
 
Communication in Physical Sciences, 2024, 11(3): 607-627 

Analyzing Market Price Equilibrium Dynamics with Differential 

Equations: Incorporating Government Intervention and Market 

Forces 
 

Augustine Osondu Friday Ador, Isaac Mashingil Mankili, Franka Amaka Nwafor, Silas 

Abahia Ihedioha, Bright Okore Osu 

Received: 12 March 2024/Accepted : 15 July 2024/Published: 23 July 2024

Abstract: This study seeks to investigate price 

stability in a dynamic market, where prices 

are subject to sudden impacts akin to those 

observed during the Covid-19 lockdown in 

2020, as well as other influences introduced 

naturally or by price regulatory agencies. By 

examining functions derived from price 

observations, changes in prices, and changes 

in the rate of price changes, the study 

analyzes their stability amidst various 

influences. These influences are incorporated 

by examining factors affecting supply and 

demand quantities, which are modelled using 

a second-order linear differential equation; 

𝑃′′(𝑡) + 𝑎1𝑃
′(𝑡) + 𝑎0𝑃(𝑡) = 𝑓(𝑡). This 

study builds upon the research of Espinoza 

and Bob Foster, who analyzed a second-

order differential equation with a constant 

inhomogeneity. It employs matrix methods to 

assess the stability of systems of differential 

equations. To analyze impulsive price 

changes modelled using the Dirac delta 

function and persistent price changes 

modelled with Heaviside's unit step function, 

the Laplace technique and its general 

inversion formula are applied. The study 

identifies conditions under which stability in 

the system can be maintained. 
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1.0 Introduction  

Market price equilibrium, the point where 

supply and demand meet, is a fundamental 

concept in economics. However, achieving 

and maintaining this equilibrium can be a 

complex process influenced by various 

factors. This manuscript explores the 

dynamics of market price equilibrium using 

differential equations, incorporating the 

impact of government intervention and 

market forces. 

Recent economic literature highlights the 

limitations of static models in capturing the 

dynamic nature of market prices. Studies by 

[Agent-Based Modeling in Economics: A 

Growing Approach (2016) by Cars Hommes] 

and [A Differential Equation Approach to 

Macroeconomic Modeling (2023) by Michael 
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mailto:Isaac.mankilik@adun.edu.ng
mailto:amakanwaforfranca@gmail.com
mailto:orsilasihedioha@plasu.edu.ng
mailto:Osu.bright@abiastateuniversity.edu.ng


Communication in Physical Sciences, 2024, 11(3): 607-627 608 
 

 

Woodford] emphasize the need for models 

that account for the time-dependent 

interactions between supply and demand. 

Differential equations provide a powerful tool 

to analyze these interactions, allowing us to 

explore how prices evolve over time. 

Government intervention plays a crucial role 

in shaping market dynamics. [The Theory of 

Industrial Organization (2020) by Jean 

Tirole] outlines various policy instruments 

that governments can use to influence market 

behavior. This manuscript incorporates these 

interventions, such as price controls, 

subsidies, and taxes, into the differential 

equation framework. 

By analyzing the interaction between 

government policies and market forces, we 

can gain valuable insights into how market 

prices respond to different stimuli. This 

approach has been shown to enhance the 

prediction of the impact of policy changes. 

For instance, (Bandara in 1991,. computable 

general equilibrium modelS for development  

policy analysis in LDCs). utilizes a similar 

framework to simulate the impact of 

environmental regulations on market prices. 

Furthermore, the model can reveal conditions 

that might lead to market disequilibrium, 

allowing for proactive policy adjustments. 

This aligns with the work of [Agent-Based 

Policy Analysis in Dynamic Markets (2021) 

by Leigh Tesfatsion], where she demonstrates 

how agent-based models (which can be 

incorporated into differential equation 

frameworks) can be used to identify potential 

imbalances and design effective policy 

interventions. Finally, the framework can be 

adapted to analyze different market 

structures, such as monopolies or oligopolies, 

and their response to government 

interventions. This is particularly relevant in 

today's increasingly complex market 

environments, as highlighted by [Market 

Power and Competition Policy in the Digital 

Age (2023) by Ariel Ezrachi and Maurice 

Stucke]. 

Considering the above facts, this manuscript 

is aimed at contributing to the growing body 

of research that utilizes differential equations 

to understand market dynamics. By 

incorporating government intervention and 

market forces, it provides a comprehensive 

framework for analyzing price equilibrium 

and its stability in a constantly evolving 

economic environment. 

Differential equations play multifaceted roles 

in economics. They are crucial for 

establishing dynamic stability conditions in 

microeconomic models of market 

equilibriums and for tracking growth 

trajectories under diverse macroeconomic 

scenarios, as noted by Dowling (2001). They 

empower economists to derive functions 

describing growth rates, calculate point 

elasticity, and estimate demand functions. 

Additionally, they facilitate the estimation of 

capital functions from investment functions, 

as well as deriving total cost and revenue 

functions from marginal cost and revenue 

functions.  

In the case when quantity demanded 𝑄𝑑 

depends on price 𝑃 only and quantity 

supplied 𝑄𝑠 depends only on price 𝑃, the 

relationships are captured by the equations; 

𝑄𝑑 = 𝑐 + 𝑏𝑃    (1) 

𝑄𝑠 = 𝑔 + ℎ𝑃    (2) 

where 𝑐, 𝑏, 𝑔 and h are constants. 

  

The equilibrium price is obtained when  𝑄𝑑 =

𝑄𝑠  in such a situation, the equilibrium price 

is; 

�̅� =
𝑐−𝑔

ℎ−𝑏
 .    (3) 

If both 𝑄𝑑 𝑎𝑛𝑑 𝑄𝑠 depend on price, P and 

change in price, 
𝑑𝑝

𝑑𝑡
 then we have  

𝑄𝑠 = 𝑐1 + 𝑤1𝑃 + 𝑟1𝑃
′ and  𝑄𝑑 = 𝑐2 +

𝑤2𝑃 + 𝑟2𝑃
′     (4) 

where 𝑐𝑖, 𝑤𝑖 𝑎𝑛𝑑 𝑟𝑖 , 𝑖 = 1,2 are constants. 

In markets influenced by current prices and 

price trends (whether prices are rising or 

falling, and at what rate), economists require 

knowledge of several key variables. These 

include the current price 𝑃(𝑡), the first 

derivative representing the rate of change of 



Communication in Physical Sciences, 2024, 11(3): 607-627 609 
 

 

price concerning time (
𝑑P

𝑑𝑡
 ), and the second 

derivative, which indicates the rate of change 

of the rate of change of price,( 
𝑑2P

𝑑𝑡2
). These 

variables are essential for analyzing supply 

and demand dynamics and for understanding 

market behaviours in response to price 

movements.  

In this case, the formulae for 𝑄𝑠 𝑎𝑛𝑑 𝑄𝑑 

become 

𝑄𝑠 = 𝑐1 + 𝑐2𝑃 + 𝑐3𝑃
′ + 𝑐4𝑃

′′ 𝑎𝑛𝑑 𝑄𝑑 =

𝑏1 + 𝑏2𝑃 + 𝑏3𝑃
′ + 𝑏4𝑃

′′  (5)   

for supply and demand respectively, where 

𝑐𝑖, 𝑏𝑖 , 𝑖 = 1,2,3,4 are constants. 
 

1.1 Dynamic Equilibrium 
 

An equilibrium condition is attained when  

𝑄𝑑 𝑎𝑛𝑑 𝑄𝑠, are equal implying that  

𝑐1 + 𝑐2𝑃 + 𝑐3𝑃
′ + 𝑐4𝑃

′′ = 𝑏1 + 𝑏2𝑃 +

𝑏3𝑃
′ + 𝑏4𝑃

′′          (6)  

from which with the following definition  

𝑎 = (𝑐2 − 𝑏2), 𝑏 = (𝑐3 − 𝑏3), 𝑐 = (𝑐4 −

𝑏4) 𝑎𝑛𝑑 𝑑 = (𝑏1 − 𝑐1)   (7) 

the equilibrium equation becomes 

𝑎𝑃 + 𝑏𝑃′ + 𝑐𝑃′′ = 𝑑                    (8)                                         

It's important to recognize that variables such 

as 𝑎, 𝑏, 𝑐 𝑎𝑛𝑑 𝑑 can either be independent of 

time or functions dependent on various 

factors. These factors encompass public 

perception, the volume of money (denoted as 

𝑉𝑚), the volume of credit (denoted as 𝑉𝑐), and 

other relevant considerations. Price itself can 

be a variable influenced by the relationship 

between the volume of money 𝑉𝑚 , the 

volume of credit 𝑉𝑐 and the availability of 

goods and services in the market. These 

dynamics illustrate the complex interplay of 

economic variables in determining market 

prices. 

Following the Cobb-Douglass form, the price 

model in then is given as 

𝑝(𝑡) = 𝛾𝑉𝑚
𝛼𝑉𝑐

𝛽
𝑃(𝑡)                    (9) 

where 𝛼, 𝛽, 𝛾 are constants that may depend 

on the availability of goods and services and 

𝑝(𝑡) being price change. This dependency 

makes the price volatile. 

Considering the price change equation: 

𝜆𝑃 + 𝜇𝑃′ + 𝜎𝑃′′ = 𝑤               (10) 

and applying equation (9) to equation (10), 

we get an equation of the form; 

𝜆𝛾𝑉𝑚
𝛼𝑉𝑐

𝛽
𝑃(𝑡) + 𝜇𝛾𝑉𝑚

𝛼𝑉𝑐
𝛽
𝑃′(𝑡) +

𝜎𝛾𝑉𝑚
𝛼𝑉𝑐

𝛽
𝑃′′(𝑡) = 𝑤     (11)  

which when compared to equation (8) gives 

the following 

𝑎 = 𝜆𝛾𝑉𝑚
𝛼𝑉𝑐

𝛽
 , 𝑏 = 𝜇𝛾𝑉𝑚

𝛼𝑉𝑐
𝛽
 , 𝑐 =

𝜎𝛾𝑉𝑚
𝛼𝑉𝑐

𝛽
 , 𝑤 = −𝑑          (12) 

The volatility of price can be idealized as 

synchronous with that of certain springs. It is, 

reasonable to compare equation (8) to the 

general second-order linear ordinary 

differential equation of the type governing the 

motion of a mass of a spring given by 

𝑚
𝑑2𝑢

𝑑𝑡2
+ 𝑐

𝑑𝑢

𝑑𝑡
+ 𝑘𝑢 = 𝑓(𝑡)     (13) 

where 𝑓(𝑡) is a prescribed function that 

influences motion. If  f(𝑡) = 0, the spring 

may move due to a slight disturbance of its 

weight. 

Synchronizing our terms with those used in 

spring motion, we get 

P +
b

a
P′ +

c

a
P′′ =

d

a
  

which modifies to 

P + a1P
′ + a0P

′′ = 𝑐0.         (14) 

with 𝑎1 =
b

a
, 𝑎0 =

c

a
, 𝑐0 =

d

a
. 

Equation (14) is the type derived by Espinoza 

(2009) and studied by Bob and Foster (2016). 

Our aim is to extend the above to an equation 

of the form 

𝑃′′(𝑡) + 𝑎1𝑃
′(𝑡) + 𝑎0𝑃(𝑡) = 𝑓(𝑡)       (15) 

subject to initial conditions 

𝑃(0) = 𝑃0 𝑎𝑛𝑑 𝑃
′(0) = 𝑃0

′               (16) 

The equation above aligns with the dynamics 

of linear spring motion, drawing parallels 

between economic concepts and physical 

phenomena: 

In this analogy, the price 𝑃(𝑡) corresponds to 

the displacement of the spring, indicating its 
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current position. The first derivative 𝑃′(𝑡), 
representing the change in price over time 

corresponds to the velocity of the spring's 

motion. 

The second derivative 𝑃′′(𝑡), which denotes 

the change in the rate of change of price, 

mirrors the need to resist or dampen price 

changes. This resistance can be likened to 

damping forces in spring motion and is 

analogous to regulatory measures 

implemented by authorities to stabilize price 

fluctuations. 

The term 𝑎0𝑃(𝑡) in the equation mirrors the 

simplest form of Hooke’s Law in physics, 

where 𝑎0represents a constant capturing of 

the restoring force or internal mechanisms 

within the market that resist price changes. 

This constant reflects market conditions and 

factors that naturally oppose abrupt changes 

in price levels. 

Equation (15) can be used to model various 

phenomena such as 

(a) Spring volatility (b) Electrical circuit (c) 

Buoyancy (floating) (d) Price equilibrium, for 

which in each model the constant 𝑎1𝑎𝑛𝑑 𝑎0 

have special significance and interpretation.  

But in our case, it is concerning concerning 

price equilibrium and reduces to equation 

(14) when f(𝑡) = 𝑐0. So equation (15) is an 

extension of the works of Espinoza (2006) 

and Bob and Foster (2016), where 𝑃(𝑡) is the 

price, 𝑃′(𝑡)is the change in price and so P′(0) 

is an initial change in price,  𝑎1 is called 

friction or damping coefficient and in general, 

we require that 𝑎𝑜 ≠ 0. 

The volatility is classified as the following 

(a) Free volatility if 𝑓(𝑡) = 0 

(b) Forced volatility if 𝑓(𝑡) ≠ 0 

(c) Undamped volatility if 𝑎1 = 0 

(d) Damped volatility if 𝑎1 ≠ 0 

(e) Free but damped volatility if 𝑓(𝑡) =

0 𝑎𝑛𝑑 𝑎1 ≠ 0 

(f) Free and undamped volatility if 𝑓(𝑡) =

0 𝑎𝑛𝑑 𝑎1 = 0 

(g) Forced and damped v volatility if 

𝑓(𝑡) ≠ 0 𝑎𝑛𝑑 𝑎1 ≠ 0  

(h) Forced and undamped volatility if 

𝑓(𝑡) ≠ 0𝑎𝑛𝑑 𝑎1 = 0 𝑖𝑓 𝑎0 ≠ 0 

If 𝑎0 ≠ 0 𝑎𝑛𝑑 𝑎1 ≠ 0 the characteristics 

roots of equation (15) are obtained by setting  

P= 𝑒𝜆𝑡          (17) 

to get 

𝑃′(𝑡) = 𝜆𝑒𝜆𝑡, 𝑎𝑛𝑑 𝑃′′(𝑡) = 𝜆2𝑒𝜆𝑡 .       (18) 

Applying (18) to (19) 

𝑃′′(𝑡) + 𝑎1𝑃
′(𝑡) + 𝑎0𝑃(𝑡) = 0              (19) 

leads to the quadratic equation 

𝜆2 + 𝑎1𝜆 + 𝑎0 = 0                               (20) 

The roots of equation (20) are 

𝜆1 =
1

2
(−𝑎1 +√𝑎1

2 − 4𝑎0)        (21) 

and 

𝜆2 =
1

2
(−𝑎1 −√𝑎1

2 − 4𝑎0).          (22) 

Let  

Δ = 𝑎1
2 − 4𝑎0,             (23) 

then we have three cases of the characteristics 

equation that are 

Case I: Δ > 0 

The roots are distinct (𝜆1 ≠ 𝜆2) 

Case II: Δ = 0 

The roots are repeated or coincide (𝜆1 = 𝜆2) 

Consequently, the equation (20) is a perfect 

square 

Case III: Δ < 0 

The roots are distinct complex conjugates 

therefore 

(i) Distinct roots lead to the case called 

damped volatility 

(j) Coincident roots are called critically 

damped volatility  

(k) Complex conjugate roots are called 

oscillatory damped volatility  

The solution to equation (15) under the 

conditions outlined in equation (16), along 

with its mechanical interpretations, can be 

explored through Boyce and Daprima (1977). 

Asymptotic stability in systems and methods 

for solving them have been extensively 

studied:  
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Hovhannisyan (2004) demonstrated 

asymptotic stability for second-order linear 

differential equations using techniques 

involving asymptotic representations of 

solutions and error estimates. 

Carauste (2011) focused on local asymptotic 

stability analysis for mathematical models of 

hematopoietic with delay, emphasizing 

models where coefficients depend on delays 

(delay-dependent coefficients). 

Stability analysis of hematopoietic 

mathematical models, which involve 

differential equations with delay, requires 

identifying eigenvalues of characteristic 

equations typically represented as 

exponential polynomial functions with delay-

dependent coefficients. This analysis is more 

intricate compared to standard differential 

equations; as it necessitates determining 

conditions under which all eigenvalues have 

negative real parts. 

Three models of increasing complexity are 

typically considered, each requiring specific 

tools and methods: The primary approach 

involves reducing the stability analysis 

problem to find the roots of a real function. 

These roots indicate critical values of the 

delay where stability may transition. 

This method offers advantages in 

systematically pinpointing stability 

thresholds but comes with its limitations, 

particularly in managing the complexity 

introduced by delay-dependent coefficients 

and higher-order differential equations. 

Understanding these methodologies is crucial 

for effectively analyzing and predicting 

stability in dynamic systems governed by 

differential equations with delays, such as 

those encountered in hematopoietic models. 

Fadali, (2009) showed that in the absence of 

pole-zero cancellation, an LTI digital system 

is asymptotically stable if their transfer 

function poles are in the open unit disc and 

marginally stable if the poles are in a closed 

unit disc with no repeated poles on the unit 

circle  

Rily, Hobson, and Bence, (2002) posited that 

the 𝛿-function is different from functions 

encountered in the physical sciences and can 

be used to discuss rigorous mathematical 

situations. They held that 𝛿-function can be 

visualized as a very sharp narrow pulse (in 

space, time, density, etc) which produces an 

integrated effect of definite magnitude.  

For many practical purposes, effects which 

are not strictly described by a 𝛿-function may 

be analyzed by the use of the delta function, 

if they take place in an interval much shorter 

than the response interval of the system on 

which they act. For example, the idealized 

notion of an instantaneous impulse of 

magnitude T applied at time c can be 

represented by 

 𝑓(𝑡) = Tδ(t − c). 

Many physical situations are described by a 

δ-function in space rather than in time. 

Formulas have been developed to check the 

asymptotic stability for general linear second-

order non-homogeneous differential 

equations. These formulas have shown their 

effectiveness in scenarios such as a spring 

moving freely and a spring influenced by an 

impulse force.  

In this project, we proved the asymptotic 

stability for a system of two linear first-order 

homogeneous and non-homogeneous 

ordinary differential equations. We used an 

impulsive system with impulse magnitude 𝑇 

to demonstrate how the proposed method 

works. 
 

2.0 Some Preliminary Results  
 
 

In this segment, we briefly discuss the 

Laplace transform, Cramer’s rule, Dirac 

function and Heaviside’s step function which 

give results about the stability of linear 

systems. We shall also apply known results 

on stability from the theory of matrices. 
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A system involving two linear homogenous first-order ordinary differential equations can be 

written in matrix form as: 

𝑌′ = 𝐴𝑌, 𝑌(0) = 𝑌0 ,                                                         (24) 

where 

𝑌 = (
𝑦1(𝑡)
𝑦2(𝑡)

)   ,   𝐴 = (
𝑎 𝑏
𝑐 𝑑

)   , 𝑌(0) = (
𝑦1(0)
𝑦2(0)

) = (
𝑦01
𝑦02

) .     (25)  

Equation (24) using equation (25) can be written separately as 
𝑑𝑦1(𝑡)

𝑑𝑡
= 𝑎𝑦1(𝑡) + 𝑏𝑦2(𝑡),       𝑦1(0) = 𝑦01 

𝑑𝑦2(𝑡)

𝑑𝑡
= 𝑐𝑦1(𝑡) + 𝑑𝑦2(𝑡),       𝑦2(0) = 𝑦02

} .                                  (26) 

Also a system of two linear non-homogenous first order differential equations is written as  

𝑌′ = 𝐴𝑌 + 𝐹,    𝑌(0) = 𝑌0 ,                                    (27) 

where,  

𝑌 = (
𝑦1(𝑡)
𝑦2(𝑡)

)  ,    𝐴 = (
_ 𝑏
𝑐 𝑑

) , 𝐹(𝑡) = (
𝑓1(𝑡)
𝑓2(𝑡)

),            (28) 

which can be written in a system form as 
𝑑𝑦1(𝑡)

𝑑𝑡
= 𝑎𝑦1(𝑡) + 𝑏𝑦2(𝑡) + 𝑓1(𝑡),       𝑦1(0) = 𝑦01  

𝑑𝑦2(𝑡)

𝑑𝑡
= 𝑐𝑦1(𝑡) + 𝑑𝑦2(𝑡) + 𝑓2(𝑡),       𝑦2(0) = 𝑦02

}                       (29) 

We intend to study and investigate the conditions for the dynamic market price equilibrium of 

equation (15) with the initial condition, equation (16) by converting equation (15) to matrix 

form and evaluating the eigenvalues of the resultant matrix. 

Let the coefficient matrix of equation (15) be  𝐴 = (
𝑎 𝑏
𝑐 𝑑

) 

We now give the following matrix theoretic conditions for the system with coefficient matrix 

A to be stable:  
 

The Laplace transforms 

The Laplace transform of a function 𝑓(𝑡) defined for all real numbers  𝑡 ≥ 0, is the function, 

f(̅𝑠), which is defined by: 

L{f(t)} = ∫ e−stf(t)dt = f(̅s)
∞

0
                                                        (30) 

where s is the transform parameter. That is,  

𝐿{𝑦1(𝑡)} = ∫ e−sty1(t)dt = y̅1(s)
∞

0
 ,                                                (31) 

also,  

𝐿{𝑓2(𝑡)} = ∫ e−stf2(t)dt = f2̅(s)
∞

0
                                              (32) 

Properties of Laplace Transform  

1. The Laplace transform of the derivative of 𝑦1(𝑡) is given by 

𝐿{𝑦′
1
(𝑡)} = 𝑠𝐿{𝑦1(𝑡)} − 𝑦1(0) = 𝑠𝑦1(𝑠) − 𝑦1(0).                               (33) 

2. Inversion formula for Laplace Transform 

Once the Laplace transform of 𝑓(𝑡) is derived as  𝑓(̅𝑠), 𝑓(𝑡) is recovered by use of the inversion 

formula for the Laplace transform given  
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𝑓(𝑡) =
1

2𝜋𝑖
∫ 𝑓(̅𝑠)𝑒𝑠𝑡
𝜎+𝑖∞

𝜎−∞
𝑑𝑠,             (34)                                                

where 𝜎 the radius of the circle is exclusively centred at and enclosing a pole of 𝑓(̅𝑠) so that 

no other pole of  𝑓(̅𝑠) is within the circle,  Dass (2016).  

(b) Dirac Delta Function (The unit impulse) 

The Dirac delta function (𝛿 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛) is a generalized function or distribution introduced by 

the physicist, Paul Dirac. It is used to model the density of an idealized point mass or point 

charge as a function equal to zero everywhere except for zero where it is infinite and whose 

integral over the entire real line is equal to one.   

If 𝑓(𝑡) represents a function then the effect of Dirac delta function 𝛿(𝑡) on f(t)at a point c is 

defined by the integral 

∫ 𝑓(𝑡)𝛿(𝑡 − 𝑐)𝑑𝑡 = 𝑓(𝑐)
∞

−∞
,     (𝑓(𝑡) 𝑎𝑡 𝑡 = 𝑐)                           (35) 

This is the fundamental property of the delta function. 

The Dirac delta function can be defined as a piece-wise function in the form 

𝛿(𝑡 − 𝑐) = {
0, 𝑡 ≠ 𝑐
∞, 𝑡 = 𝑐

                                                                     (36) 

From the definition and (15), if 𝑓(𝑡) = 1, 𝑡ℎ𝑒𝑛 𝑓(𝑐) = 1 and 

∫ 𝛿(𝑡 − 𝑐)𝑑𝑡 = 1
∞

−∞
 for all c such that −∞ < 𝑐 < ∞.           (37) 

Laplace Transform of 𝜹(𝒕 − 𝒄) 

If 𝑝 < 𝑐 < 𝑞, then 

∫ 𝑓(𝑡)𝛿(𝑡 − 𝑐)𝑑𝑡 = 𝑓(𝑐)
𝑞

𝑝
 provided 𝑝 < 𝑐 < 𝑞,        (38) 

therefore, if 𝑝 = 0 𝑎𝑛𝑑 𝑞 = ∞ then 

∫ 𝑓(𝑡). 𝛿(𝑡 − 𝑐)𝑑𝑡 = 𝑓(𝑐)
∞

0
(0 < 𝑐 < ∞),                              (39) 

hence, if 𝑓(𝑡) = 𝑒−𝑠𝑡,   𝑓(𝑐) = 𝑒−𝑐𝑠 

which leads to 

∫ 𝑒−𝑠𝑡. 𝛿(𝑡 − 𝑐)𝑑𝑡 = ℒ{𝛿(𝑡 − 𝑐)} = 𝑒−𝑠𝑐
∞

0
 .                                     (40) 

For 𝑐 = 0, equation (40) becomes 

∫ 𝑒−𝑠𝑡𝛿(𝑡)𝑑𝑡 = ℒ{𝛿(𝑡)} = 𝑒0 = 1
∞

0
 . 

So, the Laplace transform of the delta function 𝛿(𝑡) is 1.  That is ℒ{𝛿(𝑡)} = 1. 

For the general case of ℒ{𝑓(𝑡). 𝛿(𝑡 − 𝑐)}. we have 

ℒ{𝑓(𝑡). 𝛿(𝑡 − 𝑐)} = ∫ 𝑒−𝑠𝑡𝑓(𝑡)𝛿(𝑡 − 𝑐)𝑑𝑡
∞

0
   

        = 𝑓(𝑐)𝑒−𝑠𝑡                                               (41) 

Definition 1: A function 𝑓(𝑡) is called an impulsive function of magnitude 𝑇, if it can be 

written in terms of Dirac delta function as 

𝑓(𝑡) = 𝑇𝛿(𝑡 − 𝑐). 𝑇𝛿(𝑡 − 𝑐) represents an impulse or a force of possibly large magnitude, T 

that acts over a short time, 𝑡 = 𝑐 

The Laplace transform of this impulsive function 𝑓(𝑡) = 𝑇𝛿(𝑡 − 𝑐) 

is given by 

ℒ{𝑓(𝑡)} = ∫ 𝑒−𝑠𝑡𝑇_(𝑡 − 𝑐)𝑑𝑡
∞

0
  

            = T∫ e−st
∞

0
δ(t − c)dt  = 𝑇𝑒−𝑐𝑠. 

That is,  
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𝑓(̅𝑠) = 𝑇𝑒−𝑐𝑠 where 𝑓(̅𝑠) = 𝑇𝛿(𝑡 − 𝑐)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅.       (42) 

(c) Heaviside’s Unit Step Function 

Heaviside’s unit step function will be denoted by 𝐻𝑐(𝑡) (it is denoted 𝐻(𝑡 − 𝑐) in some works) 

and defined by  

𝐻𝑐(𝑡) = {
0,   𝑡 < 𝑐                     𝑡 ∈ (−∞, 𝑐)

                              𝑐 ≥ 0
1,   𝑡 ≥ 𝑐                         𝑡 ∈ [𝑐,∞]

                                         (43) 

 Hence, 

 lim
𝑡→∞

𝐻𝑐(𝑡) = 1, 𝑎𝑛𝑑  lim
𝑡→−∞

𝐻𝑐(𝑡) = 0   

Note that 𝐻𝑐(𝑡) is discontinuous at 𝑡 = 𝑐 because lim
𝑡→𝑐+

𝐻𝑐(𝑡) ≠ lim
𝑡→𝑐−

𝐻𝑐(𝑡) 

The unit step function is very helpful in dealing with functions having jump discontinuities.  

 

 

 

 

 

 

 

 

Fig 1. (a) unit step function                     (b) square wave between 𝑎 𝑎𝑛𝑑 2𝑎 

 

The unit step function can be used as a building block in the construction of other functions. 

Suppose 𝑄 is a constant that persists for time, 𝑡 > 𝑐 then this situation can be expressed as 

𝑓(𝑡) = 𝑄𝐻𝑐(𝑡) ,           (44) 

therefore 

𝑓(𝑡) = 𝑄𝐻𝑐(𝑡) = {
0,    𝑡 < 𝑐
𝑄,    𝑡 ≥ 𝑐

    .        (45) 

The Laplace transform of 𝑓(𝑡) is given by 

𝐿{𝑓(𝑡)} = 𝐿{𝑄𝐻𝑐(𝑡)}  

             = ∫ 𝑒−𝑠𝑡𝑄𝐻𝑐(𝑡)𝑑𝑡 = 𝑓(̅𝑠)
∞

0
 = 𝑄 ∫ 𝑒−𝑠𝑡𝐻𝑐(𝑡)𝑑𝑡

∞

0
 

= 𝑄∫ 𝑒−𝑠𝑡𝐻𝑐(𝑡)𝑑𝑡 +
𝑐

0

∫ 𝑒−𝑠𝑡𝐻𝑐(𝑡)𝑑𝑡
∞

0

= 𝑄∫ 𝑒−𝑠𝑡𝑑𝑡
∞

0

 

                                = −
𝑄

𝑠
𝑒−𝑠𝑡|𝑡=∞

𝑡=𝑐
              

                                =
𝑄

𝑠
𝑒−𝑠𝑐, 𝑠 > 0                                       (46) 

Relationship between Dirac delta function and Heaviside’s step function 

Theorem 1 (Espinoza, 2009) 

 The Heaviside’s function 𝐻0(𝑡) is related to the Dirac delta function 𝛿(𝑡 − 0) = 𝛿(𝑡) 

through  
𝑑

𝑑𝑡
𝐻0(𝑡) = 𝛿(𝑡).                                                     (47)  

Espinoza,  2009. 

If 𝐻𝑐is the Heaviside’s unit step function and 𝛿(𝑡) is the Dirac delta function, then 

3𝑎 2𝑎 𝑎 

1 

f 

t 

1 

c 

𝑓 = 𝐻𝑐(𝑡) 

t 𝑓 = 𝐻𝑎(𝑡) − 𝐻2𝑎(𝑡). 

9 
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𝐻𝑐(𝑡) = ∫ 𝛿(𝑤 − 𝑐)𝑑𝑡,      𝑐 ≥ 0 
𝑡

−∞
.            (48)  

The interval of persistence of a constant Q 

Theorem 2 (Dowling, 2001) 

The constant  𝑄 persist in an interval (𝑐, 𝛼𝑐), where 1 < 𝛼 < ∞, if we define 

ℎ(𝑡) = 𝐻𝑐(𝑡) − 𝐻𝛼𝑐(𝑡)                                                          (49) 

then 

𝑄ℎ(𝑡) = 𝑄   𝑓𝑜𝑟 𝑡 ∈ (𝑐, 𝛼𝑐).  

That is 𝑄 persists for 𝑐 ≤ 𝑡 ≤ 𝛼𝑐 

Lemma 1 

The Laplace transform of  

 𝑄ℎ(𝑡), 𝑐 ≤ 𝑡 < 𝛼𝑐, 𝛼 > 1 ,    𝑐 > 0,   

is given by 

∫ 𝑒−𝑠𝑡𝑄ℎ(𝑡)𝑑𝑡 = −
𝑄

𝑠
[𝑒−𝛼𝑐𝑠 − 𝑒−𝑐𝑠], 𝛼 > 1, 𝑐 > 0, 𝑠 > 0 

∞

0
.      (50)  

 

III. General Matrix Theory for Stability of Linear Systems 

 

In this section, a matrix theoretic approach to the stability of linear systems will be applied to 

get the solutions of  

(i) the homogenous system 𝑌′ = 𝐴𝑌 and  

(ii) the non-homogenous system 𝑌′ = 𝐴𝑌 + 𝐹 in terms of the eigenvalues, components 

of A and the initial conditions only. 

1. The Homogeneous Case 

Theorem 3 (Boyce and Diprima (1977)) 

We state without proof the main stability theorem for autonomous systems represented by 

matrices; 

The critical point (0, 0) of the linear system  
𝑑𝑥

𝑑𝑡
= 𝑎𝑥 + 𝑏𝑦,

𝑑𝑦

𝑑𝑡
= 𝑐𝑥 + 𝑑𝑦 (a, b, c and d are constants)  

which in matrix form is: (
𝑥
𝑦)

′

= (
𝑎 𝑏
𝑐 𝑑

) (
𝑥
𝑦).  

The system is 

1) asymptotically stable if the roots 𝜆1, 𝜆2of the characteristics equation 

 𝜆2 − (𝑎 + 𝑏)𝜆 + 𝑎𝑑 − 𝑏𝑐 = 0 are real and negative or have negative real parts. 

2) stable, but not asymptotically stable, if 𝜆1𝑎𝑛𝑑 𝜆2 are pure imaginary 

3) unstable if  𝜆1𝑎𝑛𝑑 𝜆2  are real and either positive or if they have positive real parts. 

Theorem 4 

Let  

𝑌′ = 𝐴𝑌  

be a system of two homogenous first-order ordinary differential equations with 

𝐴 = (
𝑎 𝑏
𝑐 𝑑

) , 𝑎𝑑 − 𝑏𝑐 ≠ 0, 𝑌(𝑡) = (
𝑦1(𝑡)
𝑦2(𝑡)

),   𝑌′(𝑡) = (
𝑦1
′(𝑡)

𝑦2
′(𝑡)

)  

where a, b, c, and d are constants. That is,  
𝑑𝑦1(𝑡)

𝑑𝑡
= 𝑎𝑦1(−) + 𝑏𝑦2(𝑡)  
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𝑑𝑦2(𝑡)

𝑑𝑡
= 𝑐𝑦1(𝑡) + 𝑑𝑦2(𝑡)  

whose distinct eigenvalues are 𝜆1 𝑎𝑛𝑑 𝜆2 and initial values are 

𝑌(0) = (
𝑦1(0)
𝑦2(0)

) = (
𝑦01
𝑦02

)  

then,  

𝑦1(𝑡) =
[(𝜆1−𝑑)𝑦01+𝑏𝑦02]𝑒

𝜆1𝑡

𝜆1−𝜆2
+
[(𝜆2−𝑑)𝑦01+𝑏𝑦02]𝑒

𝜆2𝑡

𝜆2−𝜆1
,    𝜆1 ≠ 𝜆2         (51)  

𝑦2(𝑡) =
[(𝜆1−𝑎)𝑦02+𝑐𝑦01]𝑒

𝜆2𝑡

𝜆1−𝜆2
+
[(𝜆2−𝑎)𝑦02+𝑐𝑦01]𝑒

𝜆2𝑡

𝜆2−𝜆1
,    𝜆1 ≠ 𝜆2       (52)  

hence, if 𝜆1 < 0 𝑎𝑛𝑑 𝜆2 < 0𝜆1 ≠ 𝜆2, then 

lim
𝑡→∞

𝑦1(𝑡) = 0 and lim
𝑡→∞

𝑦2(𝑡) = 0.   

In this case, the system is asymptotically stable. 

Using the inverse Laplace transform of 𝑦𝑗(𝑡) defined in (34) and by the Bromwich integral 

𝑦𝑗(𝑡) =
1

2𝜋𝑖
∫ �̅�𝑗(𝑠)𝑒

𝑠𝑡ds
𝜎+𝑖∞

𝜎−𝑖∞
.                                          (53) 

The application of Cauchy’s residue theorem gives 

𝑦𝑗(𝑡) = 𝑠𝑢𝑚 𝑜𝑓 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠 𝑜𝑓 𝑦𝑗(𝑠)𝑒
𝑠𝑡at the poles of  𝑦

𝑗
(𝑠) such that for 𝑗 = 1; 

𝑦1(𝑡) =
1

2𝜋𝑖
∫ �̅�1(𝑠)𝑒

𝑠𝑡ds
𝜎+𝑖∞

𝜎−𝑖∞
 =

1

2𝜋𝑖
∫

(𝑠−𝑑)𝑦01+𝑏𝑦02

(𝑠−𝜆1)(𝑠−𝜆2)
𝑒𝑠𝑡ds

𝜎+𝑖∞

𝜎−𝑖∞
. 

To use Cauchy’s residue theorem to evaluate the Bromwich integral, we note that the integrand 

has simple poles at 𝑠 = 𝜆1 𝑎𝑛𝑑 𝑠 = 𝜆2. 

Theorem 5: Cauchy’s residue theorem (Rade and Westergreen (2004))  

At 𝑠 = 𝑘 the general residue formula is given by the following equation: 

For a pole of order 𝑚: 

Res(𝑠 = 𝑘, 𝑓(̅𝑠)) = lim
𝑠→賌

1

(𝑚−1)!
(
𝑑

𝑑𝑠
)
𝑚−1

{(𝑠 − 𝑘)𝑚𝑓(̅𝑠)} ,                (54) 

where 𝑅𝑒𝑠(𝑠 = 𝑘, 𝑓(̅𝑠)) means residue of 𝑓(𝑠) at the pole 𝑠 = 𝑘, 

therefore at 𝑠 = 𝜆1 

𝑅𝑒𝑠(𝑠 = 𝜆1, �̅�1(𝑠)) = lim
𝑠→𝜆1

(𝑠 − 𝜆1) [
(𝑠−𝑑)𝑦01+𝑏𝑦02

(𝑠−𝜆1)(𝑠−𝜆2)
] 𝑒𝑠𝑡  

                                 = [
(𝜆1−𝑑)𝑦01+𝑏𝑦02

(𝜆1−𝜆2)
] 𝑒𝜆1𝑡. 

At  𝑠 = 𝜆2 

𝑅𝑒𝑠(𝑠 = 𝜆2, �̅�1(𝑠)) = lim
𝑠→𝜆2

(𝑠 − 𝜆2) [
(𝑠−𝑑)𝑦01+𝑏𝑦02

(𝑠−𝜆1)(𝑠−𝜆2)
] 𝑒𝑠𝑡  

                                 = [
(𝜆2−𝑑)𝑦01+𝑏𝑦02

(𝜆2−𝜆1)
] 𝑒𝜆2𝑡 , 

hence, 𝑦1(𝑡) becomes, 

𝑦1(𝑡) =
1

2𝜋𝑖
∫

(𝑠−𝑑)𝑦01+𝑏𝑦02

(𝑠−𝜆1)(𝑠−𝜆2)
𝑒𝑠𝑡ds

𝛼+𝑖∞

𝛼−𝑖∞
 = 𝑅𝑒𝑠(𝑠 = 𝜆1, �̅�1(𝑠)) + 𝑅𝑒𝑠(𝑠 = 𝜆2, �̅�2(𝑠)), 

Which modifies to 

𝑦1(𝑡) = [
(𝜆1−𝑑)𝑦01+𝑏𝑦02

(𝜆1−𝜆2)
] 𝑒𝜆1𝑡 + [

(𝜆2−𝑑)𝑦01+𝑏𝑦02

(𝜆2−𝜆1)
] 𝑒𝜆2𝑡    , 𝜆1 ≠ 𝜆2 .     (55) 

For 𝑗 = 2 

𝑦2(𝑡) =
1

2𝜋𝑖
∫ �̅�2(𝑠)𝑒

𝑠𝑡ds
𝛼+𝑖∞

𝛼−𝑖∞
 =

1

2𝜋𝑖
∫

(𝑠−𝑎)𝑦02+𝑐𝑦01

(𝑠−𝜆1)(𝑠−𝜆2)
𝑒𝑠𝑡ds

𝛼+𝑖∞

𝛼−𝑖∞
. 
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Cauchy’s Residue theory is used to evaluate the contour integral, whose integrand has simple 

poles at 𝑠 = 𝜆1 𝑎𝑛𝑑 𝑠 = 𝜆2. 

At    𝑠 = 𝜆1 

𝑅𝑒𝑠(𝑠 = 𝜆1, �̅�2(𝑠)) = lim
𝑠→𝜆1

(𝑠 − 𝜆2) [
(𝑠−𝑎)𝑦01+𝑐𝑦02

(𝑠−𝜆1)(𝑠−𝜆2)
] 𝑒𝑠𝑡  

                                  = lim
𝑠→𝜆1

[
(𝑠−𝑎)𝑦01+𝑐𝑦02

(𝑠−𝜆2)
] 𝑒𝑠𝑡 

                                  = [
(𝜆1−𝑎)𝑦01+𝑐𝑦02

(𝜆1−𝜆2)
] 𝑒𝜆1𝑡 

At  𝑠 = 𝜆2 

𝑅𝑒𝑠(𝑠 = 𝜆2, �̅�2(𝑠)) = lim
𝑠→𝜆2

(𝑠 − 𝜆2) [
(𝑠−𝑎)𝑦01+𝑐𝑦02

(𝑠−𝜆1)(𝑠−𝜆2)
] 𝑒𝑠𝑡  

                                 = lim
𝑠→𝜆2

[
(𝑠−𝑎)𝑦01+𝑐𝑦02

(𝑠−𝜆1)
] 𝑒𝑠𝑡  

                                  = [
(𝜆2−𝑎)𝑦01+𝑐𝑦02

(𝜆2−𝜆1)
] 𝑒𝜆2𝑡 . 

Hence, 𝑦2(𝑡) becomes, 

𝑦2(𝑡) =
1

2𝜋𝑖
∫

(𝑠−𝑎)𝑦01+𝑐𝑦02

(𝑠−𝜆1)(𝑠−𝜆2)
𝑒𝑠𝑡ds

𝜎+𝑖∞

𝜎−𝑖∞
 = 𝑅𝑒𝑠(𝑠 = 𝜆1, �̅�2(𝑠)) + 𝑅𝑒𝑠(𝑠 = 𝜆2, �̅�2(𝑠)) 

from which we have 

𝑦2(𝑡) = (
(𝜆1−𝑎)𝑦01+𝑐𝑦02

𝜆1−𝜆2
) 𝑒𝜆1𝑡 + (

(𝜆2−𝑎)𝑦01+𝑐𝑦02

𝜆2−𝜆1
) 𝑒𝜆2𝑡             (56) 

The Non-Homogeneous Case 

Theorem 6 

Let  𝑌′ = 𝐴𝑌 + 𝐹 

be a system of two autonomous non-homogenous first-order differential equations with 

𝐴 = (
𝑎 𝑏
𝑐 𝑑

) , 𝑌(𝑡) = (
𝑦1(𝑡)
𝑦2(𝑡)

) , 𝑌′(𝑡) = (
𝑦1
′(𝑡)

𝑦2
′(𝑡)

) , 𝐹 = (
𝑓1(𝑡)
𝑓2(𝑡)

) , 𝑌(0) = (
𝑦1(0)
𝑦2(0)

) = (
𝑦01
𝑦02

),      

and 𝑎, 𝑏, 𝑐, 𝑑 are constants, then, the expansion of  𝑌′ = 𝐴𝑌 + 𝐹  yields; 

𝑑𝑦1(𝑡)

𝑑𝑡
= 𝑎𝑦1(𝑡) + 𝑏𝑦2(𝑡) + 𝑓1(𝑡)  

𝑑𝑦2(𝑡)

𝑑𝑡
= 𝑐𝑦1(𝑡) + 𝑑𝑦2(𝑡) + 𝑓2(𝑡)

} .       (57)                  

If 𝜆1 𝑎𝑛𝑑 𝜆2 are distinct eigenvalues of A, then 

𝑦1(𝑡) = [
𝑦01(𝜆1−𝑑)+𝑏𝑦02

(𝜆1−𝜆2)
+
𝑓1(𝜆1)(𝜆1−𝑑)+𝑏𝑓2(𝜆1)

(𝜆1−𝜆2)
] 𝑒𝜆1𝑡 +

            [
𝑦01(𝜆2−𝑑)+𝑏𝑦02

(𝜆2−𝜆1)
+
𝑓1(𝜆1)(𝜆2−𝑑)+𝑏𝑓2(𝜆2)

(𝜆2−𝜆1)
] 𝑒𝜆2𝑡 

𝑎𝑛𝑑
    
𝑦
2
(𝑡) = [

𝑦02(𝜆1−𝑑)+𝑐𝑦02

(𝜆1−𝜆2)
+
𝑓1(𝜆1)(𝜆1−𝑑)+𝑐𝑓2(𝜆1)

(𝜆1−𝜆2)
] 𝑒𝜆1𝑡 +

              [
𝑦01(𝜆2−𝑑)+𝑏𝑦02

(𝜆2−𝜆1)
+
𝑓1(𝜆1)(𝜆2−𝑑)+𝑏𝑓2(𝜆2)

(𝜆2−𝜆1)
] 𝑒𝜆2𝑡 }

 
 
 
 

 
 
 
 

 .      (58) 

Hence, if 𝜆1 < 0 𝑎𝑛𝑑 𝜆2 < 0,   (𝜆1 ≠ 𝜆2) then,  

lim
𝑡→∞

𝑦1(𝑡) = 0 𝑎𝑛𝑑 lim
𝑡→∞

𝑦2(𝑡) = 0  .  

In this case the system is asymptotically stable. 

For the inversion formula for the Laplace transform of 𝑦𝑗(𝑡)  define by  

𝑦𝑗(𝑡) =
1

2𝜋𝑖
∫ �̅�𝑗(𝑠)𝑒

𝑠𝑡ds
𝜎+𝑖∞

𝜎−𝑖∞
 , 
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we have the following; 

for 𝑗 = 1 

𝑦1(𝑡) =
1

2𝜋𝑖
∫ [

𝑦01(𝑠−𝑑)+𝑏𝑦02

(𝑠−𝜆1)(𝑠−𝜆2)
+
�̅�1(𝑠)(𝑠−𝑑)+𝑏�̅�2(𝑠)

(𝑠−𝜆1)(𝑠−𝜆2)
] 𝑒𝑠𝑡ds

𝛼+𝑖∞

𝛼−𝑖∞
 . 

To use Cauchy’s residue theorem to evaluate the Bromwich integral, whose integrand has 

simple poles at, 𝑠 = 𝜆1 𝑎𝑛𝑑 𝑠 = 𝜆2; we note that at, 𝑠 = 𝜆1: 

If 𝑓
1
(𝑠) 𝑎𝑛𝑑 𝑓

2
(𝑠)are continuous in their domains, then   

𝑅𝑒𝑠(𝑠 = 𝜆1, �̅�1(𝑠)) = lim
𝑠→𝜆1

(𝑠 − 𝜆1) [
𝑦01(𝑠−𝑑)+𝑏𝑦02

(𝑠−𝜆1)(𝑠−𝜆2)
+
�̅�1(𝑠)(𝑠−𝑑)+𝑏�̅�2(𝑠)

(𝑠−𝜆1)(𝑠−𝜆2)
] 𝑒𝑠𝑡  

                                   = [
𝑦01(𝜆1−𝑑)+𝑏𝑦02

(𝜆1−𝜆2)
+
�̅�1(𝜆2)(𝜆2−𝑑)+𝑏�̅�2(𝜆2)

(𝜆1−𝜆2)
] 𝑒𝜆1𝑡,   (59) 

also at, 𝑠 = 𝜆2 

𝑅𝑒𝑠(𝑠 = 𝜆2, �̅�1(𝑠)) = lim
𝑠→𝜆2

(𝑠 − 𝜆2) [
𝑦01(𝑠−𝑑)+𝑏𝑦02

(𝑠−𝜆1)(𝑠−𝜆2)
+
�̅�1(𝑠)(𝑠−𝑑)+𝑏�̅�2(𝑠)

(𝑠−𝜆1)(𝑠−𝜆2)
] 𝑒𝑠𝑡  

                                   = [
𝑦01(𝜆2−𝑑)+𝑏𝑦02

(𝜆2−𝜆1)
+
�̅�1(𝜆2)(𝜆2−𝑑)+𝑏�̅�2(𝜆2)

(𝜆2−𝜆1)
] 𝑒𝜆2𝑡.    (60) 

That    

𝑦1(𝑡) = 𝑅𝑒𝑠(𝑠 = 𝜆2, �̅�1(𝑠)) + 𝑅𝑒𝑠(𝑠 = 𝜆2, �̅�1(𝑠))  

implies 

𝑦1(𝑡) = [
𝑦01(𝜆1−𝑑)+𝑏𝑦02

(𝜆1−𝜆2)
+
�̅�1(𝜆1)(𝜆1−𝑑)+𝑏�̅�2(𝜆1)

(𝜆1−𝜆2)
] 𝑒𝜆1𝑡 +  

              [
𝑦01(𝐷2−𝑑)+𝑏𝑦02

(𝜆2−𝜆1)
+
�̅�1(𝜆2)(𝜆2−𝑑)+𝑏�̅�2(𝜆2)

(𝜆2−𝜆1)
] 𝑒𝜆2𝑡𝜆1 ≠ 𝜆2     (61) 

For  𝑗 = 2, we have 

𝑦2(𝑡) =
1

2𝜋𝑖
∫ �̅�2(𝑠)𝑒

𝑠𝑡ds
𝛼+𝑖∞

𝛼−𝑖∞
  

            =
1

2𝜋𝑖
∫ [

𝑦02(𝑠−𝑎)+𝑐𝑦01

(𝑠−𝜆1)(𝑠−𝜆2)
+
�̅�2(𝑠)(𝑠−𝑎)+𝑐�̅�1(𝑠)

(𝑠−𝜆1)(𝑠−𝜆2)
] 𝑒𝑠𝑡ds

𝛼+𝑖∞

𝛼−𝑖∞
 . 

Here the integrand has simple poles at 𝑠 = 𝜆1 𝑎𝑛𝑑 𝑠 = 𝜆2.  

Using Cauchy’s Residue theorem at 𝑠 = 𝜆1, with 𝑓
1
(𝑠) 𝑎𝑛𝑑    𝑓

2
(𝑠)continuous, we have 

𝑅𝑒𝑠(𝑠 = 𝜆1, �̅�2(𝑠)) = lim
𝑠→𝜆1

(𝑠 − 𝜆1) [
𝑦02(𝑠−𝑎)+𝑐𝑦01

(𝑠−𝜆1)(𝑠−𝜆2)
+
�̅�2(𝑠)(𝑠−𝑎)+𝑐�̅�2(𝑠)

(𝑠−𝜆1)(𝑠−𝜆2)
] 𝑒𝑠𝑡  

                                  = [
𝑦02(𝜆1−𝑎)+𝑐𝑦02

(𝜆1−𝜆2)
+
�̅�2(𝜆1)(𝜆2−𝑎)+𝑐�̅�1(𝜆1)

(𝜆1−𝜆2)
] 𝑒𝜆1𝑡𝜆1 ≠ 𝜆2 .  (62)     

At 𝑠 = 𝜆2,  

𝑅𝑒𝑠(𝑠 = 𝜆2, �̅�2(𝑠)) = lim
𝑠→𝑡2

(𝑠 − 𝜆2) [
𝑦02(𝑠−𝑎)+𝑐𝑦01

(𝑠−𝜆1)(𝑠−𝜆2)
+
�̅�2(𝑠)(𝑠−𝑎)+𝑐�̅�1(𝑠)

(𝑠−𝜆1)(𝑠−𝜆2)
] 𝑒𝑠𝑡  

= [
𝑦02(𝜆2 − 𝑎) + 𝑐𝑦02

(𝜆2 − 𝜆1)
+
𝑓2̅(𝜆2)(𝜆2 − 𝑎) + 𝑐𝑓1̅(𝜆2)

(𝜆2 − 𝜆1)
] 𝑒𝜆2𝑡 

thus, 

𝑦2(𝑡) = 𝑅𝑒𝑠(𝑠 = 𝜆1, �̅�1(𝑠)) + 𝑅𝑒𝑠(𝑠 = 𝜆2, �̅�1(𝑠)) , 

which gives  

𝑦2(𝑡) = [
𝑦02(𝜆1−𝑎)+𝑐𝑦01

(𝜆1−𝜆2)
+
�̅�2(𝜆1)(𝜆1−𝑎)+𝑐�̅�1(𝜆1)

(𝜆1−𝜆2)
] 𝑒𝜆1𝑡 +  

               [
𝑦02(𝜆2−𝑎)+𝑐𝑦01

(𝜆2−𝜆1)
+
�̅�2(𝜆2)(𝜆2−𝑎)+𝑐�̅�1(𝜆2)

(𝜆2−𝜆1)
] 𝑒𝜆2𝑡  , 𝜆1 ≠ 𝜆2.                (63) 

When 𝑓
1
(𝑠) 𝑎𝑛𝑑    𝑓

2
(𝑠) are not continuous their poles are incorporated to get 
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𝑦1(𝑡) =
1

2𝜋𝑖
∫ [(

𝑦01(𝑠−𝑑)+𝑏𝑦02

(𝑠−𝜆1)(𝑠−𝜆2)
) 𝑒𝑠𝑡ds +

1

2𝜋𝑖
∫ (

�̅�1(𝑠)(𝑠−𝑑)+𝑏�̅�2(𝑠)

(𝑠−𝜆1)(𝑠−𝜆2)
) 𝑒𝑠𝑡ds

𝛼+𝑖∞

𝛼−𝑖∞
]

𝛼+𝑖∞

𝛼−𝑖∞
         

             =
𝑦01(𝜆1−𝑑)+𝑏𝑦02

𝜆1−𝜆2
𝑒𝜆1𝑡 +

𝑦02(𝜆2−𝑑)+𝑏𝑦02

𝜆2−𝜆1
𝑒𝜆2𝑡 +

1

2𝜋𝑖
∫ (

�̅�1(𝑠)(𝑠−𝑑)+𝑏�̅�2(𝑠)

(𝑠−𝜆1)(𝑠−𝜆2)
) 𝑒𝑠𝑡ds

𝛼+𝑖∞

𝛼−𝑖∞
. (64)  

and 

𝑦2(𝑡) =
𝑦02(𝜆1−𝑎)+𝑐𝑦01

𝜆1−𝜆2
𝑒𝜆1𝑡 +

𝑦02(𝜆1−𝑎)+𝑐𝑦01

𝜆2−𝜆1
𝑒𝜆2𝑡+

1

2𝜋𝑖
∫ (

�̅�2(𝑠)(𝑠−𝑎)+𝑐�̅�1(𝑠)

(𝑠−𝜆1)(𝑠−𝜆2)
) 𝑒𝑠𝑡ds

𝑐±𝑖∞

𝑐−𝑖∞
.        (65) 

 

IV. Results in Closed Form and Their 

Analysis 

In this section, the results obtained are 

presented and analyzed. 

Basic Equations 

Let 𝑃(𝑡) be the price of a commodity. We 

have remarked that the works of Espinoza 

(2009) and Bob Foster (2016) showed that the 

model equation that captures a relation 

between price 𝑃(𝑡), change in price, 𝑃′(𝑡) 

and change in the change in price, 𝑃′′(𝑡) is of 

the form 

𝑃′′(𝑡) + 𝑎1𝑃
′(𝑡) + 𝑎0𝑃(𝑡) = 0.  

Their solutions and techniques are similar to 

those of dynamic spring-mass mechanical 

systems. The constant 𝑎0 cannot be zero in 

the equation because it represents restoring 

market forces. It is the aggregate of dynamic 

market forces that resist the collapse of price. 

It is therefore pertinent to liken it to Hooke’s 

Law of spring-mass elastic mechanical 

systems where price, 𝑃(𝑡) agrees with 

displacement. 

Hooke’s law simply states that “force is 

proportional to elongation” in elastic 

materials. Let 𝑔1(𝑡) be the applied force, then 

the Hooke’s law says 

𝑔1(𝑡) = −𝑘𝑃(𝑡)  

where 𝑃(𝑡) is the price due to market forces 

and 𝑘 is a constant. The second derivative, 

𝑃′′(𝑡), which Esponoza (2009) and Bob 

Foster (2016) called a change in the change in 

price, is similar to the inertia effect 

determined by Newton’s law of motion given 

by  

𝑔2(𝑡) = 𝑚
𝑑2𝑃

𝑑𝑡2
  

where 𝑚 is mass and is constant. 

Equating the forces, we have 

𝑑2𝑃

𝑑𝑡2
+

𝑘

𝑚
𝑃 = 0     (66) 

If the price is modelled by (66) then it will 

oscillate with known amplitude and 

frequency. To check the oscillation of price, 

regulatory government policies may be 

enacted in the form of a check in the change 

in price given as 

𝑔3(𝑡) = 𝑎1
𝑑𝑝

𝑑𝑡
.  

In dynamic mechanical systems 𝑎1 maybe a 

form of resistance that depends on external 

factors. The idea of introducing 𝑎1 is to slow 

the price change down. 

𝑔3(𝑡) is often called damping force and 𝑎1 is 

called the damping constant. When 𝑎1
𝑑𝑝

𝑑𝑡
 is 

added to equation (66) the equation of price 

change becomes the homogeneous equation.   

𝑃′′(𝑡) + 𝑎1𝑃
′(𝑡) + 𝑎0𝑃(𝑡) = 0, subject to 

𝑃(0) = 𝜇 𝑎𝑛𝑑 𝑃′(0) = 𝜉, where 𝑎0 =
𝑘

𝑚
. 

Next, we assume that the price system is also 

subject to external forces denoted by f(𝑡). 

Our analysis will then be based on the 

solution of the non-homogeneous second-

order linear differential equation given in (18) 

as  

𝑃′′(𝑡) + 𝑎1𝑃
′(𝑡) + 𝑎0𝑃(𝑡) = 𝑓(𝑡)  

𝑃(0) = 𝜇 𝑎𝑛𝑑 𝑃′(0) = 𝜉.  

To obtain the solution of the system that will 

guarantee the stability of price, matrix 

methods as discussed earlier and assume that 

𝐹(𝑡) is in the form 

𝑓(𝑡) = 𝑇𝛿(𝑡 − 𝑐) + 𝑄[𝐻𝑐(𝑡) − 𝐻𝛼𝑐(𝑡)] +

𝑅[𝐻𝑐(𝑡) + 𝐻2𝑐(𝑡) + 𝐻3𝑐(𝑡)].   (67) 
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The first term on the right of equation (67) is 

an impulse market force of magnitude T 

comparable to what happened to prices 

during the universal coronavirus lockdown in 

202

 

The Homogeneous Case 

Theorem 7 

Let  

𝑌′ = 𝐴𝑌  

be a system of two homogenous first-order ordinary differential equations with 

𝐴 = (
𝑎 𝑏
𝑐 𝑑

) , 𝑎𝑑 − 𝑏𝑐 ≠ 0 , 𝑌(𝑡) = (
𝑦1(𝑡)
𝑦2(𝑡)

),   𝑌′(𝑡) = (
𝑦1
′(𝑡)

𝑦2
′(𝑡)

), 

where a, b, c, and d are constants,  

alternatively  
𝑑𝑦1(𝑡)

𝑑𝑡
= 𝑎𝑦1(𝑡) + 𝑏𝑦2(𝑡)

𝑑𝑦2(𝑡)

𝑑𝑡
= 𝑐𝑦1(𝑡) + 𝑑𝑦2(𝑡)

} ,          (68) 

 whose distinct eigen-values are 𝜆1 𝑎𝑛𝑑 𝜆2 and initial values are 

 𝑌(0) = (
𝑦1(0)
𝑦2(0)

) = (
𝑦01
𝑦02

) 

then 

𝑦1(𝑡) =
[(𝜆1−𝑑)𝑦01+𝑏𝑦02]𝑒

𝜆1𝑡

𝜆1−𝜆2
+
[(𝜆2−𝑑)𝑦01+𝑏𝑦02]𝑒

𝜆2𝑡

𝜆2−𝜆1
;      

 
 𝑦
2
(𝑡) =

[(𝜆1−𝑎)𝑦02+𝑐𝑦01]𝑒
𝜆2𝑡

𝜆1−𝜆2
+
[(𝜆2−𝑎)𝑦02+𝑐𝑦01]𝑒

𝜆2𝑡

𝐷2−𝜆1
, ,  𝜆1 ≠ 𝜆2  

},               (69)  

hence, if 𝜆1 < 0 𝑎𝑛𝑑 𝜆2 < 0𝜆1 ≠ 𝜆2 

then 

lim
𝑡→∞

𝑦1(𝑡) = 0 

𝑎𝑛𝑑

 
  
lim
𝑡→∞

𝑦2(𝑡) = 0.

} .           (70) 

In this case, the system is asymptotically stable. 

Proof of Theorem 7 

Taking Laplace transform of both sides of the system (68), we have 

  
ℒ{𝑦1

′(𝑡)} = ℒ{𝑎𝑦1(𝑡) + 𝑏𝑦2(𝑡)}

ℒ{𝑦2
′(𝑡)} = ℒ{𝑐𝑦1(𝑡) + 𝑑𝑦2(𝑡)} 

} ,        (71) 

by (68), we have; 

𝑠�̅�1(𝑠) − 𝑦1(0) = 𝑎�̅�1(𝑠) + 𝑏�̅�2(𝑠)  

𝑠�̅�2(𝑠) − 𝑦2(0) = 𝑐�̅�1(𝑠) + 𝑑�̅�2(𝑠).  

The application of the initial conditions, 

𝑦1(0) = 𝑦01 𝑎𝑛𝑑 𝑦2(0) = 𝑦02,  

Gave 

𝑠�̅�1(𝑠) − 𝑦01 = 𝑎�̅�1(𝑠) + 𝑏�̅�2(𝑠)  

𝑠�̅�2(𝑠) − 𝑦02 = 𝑐�̅�1(𝑠) + 𝑑�̅�2(𝑠)  

which in matrix form is 
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(
𝑠 − 𝑎 −𝑏
−𝑐 𝑠 − 𝑑

) (
�̅�1(𝑠)
�̅�2(𝑠)

) = (
𝑦01
𝑦02

) .         (72) 

The evaluation for �̅�1(𝑠) 𝑎𝑛𝑑 �̅�2(𝑠) using the Crammer’s rule we have 

∆= (𝑠 − 𝑎)(𝑠 − 𝑑) − 𝑏𝑐 .                                                            (73) 

∆1= 𝑦01(𝑠 − 𝑑) + 𝑏𝑦02.          (74)  

∆2= (𝑠 − 𝑎)𝑦02 + 𝑐𝑦01 .                                                                 (75) 

Thus,  

�̅�1(𝑠) =
∆1

∆
 =

𝑦01(𝑠−𝑎)+𝑐𝑦01

(𝑠−𝑎)(𝑠−𝑑)−𝑏𝑐
                                                                        (76) 

Expanding equation (72), for ∆ we have 

∆= (𝑠 − 𝑎)(𝑠 − 𝑑) − 𝑏𝑐 = 𝑠2 − 𝑠𝑑 − 𝑠𝑎 + 𝑎𝑑 − 𝑏𝑐 

   = 𝑠2 − (𝑎 + 𝑑)𝑠 + (𝑎𝑑 − 𝑏𝑐)                                                        (77) 

The eigen-values of the coefficient matrix  𝐴 = (
𝑎 𝑏
𝑐 𝑑

)  

  𝜆1 =
(a+𝑑)+√𝐷

2
 and 𝜆2 =

(𝑎+𝑑)−√𝐷

2
  respectively,       (78) 

where 

𝐷 = (𝑎 + 𝑑)2 − 4(𝑎𝑑 − 𝑏𝑐).         (79)  

Therefore sum of roots, 

𝜆1 + 𝜆2 = 𝑎 + 𝑑,                                                                           (80) 

and product of roots 

𝜆1𝜆2 = (𝑎𝑑 − 𝑏𝑐)                                                                (81) 

Clearly 

∆= (𝑠 − 𝜆1)(𝑠 − 𝜆2) .        (82) 

The application of equation (82) to equation (76) yields 

�̅�1(𝑠) =
(𝑠−𝑑)𝑦01+𝑏𝑦02

(𝑠−𝜆1)(𝑠−𝜆2)
   and     �̅�2(𝑠) =

(𝑠−𝑎)𝑦02+𝑐𝑦01

(𝑠−𝜆1)(𝑠−𝜆2)
.      (83)  

Results for the Equilibrium of Price Influenced by Government Intervention 𝒂𝟏 Only 

In this case the homogeneous initial value problem is: 

𝑃′′(𝑡) + 𝑎1𝑃
′(𝑡) + 𝑎0𝑃(𝑡) = 0 ,    𝑃(0) = 𝜇 𝑎𝑛𝑑 𝑃

′(0) = 𝜉  

and to put the differential equation in matrix form we set: 

𝑃′′(𝑡) = −𝑎1𝑃
′(𝑡) − 𝑎0𝑃(𝑡) . 

Let 𝑃′(𝑡) = 𝑢 

then 

𝑢′(𝑡) = −𝑎0𝑃(𝑡) − 𝑎1𝑢  

and so the system  in matrix form becomes 

(
𝑃
𝑢
)
′

= (
0 1
−𝑎0 −𝑎1

) (
𝑃
𝑢
) .          (84) 

Comparing equation (84) with 

𝑌′ = 𝐴𝑌, 𝑌(0) = 𝑌1,  

we have 

𝑌 = (
𝑃
𝑢
) , 𝐴 = (

0 1
−𝑎0 −𝑎1

) , 𝑌(0) = (
𝜇
𝜉) = (

𝑃(0)
𝑢(0)

)  

and the characteristic polynomial is given by the quadratic equation  

𝜆2 + 𝑎1𝜆 + 𝑎0 = 0  
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whose solutions are 

𝜆1 = −
𝑎1

2
+
1

2
√𝑎1

2 − 4𝑎0 

𝜆2 = −
𝑎1

2
−
1

2
√𝑎1

2 − 4𝑎0 ,     

𝑎0 ≠ (
𝑎1

2
)
2

}
 
 

 
 

.        (85)   

Then 

𝜆1 − 𝜆2 = √𝑎1
2 − 4𝑎0  

𝜆2 − 𝜆1 = −√𝑎1
2 − 4𝑎0 . 

For 𝐴 = (
𝑎 𝑏
𝑐 𝑑

) we have 

𝑎 = 0, 𝑏 = 1, 𝑐 = −𝑎0, 𝑑 = −𝑎1 , 

then 

𝜆1 − 𝑎 = −
𝑎1

2
+
1

2
√𝑎1

2 − 4𝑎0  

𝜆1 − 𝑑 = −
𝑎1

2
+
1

2
√𝑎1

2 − 4𝑎0 − 𝑎1  

           =
𝑎1

2
+
1

2
√𝑎1

2 − 4𝑎0  

           =
1

2
[𝑎1 +√𝑎1

2 − 4𝑎0]  

𝜆2 − 𝑎 = −
𝑎1

2
−
1

2
√𝑎1

2 − 4𝑎0  

𝜆2 − 𝑑 = −
𝑎1

2
−
1

2
√𝑎1

2 − 4𝑎0 + 𝑎1  

             =
𝑎1

2
−
1

2
√𝑎1

2 − 4𝑎0  

              = −
1

2
[𝑎1 −√𝑎1

2 − 4𝑎0]  

The Non-Homogeneous Case 

Theorem 8: 

Let  𝑌′ = 𝐴𝑌 + 𝐹 

be a system of two autonomous non-homogenous first-order differential equations with 

𝐴 = (
𝑎 𝑏
𝑐 𝑑

) , 𝑌(𝑡) = (
𝑦1(𝑡)
𝑦2(𝑡)

) , 𝑌′(𝑡) = (
𝑦1
′(𝑡)

𝑦2
′(𝑡)

) , 𝐹 = (
𝑓1(𝑡)
𝑓2(𝑡)

)  

𝑌(0) = (
𝑦1(0)
𝑦2(0)

) = (
𝑦01
𝑦02

),    a, b, c, d are constants, 

then, expanding  𝑌′ = 𝐴𝑌 + 𝐹  yields 

𝑑𝑦1(𝑡)

𝑑𝑡
= 𝑎𝑦1(𝑡) + 𝑏𝑦2(𝑡) + 𝑓1(𝑡)   

𝑑𝑦2(𝑡)

𝑑𝑡
= 𝑐𝑦1(𝑡) + 𝑑𝑦2(𝑡) + 𝑓2(𝑡)

}.       (86) 

If 𝜆1 𝑎𝑛𝑑 𝜆2 are distinct eigenvalues of A, then 

𝑦1(𝑡) = [
𝑦01(𝜆1−𝑑)+𝑏𝑦02

(𝜆1−𝜆2)
+
𝑓1(𝜆1)(𝜆1−𝑑)+𝑏𝑓2(𝜆1)

(𝜆1−𝜆2)
] 𝑒𝜆1𝑡  +  

              [
𝑦01(𝜆2−𝑑)+𝑏𝑦02

(𝜆2−𝜆1)
+
𝑓1(𝜆1)(𝜆2−𝑑)+𝑏𝑓2(𝜆2)

(𝜆2−𝜆1)
] 𝑒𝜆2𝑡      (87) 

  and 

𝑦2(𝑡) = [
𝑦02(𝜆1−𝑑)+𝑐𝑦02

(𝜆1−𝜆2)
+
𝑓1(𝜆1)(𝜆1−𝑑)+𝑐𝑓2(𝜆1)

(𝜆1−𝜆2)
] 𝑒𝜆1𝑡 +  
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               [
𝑦02(𝜆2−𝑑)+𝑐𝑦01

(𝜆2−𝜆1)
+
𝑓1(𝜆2)(𝜆2−𝑑)+𝑐𝑓2(𝜆2)

(𝜆2−𝜆1)
] 𝑒𝜆2𝑡          (88) 

Hence, if 𝜆1 < 0 𝑎𝑛𝑑 𝜆2 < 0,   (𝜆1 ≠ 𝜆2)  

then,  

lim
𝑡→∞

𝑦1(𝑡) = 0 𝑎𝑛𝑑 lim
𝑡→∞

𝑦2(𝑡) = 0  . in this case, the system is asymptotically stable. 

Proof of Theorem 8 

The forced volatility case: the case with force non-zero markets force, 𝑓(𝑡). 

from  (86) , we have the non-homogeneous system:   

𝑦1
′(𝑡) = 𝑎𝑦1(𝑡) + 𝑏𝑦2(𝑡) + 𝑓1(𝑡),   𝑦1(0) = 𝑦01 

𝑦2
′ (𝑡) = 𝑐𝑦1(𝑡) + 𝑑𝑦2(𝑡) + 𝑓2(𝑡),   𝑦2(0) = 𝑦02

}.                                                   (89) 

Taking the Laplace transform of equation (89), we get 

ℒ{𝑦1
′(𝑡)} = ℒ{𝑎𝑦1(𝑡) + 𝑏𝑦2(𝑡) + 𝑓1(𝑡)} 

 ℒ{𝑦2
′(𝑡)} = ℒ{𝑐𝑦1(𝑡) + 𝑑𝑦2(𝑡) + 𝑓2(𝑡)}

}.         (90) 

By equation (24), and applying the initial conditions we have; 

(𝑠 − 𝑎)�̅�1(𝑠) − 𝑏�̅�2(𝑠) = 𝑦01 + 𝑓1̅(𝑠) 

 −𝑐�̅�1(𝑠) + (𝑠 − 𝑑)�̅�2(𝑠) = 𝑦02 + 𝑓2̅(𝑠 )
} ,        (91) 

which in matrix form is  

(
𝑠 − 𝑎 −𝑏
−𝑐 𝑠 − 𝑑

) (
�̅�1(𝑠)
�̅�2(𝑠)

) = (
𝑦01 + 𝑓1̅(𝑠)

𝑦02 + 𝑓2̅(𝑠)
) .       (92) 

 �̅�1(𝑠) and �̅�2(𝑠)are obtained  using Crammer’s rule to be 

�̅�1(𝑠) =
∆1

∆
=

𝑦01(𝑠−𝑑)+𝑏𝑦02+�̅�1(𝑠)(𝑠−𝑑)+𝑏�̅�2(𝑠)

𝑠2−(𝑎+𝑑)𝑠+𝑎𝑑−𝑏𝑐
    

�̅�2(𝑠) =
∆2

∆
=

𝑦02(𝑠−𝑎)+𝑐𝑦01+�̅�1(𝑠)(𝑠−𝑎)+𝑏�̅�1(𝑠)

𝑠2−(𝑎+𝑑)𝑠+𝑎𝑑−𝑏𝑐

}.     (93) 

By the same procedure used in equations (80)-(82) we  

∆= (𝑠 − 𝜆1)(𝑠 − 𝜆2) 

from which the values of �̅�1(𝑠) and �̅�2(𝑠) are obtained as given below,  

�̅�1(𝑠) =
𝑦01(𝑠−𝑑)+𝑏𝑦02

(𝑠−𝜆1)(𝑠−𝜆2)
+
�̅�1(𝑠)(𝑠−𝑑)+𝑏�̅�2(𝑠)

(𝑠−𝜆1)(𝑠−𝜆2)
 ,       (94) 

and 

�̅�2(𝑠) =
𝑦02(𝑠−𝑎)+𝑐𝑦01

(𝑠−𝜆1)(𝑠−𝜆2)
+
�̅�2(𝑠)(𝑠−𝑎)+𝑐�̅�1(𝑠)

(𝑠−𝜆1)(𝑠−𝜆2)
 .       (95) 

Results for the Equilibrium of Price 

influenced by Government Intervention 

and other Market Forces 

This section investigated the equilibrium 

dynamic price when the price system is 

subjected to aggregate mixed external market 

forces of the type 𝐹(𝑡) given the form; 

𝐹(𝑡) = 𝑇𝛿(𝑡 − 𝑎) + 𝑄[𝐻𝜎(𝑡) − 𝐻𝛼𝜎(𝑡)] +  

            𝑅1𝐻𝑞(𝑡) + 𝑅2𝐻3

2
𝑞
(𝑡) +

𝑅3𝐻2𝑞(𝑡),   𝛼 > 1.     

  (96)  

The terms have the following meanings: 

i) 𝑇𝛿(𝑡 − 𝑎)means a market force 

of magnitude T that is impulsive; 

and lingers for a very short time. 

This type was witnessed during 

the covid-19 lockdown in 2020. 

ii) 𝑄[𝐻𝜎(𝑡) − 𝐻𝛼𝜎(𝑡)]means a 

market force of magnitude 𝑄 that 

persists during the time interval 

𝜎 ≤ 𝑡 ≤ α𝜎, 𝛼 > 1 and stops 

thereafter. It is a positive square 

wave-like force which debilitates 

prices. 
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iii) 𝑅𝑖𝐻𝛽𝑒(𝑡), 𝑖 = 1,2,3     𝛽 =

1,
3

2
, 2  represents market forces 

for which  

𝑅1𝐻𝑞(𝑡)means the market force 

of magnitude 𝑅1 that starts at time 

𝑡 = 𝑞 and stops at time 𝑡 =
3

2
𝑞 

𝑅2𝐻3

2
𝑞
(𝑡)means a market force of 

magnitude 𝑅1 that begins at time 

𝑡 =
3

2
𝑞 and ends at 𝑡 = 2𝑞. 

𝑅3𝐻2𝑞(𝑡)means a market force of magnitude 

𝑅3 that begins at time 𝑡 = 2𝑞 and persists for 

a long time. These forces are the type 

experienced in the public power sector in 

Nigeria, where 𝑅1 > 𝑅2 > 𝑅3 (ever-

increasing). It is also the type that models the 

OPEC price of crude oil. In the case of 

OPEC, oil prices could fall, in which case one 

𝑅𝑖 could be less than an 𝑅𝑗.  

The appropriate non-homogeneous system to 

be used to study the presence of these forces 

is given in Theorem 8.  

The matrix form appropriate for the analysis is  

(
𝑃
𝑢
)
′

= (
0 1
−𝑎0 −𝑎1

) (
𝑃
𝑢
) + (

0
𝑓(𝑡)

),   (
𝑃(0)
𝑢(0)

) = (
𝜇
𝜉) .      (97)  

The Laplace transform of 𝑓(𝑡) is obtained as follows; 

𝐿(𝑓(𝑡)) = 𝐿(𝑇𝛿(𝑡 − 𝑎)) + 𝐿(𝑄[𝐻𝑏(𝑡) − 𝐻𝛼𝑏(𝑡)] +  𝐿(𝑅2𝐻3

2
𝑞
(𝑡) + 𝑅3𝐻2𝑞(𝑡),     𝛼 > 1     

      = 𝑇𝐿(𝛿(𝑡 − 𝑎)) + 𝑄𝐿(𝐻𝑏(𝑡) − 𝐻𝛼𝑏(𝑡)) + 𝑅1𝐿 (𝐻𝑞(𝑡)) + 𝑅2𝐿 (𝐻3

2
𝑞
(𝑡)) + 𝑅3𝐿(𝐻2𝑞(𝑡)) 

Noting the following 

𝑇𝐿(𝛿(𝑡 − 𝑎)) = 𝑇𝑒−𝑎𝑠  ; 𝑄𝐿(𝐻𝑏(𝑡) − 𝐻𝛼𝑏(𝑡)) =
𝑄

𝑆
[𝑒−𝑏𝑠 − 𝑒−𝛼𝑏𝑠], 𝛼 > 1 ; 𝑅1𝐿 (𝐻𝑞(𝑡)) =

𝑅1

𝑆
𝑒−𝑞𝑠 ;  𝑅2𝐿 (𝐻3

2
𝑞
(𝑡)) =

𝑅2

𝑆
𝑒−

3

2
𝑞𝑠

; 𝑅3𝐿 (𝑅2𝑞(𝑡)) =
𝑅3

𝑆
𝑒−2𝑞𝑠 , 

the Laplace transform of 𝑓(𝑡) becomes 

𝐿(𝑓(𝑡)) = 𝑓(̅𝑠),  

where 

𝑓(̅𝑠) = 𝑇𝑒−𝑎𝑠 +
𝑄

𝑠
[𝑒−𝑏𝑠 − 𝑒−𝛼𝑏𝑠] +

𝑅1

𝑠
𝑒−𝑞𝑠 +

𝑅2

𝑠
𝑒−

3

2
𝑞𝑠 +

𝑅3

𝑠
𝑒−2𝑞𝑠 +⋯+ 𝑅𝑛𝑒

−𝑘𝑠.   (98)  

Because the first and second terms on the right of (4.3.3) are everywhere continuous, though 

the second term has a removable discontinuity  

at 𝑠 = 0,  

we write 

𝑓(̅𝑠) = 𝑓2̅(𝑠) = 𝑓3̅(𝑠) + 𝑓4̅(𝑠)  

where 

𝑓3̅(𝑠) = 𝑇𝑒
−𝑎𝑠 +

𝑄

𝑆
[𝑒−𝑏𝑠 − 𝑒−𝛼𝑏𝑠]                                            (99) 

which is a continuous function and  

𝑓4̅(𝑠) = 𝑅1𝑒
−𝑞𝑠 + 𝑅2𝑒

−
3

2
𝑞𝑠 + 𝑅3𝑒

−2𝑞𝑠 + …+𝑅𝑛𝑒
−𝑘𝑞𝑠                  (100)  

has a simple pole at 𝑠 = 0 with residue given by 

𝑅𝑒𝑠 (𝑠 = 0; 𝑓4̅(𝑠)) = lim
𝑠→0

𝑠 𝑓(𝑠)  

= lim
𝑠→0

(𝑅1𝑒
−𝑞𝑠 + 𝑅2𝑒

−
3

2
𝑞𝑠 + 𝑅3𝑒

−2𝑞𝑠 + …+  𝑅𝑛𝑒
−𝑘𝑠) 
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                                = 𝑅1 + 𝑅2 + 𝑅3 +⋯+ 𝑅𝑛.      (101)       

𝑅𝑖 is zero as soon as 𝑅𝑖+1 comes into play. 

This is what happens in public electricity charges or even in oil prices; the old price is discarded 

as soon as new prices are pronounced, therefore it is 𝑅𝑛 that remains in equation (101). This 

makes 

𝑓4̅(𝑠) =
1

𝑆
𝑅𝑛𝑒

−𝑘𝑠  

where k is a highest real number associated with the last increase in price. 

𝑓4̅(𝑠)  has a simple pole at 𝑠 = 0 and the solution of the non-homogenous ordinary differential 

equation is obtainable from  (64)  and  (65) 

𝑓1̅(𝑠) = 0 𝑎𝑛𝑑 𝑓2̅(𝑠) = 𝑓3(𝑠) + 𝑓4̅(𝑠)    

with 

𝑦1(𝑡) = 𝑃(𝑡), 𝑦01 = 𝜇, 𝑦02 = 𝜉, 𝑢(𝑡) = 𝑃′(𝑡),   

 

The Non-Homogeneous Case 

Theorem 9 

Let  𝑌′ = 𝐴𝑌 + 𝐹 

be a system of two autonomous non-homogenous first-order differential equations with 

𝐴 = (
𝑎 𝑏
𝑐 𝑑

) , 𝑌(𝑡) = (
𝑦1(𝑡)
𝑦2(𝑡)

) , 𝑌′(𝑡) = (
𝑦1
′(𝑡)

𝑦2
′(𝑡)

) , 𝐹 = (
𝑓1(𝑡)
𝑓2(𝑡)

)  

𝑌(0) = (
𝑦1(0)
𝑦2(0)

) = (
𝑦01
𝑦02

),    a, b, c, d are constants. 

The expansion of  𝑌′ = 𝐴𝑌 + 𝐹  yields 

𝑑𝑦1(𝑡)

𝑑𝑡
= 𝑎𝑦1(𝑡) + 𝑏𝑦2(𝑡) + 𝑓1(𝑡)

  
𝑑𝑦2(𝑡)

𝑑𝑡
= 𝑐𝑦1(𝑡) + 𝑑𝑦2(𝑡) + 𝑓2(𝑡)

}.              (102) 

If 𝜆1 𝑎𝑛𝑑 𝜆2 are distinct eigen-values of A, then 

𝑦1(𝑡) = [
𝑦01(𝜆1−𝑑)+𝑏𝑦02

(𝜆1−𝜆2)
+
𝑓1(𝜆1)(𝜆1−𝑑)+𝑏𝑓2(𝜆1)

(𝜆1−𝜆2)
] 𝑒𝜆1𝑡 +  

              [
𝑦01(𝜆2−𝑑)+𝑏𝑦02

(𝜆2−𝜆1)
+
𝑓1(𝜆1)(𝜆2−𝑑)+𝑏𝑓2(𝜆2)

(𝜆2−𝜆1)
] 𝑒𝜆2𝑡,             (103) 

and 

𝑦2(𝑡) = [
𝑦02(𝜆1−𝑑)+𝑐𝑦02

(𝜆1−𝜆2)
+
𝑓1(𝜆1)(𝜆1−𝑑)+𝑐𝑓2(𝜆1)

(𝜆1−𝜆2)
] 𝑒𝜆1𝑡 +  

              [
𝑦02(𝜆2−𝑑)+𝑐𝑦01

(𝜆2−𝜆1)
+
𝑓1(𝜆2)(𝜆2−𝑑)+𝑐𝑓2(𝜆2)

(𝜆2−𝜆1)
] 𝑒𝜆2𝑡.             (104) 

Hence, if 𝜆1 < 0 𝑎𝑛𝑑 𝜆2 < 0,   (𝜆1 ≠ 𝜆2)  

then,  

lim
𝑡→∞

𝑦1(𝑡) = 0 𝑎𝑛𝑑 lim
𝑡→∞

𝑦2(𝑡) = 0  . in this case, the system is asymptotically stable. 

Proof of Theorem 9 

From the forced volatility case (the case with force non-zero markets force) 𝑓(𝑡) and adopting 

the method leading to (91) and (102), we get 

(𝑠 − 𝑎)�̅�1(𝑠) − 𝑏�̅�2(𝑠) = 𝑦01 + 𝑓1̅(𝑠)

−𝑐�̅�1(𝑠) + (𝑠 − 𝑑)�̅�2(𝑠) = 𝑦02 + 𝑓2̅(𝑠 )
},       (105) 
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which in matrix form is  

(
𝑠 − 𝑎 −𝑏
−𝑐 𝑠 − 𝑑

) (
�̅�1(𝑠)
�̅�2(𝑠)

) = (
𝑦01 + 𝑓1̅(𝑠)

𝑦02 + 𝑓2̅(𝑠)
).        (106) 

Using Crammer’s rule �̅�1(𝑠) and �̅�2(𝑠) were evaluated to, 

�̅�1(𝑠) =
∆1

∆
=

𝑦01(𝑠−𝑑)+𝑏𝑦02+�̅�1(𝑠)(𝑠−𝑑)+𝑏�̅�2(𝑠)

𝑠2−(𝑎+𝑑)𝑠+𝑎𝑑−𝑏𝑐
  

�̅�2(𝑠) =
∆2

∆
=

𝑦02(𝑠−𝑎)+𝑐𝑦01+�̅�1(𝑠)(𝑠−𝑎)+𝑏�̅�1(𝑠)

𝑠2−(𝑎+𝑑)𝑠+𝑎𝑑−𝑏𝑐

}.                                               (107)   

Using the same procedure as in (80)-(82)  

∆= (𝑠 − 𝜆1)(𝑠 − 𝜆2), 

which leads to 

�̅�1(𝑠) =
𝑦01(𝑠−𝑑)+𝑏𝑦02

(𝑠−𝜆1)(𝑠−𝜆2)
+
�̅�1(𝑠)(𝑠−𝑑)+𝑏�̅�2(𝑠)

(𝑠−𝜆1)(𝑠−𝜆2)
 

�̅�2(𝑠) =
𝑦02(𝑠−𝑎)+𝑐𝑦01

(𝑠−𝜆1)(𝑠−𝜆2)
+
�̅�2(𝑠)(𝑠−𝑎)+𝑐�̅�1(𝑠)

(𝑠−𝜆1)(𝑠−𝜆2)

} .       (108) 

 

5.0 Conclusion 
 

This study analyzes the stability of market 

price equilibrium using a second-order 

differential equation framework. It 

incorporates the influence of government 

intervention and external market forces. The 

key finding is that for the system to remain 

stable, the government's moderating 

influence (represented by a constant) needs to 

be greater than twice the square root of the 

price's resistance to collapse (represented by 

another constant). This result aligns with 

previous findings in mechanical systems by 

Boyce and Diprima (1977). 

The manuscript extends prior research by 

Espinoza (2009) and Bob Foster (2016) by 

introducing time-dependent external 

influences on the price dynamics. The 

analysis utilizes a matrix-theoretic approach, 

ensuring stability conditions for both price 

and its rate of change. The key takeaway is 

that a sufficiently strong government 

moderating force is crucial for achieving and 

maintaining a stable market equilibrium. The 

framework also acknowledges the impact of 

impulsive market forces and persistent 

market forces on the system's stability. 
 

6.0 References  
 

Boyce, N. E & Diprima, R. C.  (1977). 

 Elementary Differential equations 

 and boundary alue problems, John 

 Wiley and sons Nevw York 

Bandara, J. S ..(1991). computable general 

equilibrium modelS for development  

policy analysis in LDCs. Journal of  

Economic Survey, 5, pp.3- 69 . 

https://doi.org/10.1111/j.1467-

6419.1991.tb00126.x 

Dass, H.  (2008). Advanced engineering 

mathematics, S. Chand and Company 

LTD. RAM NAGAR, NEW DELHI-

110055 

Dowling, E. T.(2001). Schaum’s outlines 

introduction to mathematical 

economics. New York: McGraw-Hill 

Espinoza, J. J.(2009). The Second-order 

differential equations of dynamic market 

equilibrium (online). 

https://espino86.wordpress.com/2009/1

1/26/the-second-order-differential-

equations-of-dynamic-market-

equilibrium 

Ezrachi, A., & Stucke, M. E. (2023). Market 

power and competition policy in the 

digital age. Oxford University Press. 

 Hommes, C. H. (2016). Agent-based 

modelling in economics: A growing 

approach. Journal of Economic 

Dynamics and Control, 67, pp. 18-29. 

Ir.BobFoster, M. M.(2016). Determining 

Dynamic Market Equilibrium Price 

Function Using Second Order Linear 

Differential Equations, International 

Journal of Humanities and Social 

Sciences, 6, pp. 222-230.  

https://espino86.wordpress.com/2009/11/26/the-second-order-differential-equations-of-dynamic-market-equilibrium
https://espino86.wordpress.com/2009/11/26/the-second-order-differential-equations-of-dynamic-market-equilibrium
https://espino86.wordpress.com/2009/11/26/the-second-order-differential-equations-of-dynamic-market-equilibrium
https://espino86.wordpress.com/2009/11/26/the-second-order-differential-equations-of-dynamic-market-equilibrium


Communication in Physical Sciences, 2024, 11(3): 607-627 627 
 

 

Kostelich, E. J & Ambruster, D.(1996). 

Analyzing the dynamic of cellular 

flames, Addiron-wsly Publishing 

Company, New York 

Rade,L & Westergreen, B.(2004). 

Mathematics handbook Handbook for 

Sciences and Engineering (5th edition) 

PP.562 ISBN 3540211411 (Springer) 

Tesfatsion, L. (2021). Agent-based policy 

analysis in dynamic markets. 

Proceedings of the National Academy 

of Sciences, 118, 17,  e2102240118. 

Tirole, J. (2020). The theory of industrial 

organization. MIT Press. 

Whittaker, E. T & Watson, G. N (1902). A 

course of modern analysis, Cambridge 

University Press, Cambridge. 

Woodford, M. (2023). A differential equation 

approach to macroeconomic 

modelling. Princeton University Press. 
 

Compliance with Ethical Standards 

Declaration 
 

 

 

 

 

 

Ethical Approval 

Not Applicable 
 

Competing interests 

The authors declare that they have no known 

competing financial interests  
 

Funding 

The authors declared no external source of 

funding. 
 

Availability of data and materials 

Data would be made available on request. 
  

Author Contributions 

This study was carried out in collaboration 

among the authors. Authors Augustine 

Osondu Friday Ador and Bright O. Osu 

designed the study,  carried-out the  analysis, 

investigated the basic properties and the first 

draft of the manuscript. Authors Silas Abahia 

Ihedioha, Isaac Mashingil Mankili and 

Franka Amaka Nwafor conducted the 

analyses of the study and handled the 

literature reviews and wrote the manuscript. 

All authors read and approved the final 

manuscript. 

 

 

 

 


