑥) 

SE          
ħ2

2𝑚

𝜕2𝛹(𝑥)

𝜕𝑥2 − 𝛼𝛹(𝑥)=0

 

 

  (24) 

𝞪=√
2𝑚(𝑉0−𝐸)

ħ2
 

Outside the well, the energy is less than that of 

the edge of the well. This means it is less than 

the potential V0 

 
d2Ψ(x)

∂x2
=  𝝰Ψ(𝐱) 

The potential is an even function. If ψ’(x) is an 

even (odd) function, then ψ”(x) will be even 

(odd). So, every term in the Schrödinger 

equation is an even (odd) function. Therefore, 

the solutions are either even functions or odd 

functions. 
 

2.2 Even wave function 
 

The solution of the Schrödinger equation 

within the well is  

Ψ(x) = 𝐶1𝑒+𝛼𝑥    |𝑥| > −
𝑤

2
 

 

 

 

 𝐶2 cos(Қ𝑥) |𝑥| < −
𝑤

2
 

 

𝐶1𝑒+𝛼𝑥   = 𝐶2 𝑐𝑜𝑠(Қ𝑋)  (25) 

𝐶1𝑒−𝛼
𝐿𝑊

2    =𝐶2 𝑐𝑜𝑠 (Қ
𝐿𝑊

2
) (26) 

Differentiate equation (25) 

𝛼𝐶1𝑒𝛼X   = −Қ𝐶2 sin( Қ𝑋) 
𝛼

𝑚𝑏
𝐶1𝑒−𝛼

𝐿𝑊
2   = −

Қ

𝑚𝑤
𝐶2 sin(− Қ

𝐿𝑊

2
) 

𝛼

𝑚𝑏
𝐶1𝑒−𝛼

𝐿𝑊
2   =

Қ

𝑚𝑤
𝐶2 sin( Қ

𝐿𝑊

2
) (27) 

Divide equation (27) by (25) 

𝞪 = 
𝑚𝑏

𝑚𝑤
Қ tan(Қ

𝐿𝑊

2
)   (28) 

3.3   Odd wave function 

Ψ(x) =  𝐶1 exp[-𝞪(x-
𝐿𝑊

2
)]   𝑋 >

𝐿𝑊

2
 

𝐶2 sin Қ𝑋      |X|≤
𝐿𝑊

2
 

  -𝐶1 exp [𝞪 (𝒙 +
𝑳𝑾

𝟐
)] 𝑋 <

 −
𝐿𝑊

2
 

 

 

The boundary condition  

𝐶1𝑒−𝛼𝑥   = 𝐶2𝑠𝑖𝑛(Қ𝑋)  (29) 

𝐶1𝑒−𝛼
𝐿𝑊

2    =𝐶2 𝑠𝑖𝑛 (Қ
𝐿𝑊

2
)  (30) 

Differentiate equation (29) 

−𝛼𝐶1𝑒−𝛼X   = Қ𝐶2 cos( Қ𝑋) 

-𝞪
α

𝑚𝑏
𝐶1𝑒−𝛼

𝐿𝑊
2    =    Қ𝐶2 cos Қ

𝐿𝑊

2
 (31) 
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Divide equation (30) by (31) 

-𝞪 = 
𝑚𝑏

𝑚𝑤
Қ cot (Қ

𝐿𝑊

2
)   (32) 

The solution for the quantized eignenergies can 

be obtained by Қ
𝐿𝑊

2
and 𝞪

𝐿𝑊

2
. Using a graphical 

approach since  

[Қ
𝐿𝑊

2
]2 + 

𝑚𝑤

𝑚𝑏
[𝛼

𝐿𝑊

2
]2 =

2𝑚𝑤𝑉0

ħ2 [
𝐿𝑊

2
]2 (33) 

For the even solutions from equation (28) 

𝞪√
𝑚𝑏

𝑚𝑤

𝐿𝑊

2
 = -

𝑚𝑏Қ

𝑚𝑤

𝐿𝑊

2
tanҚ

𝐿𝑊

2
  (34)            

For the odd solution from equation (32) 

-𝞪√
𝑚𝑏

𝑚𝑤

𝐿𝑊

2
 = -

𝑚𝑏Қ

𝑚𝑤

𝐿𝑊

2
cot Қ

𝐿𝑤

2
  (35) 

The allowed energies as functions of the barrier 

height can be found numerically by solving a 

transcendental equation (Murphy & Phillips, 

1976) 

Қ2 +  𝛼2 = [√
2𝑚𝐸

ħ2 ]

2 

+  [√
2𝑚(𝑉0−𝐸)

ħ2 ]

2

 = 
2𝑚𝑉0

ħ2  

 

Қ2 + 𝛼2 =
2𝑚𝑉0

ħ2
 

3.0 Results and Discussion 
 

In this study, we simulate the graphical solution 

of thestate of an electron in a finite quantum 

well using MATLAB programming. The result 

will be reported in this chapter.  

The energy levels are found from a graphical 

solution of the two equations with the 

definition for 𝞪 and Қ given 𝞪 = +[
2𝑚𝐸

ħ2
]

1

2
 and 

Қ = +[
2𝑚(𝑉0−𝐸)

ħ2 ]

1

2 
. 

A simple graphical method for effecting this 

solution is described here since it shows quite 

clearly how the number of discrete levels 

depends on  𝑉0 and  
𝐿𝑤

2
 . 

Қ2 +  𝛼2 = 

[√
2𝑚𝐸

ħ2 ]

2 

+  [√
2𝑚(𝑉0−𝐸)

ħ2 ]

2

 = 
2𝑚𝐿𝑉0

4ħ2  

Қ2 +  𝛼2 =
𝑚𝐿𝑉0

2ħ2    (36) 

𝞪 = 
𝑚𝑏

𝑚𝑤
Қ tan(Қ

𝐿𝑊

2
)   (37) 

For 𝑚𝑏 ≅ 𝑚𝑤 

Implies 𝑚𝑏/𝑚𝑤 = 1 

𝞪=  Қ tan(Қ
𝐿𝑊

2
)   (38) 

-𝞪 = Қ cot (Қ
𝐿𝑊

2
)                   (39) 

   We can replace Қ and 𝞪 as Қ=ξand   𝞪 = β 

β 2 = 
2𝑚𝑉0

ħ2  

For equation (38) we have  

β 2  +  ξ2  =   β 2  

β = ξtan(ξ)    (40) 

For equation (39) we have   

-β = ξcot(ξ)    (41) 

For equation (36) we have  

β 2  +  ξ2  =   β 2    (42)          

We substitute equations (40) into equation (42) 

( ξtan(ξ)) 2  +  ξ2  =   β 2 

ξ2 (tan(ξ)) 2 +  ξ2  =   β 2 

ξ2 (tan(ξ)) 2 = β 2 - ξ2 

(tan(ξ)) =√
β 2

𝛏2
−

𝛏2

𝛏2
 

tan(ξ) = √
β 2

𝛏2
− 1   (43) 

We substitute equation (41) into equation (42)  

-(ξcot(ξ)) 2  +  ξ2  =   β 2    

-ξ2 (cot(ξ))2 +ξ2  =   β 2  

-ξ2 (cot(ξ))2 =β 2 - ξ2 

-cot(ξ) = √
β 2

𝛏2
−

𝛏2

𝛏2
 

-cot(ξ) = √
β 2

𝛏2
− 1   (44) 

where  

β= √
2𝑚𝑉0

ħ2  

ξ = 
𝐿𝑊

2
√

2𝑚𝐸

ħ2  
 

Table 1: Band parameters of binary 

semiconductors  
 

Materials Eg me(m0)  

GaAs 1.424 0.067 

AlAs 3.03 0.15 

We consider the conduction band offset to the 

electron effective mass band transition only. 

From the Table 5 above the energy band gap 

Eg(eV) and electron effective mass me(m0) 
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Fig. 5 : A Graph Of Band Offset Against X 

 

From Fig.5 above we have that the band offset 

is plotted against x where x varies with  

 

respect to band offset. The band offset is 

measured in electron volt, the graph start from 

the origin but its not a straight line graph 

because of the absorption of AlxGa1-xAs. 

V0 = e0*0.62*(1.594*xx + xx.*(1 - 

xx).*(0.127 - 1.310*xx)); 

Where x is 0.3

  

From the equation we can see where the band 

offset (conduction band offset) came about 

using MATLAB 

 

 
 

Table2: Length of Width Saitta and The Energy State 

 
 

 

From Table2, we have that x=0.5 is calculated 

both for analytical (graphical solution) and 

infinite quantum well then from our objective 

number 5  we have been able to compare the 

  

x=0.3  

 

x=0.5 

Lw (nm) § En(eV) Analytical  EG Infinite Quantum 

Well 

10.0000 0.3183 0.2805 0.3447 0.2183 

20.0000 0.5526 0.1736 0.0862 0.0546 

40.0000 0.8649 0.1063 0.0215 0.0136 

60.0000 1.045 0.069 0.0096 0.0061 

80.0000 1.129 0.0453 0.0054 0.0034 

100.0000 1.213 0.0335 0.0034 0.0022 
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energies in electron volt and length of the well 

(nm) in both graphical method with the infinite 

quantum well method of the solution. 

 

Fig. 6: A graph of tan(ξ),√
𝛃 𝟐

𝛏𝟐
− 𝟏 against ξ 

Fig. 6 is a graph which we use to get the energy 

of the eigenstates using the intersection of x 

and y axis, which leads us to the Table below.  

 

Table3: Ground State Energy for GaAs/AlxGa1-xAs Quantum Well 

 

Length Of Width(Lw) In Quantum 

Well (nm) 

Quantized Levels (eV) 

0.2 0.3 0.5 

10 0.1589 0.2305 0.3361 

20 0.1379 0.1736 0.2437 

40 0.0894 0.1063 0.1264 

60 0.0591 0.069 0.0788 

80 0.0402 0.0453 0.0518 

100 0.0293 0.0335 0.0362 

 

From Table3 we have that the length of width 

(nm) iscalculated at different quantized 

(energy) levels, which aided the development 

of the plots shown in . 7.  
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Fig. 7: A Graph Of Energy Measured In Electron Volt Against Length Of The Width 

Measured In Angstrom. 
 

From Fig. 7 the energy band gap between the 

three quantized levels tells us that, at 0.5 and 

0.3 there energy band gap is more when 

compared to that of 0.3and 0.2.Furthermore, 

Table 3 is the solution to the graph in Fig. 7. 
 

4.0 Conclusion 
 

The study of the graphical solution of the 

eigenstates of an electron in a finite quantum 

well has provided a deep insight into the 

complex behavior of quantum particles within 

confined potentials. By employing the 

Schrödinger wave equation, we derived and 

analyzed the eigenvalues and eigenfunctions 

that describe the energy states of electrons in a 

finite quantum well. The graphical methods 

used in this analysis, implemented through 

MATLAB, proved effective in solving for 

these eigenstates, particularly for illustrating 

how the number of discrete energy levels 

depends on the well parameters, such as barrier 

height and well width. 
 

This study provides the following highlight 

(i) Discrete Energy Levels: Unlike 

classical particles, electrons in a finite 

quantum well exhibit discrete energy 

levels due to quantum confinement. 

These energy levels are influenced by 

the well’s dimensions and the potential 

barrier height, with fewer levels present 

as the well width decreases or the 

barrier height increases. 

(ii) Probability Distribution: The wave 

functions derived from the Schrödinger 

equation illustrate the probability 

distributions of electrons within the 

well. The normalization of these wave 

functions ensures that the total 

probability of finding the electron 

within the well is unity, emphasizing 

the quantum mechanical principle of 

probability amplitudes. 

(iii)Comparison with Infinite Well: The 

finite quantum well provides a more 

realistic model compared to the infinite 

potential well, where the probability of 

finding an electron outside the well is 

non-zero, even when the electron's 

energy is less than the potential barrier. 

This phenomenon is absent in the 



Communication in Physical Sciences, 2024, 11(3): 524 -535 534 
 

 

infinite well model, demonstrating the 

importance of considering finite 

potentials in practical applications. 

(iv) Technological Relevance: The 

understanding of electron behavior in 

quantum wells has significant 

implications for the development of 

various semiconductor devices, 

including quantum well lasers, 

transistors, and LEDs. The precise 

control over electron states and energy 

levels in these devices underscores the 

importance of quantum mechanical 

principles in modern technology. 

In conclusion, the graphical method used in this 

study provides a robust approach to solving for 

the eigenstates of electrons in a finite quantum 

well, offering a clear visualization of how well 

parameters affect the energy levels. This 

method, along with the detailed mathematical 

derivations, contributes to a deeper 

understanding of quantum confinement and its 

applications in semiconductor physics. As 

technology continues to evolve, such quantum 

mechanical analyses will remain pivotal in the 

innovation and enhancement of electronic and 

optoelectronic devices. 
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