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Abstract: This study investigates the 

mechanism of the reaction between 4,5-

dibromo-1,2-diaminobenzene and copper 

cyanide using Density Functional Theory 

(DFT) calculations. The kinetics and the 

thermodynamic properties of the reaction were 

analyzed, revealing two major steps with 

activated complexes AC1 and AC2. Scheme 3 

accurately depicts the reaction pathway. A 

triangular Cu-C=N moiety was found in the 

calculated transition states (TS), AC1 and AC2. 

The thermodynamic parameters for the first 

step show ΔG = -606.8 kJ mol-1 , ΔH = -610.7 

kJ mol-1 and ΔS = -0.0132 kJ mol-1K-1 while for 

the second step ΔG = -600.1 kJ mol-1, ΔH = -

603.6 kJ mol-1, and ΔS = -0.0117 kJ mol-1K-1 

were obtained. The activation energies (Ea and 

Ec) for steps 1 and 2 are 189.0 kJ mol-1 and 

210.6 kJ mol-1, respectively. The positive 

values of ∆𝐺# and ∆𝐻#confirm the presence of 

energy barriers in both steps.These findings 

provide critical insights into the energetics and 

mechanism of the DDB reaction with copper 

cyanide, which is very crucial in understanding 

the strategy for the development of efficient 

synthetic procedures for the phthalonitrile.        
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1.0 Introduction 
 

There exists a rather extensive literature on the 

syntheses and applications of 

metallophthalocyanines (MPcs) (Tunç et al., 

2019; Yang et al., 2021; Lo et al., 2020; 

Gamelas et al., 2023; Gregory, 2000; Sanusi et 

al., 2014). The photophysical and 

photochemical behaviour of these macrocycles 

with or without covalently linked 

nanomaterials and their applications in many 

advanced technological fields have been 

extensively investigated (Tayfuroğlu et al., 

2018; Korkmaz et al., 2020; Kahriman et al., 

2020; Guney & Gorduk, 2023; Demirbaş, 

2020; Yüzeroğlu et al., 2021; Harmandar et al., 

2021; Aftab et al., 2022; Farajzadeh et al., 

2022; Matlou and Nyokong, 2020; Albayrak et 

al., 2023; Ndebele & Nyokong, 2023; Madhuri 

& John, 2022; Baran et al., 2020). Their 

characteristic features such as intense 

absorption in the visible and near-IR spectral 

regions, and fluorescence properties, position 

them as important candidates for applications 

involving light scavenging, storage, control, 

and transmission (Sanusi et al., 2014). Their 

structural semblance to porphyrin, which is an 

important light scavenger in plants during 

photosynthesis underscores their significance 

in light-dependent applications. The relative 

ease of synthesis, purification, and 

modification of MPc structures, in addition to 

their interesting optical properties, make them 

compounds of choice for most advanced 

technological applications (Harmandar et al., 

2021; Aftab et al., 2022; Farajzadeh et al., 

2022; Matlou & Nyokong, 2020; Albayrak et 

al., 2023; Ndebele and Nyokong, 2023; 

Madhuri & John, 2022; Baran et al., 2020). It 

is therefore not surprising that the molecule is 

one of the most extensively studied aromatic 

compounds. The properties of MPcs required 

for most advanced applications have been 
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found to be enhanced when the molecules are 

linked to nanomaterials (Harmandar et al., 

2021; Aftab et al., 2022; Farajzadeh et al., 

2022; Matlou & Nyokong, 2020; Albayrak et 

al., 2023; Ndebele & Nyokong, 2023; Madhuri 

& John, 2022; Baran et al., 2020). This implies 

that by increasing the number of nanomaterials 

attached to phthalocyanine (Pc) molecules, the 

properties of the MPcs needed for most of the 

advanced technological applications would be 

enhanced. Currently, the maximum number of 

substitutable amine groups that are directly 

attached to the indoline units of the Pc are four. 

The amine substituents are by default limited to 

four by the most available synthetic methods 

for amino-substituted Pc derivatives (Zhang & 

Xu, 1994). These amino substituent groups are 

often the ones used for covalent linkage with 

nanomaterials. They are readily prepared by the 

reduction of the four -NO2 groups of the 

tetranitro-phthalocyanine to amine (Fig. 1). 

The tetranitrophthalocyanines are formed by 

cyclization reaction of either 4-nitro- or 3-nitro 

phthalonitrile/phthalic anhydride to yield the 

corresponding tetranitroPcs (β-tetranitro or α-

tetranitro) (Zhang et al., 2009), which in turn 

are reduced to tetraaminoPcs according to Fig.  

1. There is no literature report on the 

preparation of 4,5-dinitrophthalonitrile yet to 

the best of our knowledge, otherwise, this same 

technique could have been used to prepare 

octa-substituted amino Pcs.    

 
Fig.  1: Preparation of tetraaminopthalocyanines from tetranitrophthalocyanines  
 

The four amine points of attachment in MPcs 

appear rather insufficient to give optimum 

results when these molecules are applied in 

most of the advanced technological fields. For 

example, in photodynamic therapy (PDT) of 

cancer, where photon energy is used to activate 

a photosensitizer (an MPc) to catalyze the 

conversion of ground-state molecular oxygen 

(3O2) to singlet oxygen (1O2) which ultimately 

is responsible for cancer cell death, the MPc-

nanomaterial dyads are required to penetrate 

the porous diseased cell for enhanced drug 

delivery (Zi et al., 2022; Subhan et al., 2023; 

Camerin et al., 2010). This is referred to as the  

 

enhanced permeability and retention (EPR) 

effect (Zi et al., 2022; Subhan et al., 2023; 

Camerin et al., 2010). The EPR effect 

intensifies the drug-cancer cell interaction, the 

degree of which is lower when only the 

photosensitizer (drug) is administered without 

nanoparticles (Zi et al., 2022; Subhan et al., 

2023; Camerin et al., 2010). A maximum of 

eight amine-substituent groups may be 

considered critical for a successful EPR effect 

since this is expected to increase the number of 

attachment points, and subsequently the 

number of nanoparticles that can be attached to 

the Pc molecule. The limitation to increasing 

the number of attachment points is caused by a 

lack of yet feasible synthetic procedure for an 

octa-substituted amino-Pc, Fig.  2. Apart from 

EPR effect, other areas of applications where 

octa-substituted amino-Pc is of immense value 

include optical limiting (Sanusi et al., 2015), 

fluorescence sensing and imaging (Gvozdev et 
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al., 2022; Adegoke & Nyokong, 2014; Idowu 

& Nyokong, 2012), photocatalysis (Kumar et 

al., 2019; Farahmand et al., 2023), 

photodegradation of pollutants (Pan et al., 

2023), and photodynamic antimicrobial 

chemotherapy where silver nanoparticles are 

covalently attached to Pc molecules for 

enhanced antimicrobial property (Mafukidze et 

al., 2019; de Oliveira de Siqueira et al., 2022).  

 
        

Fig.  2: Octa-substituted amino-Pc 
 

Research effort towards increasing the number 

of amine functional groups around the Pc core 

from the default four is still, to the best of our 

knowledge, scarce – perhaps due to the notion 

that amine-phthalonitriles are prone to 

polymerization reaction because of the highly 

reactive amine group (Yüksel et al., 2008). 

There is currently no available synthetic 

method to produce 4,5-diaminophthalonitrile 

(DPN) directly. What is currently known is the 

formation of a protected -NH2-phthalonitrile 

(Yüksel et al., 2005). The protected -NH2-

phthalonitrile was formed by nucleophilic 

substitution, where the two Br atoms in 4,5-

dibromo-N,N’-ditosyl-o-phenylenediamine are 

displaced by the CN- in CuCN using DMF as 

solvent (Yüksel et al., 2005) (Fig.  3).  

                                   

 
Fig.  3: Conversion of a protected amine-

dibromobenzene (4,5-Dibromo-N,N’-

ditosyl-o-phenylenediamine) to a protected 

amine-phthalonitrile (Yüksel et al., 2005).  
 

The formation of 4,5-diaminophthalonitrile 

(DPN) directly from 4,5-dibromo-1,2-

diaminobenzene (DDB) and CuCN may be 

possible (as shown in Scheme 1) at room 

temperature without having to protect the -NH2 

group. Also, the tradition of protecting the 

amine groups of diaminophthalonitrile before 

forming the Pc may not be necessary (Yüksel 

et al., 2008; Yüksel et al., 2005), since no 

evidence shows amine-phthalonitrile cannot be 

cyclized without undergoing polymerization 

(Sanusi et al., 2014; Sanusi et al., 2014; Sanusi 

& Nyokong, 2014). The conditions under 

which an o-diaminobenzene or m-

diaminobenzene would polymerize are quite 

different from those required for cyclization 

(Sayyah et al., 2014; Sánchez & Rivas, 2002). 

 

  
 

Scheme 1: Formation of 4,5-diaminophthalonitrile (DPN) from 4,5-dibromo-1,2-

diaminobenzene (DDB) 

2. 0 Theoretical and computational 

details 

2.1. Consideration of possible reaction 

mechanisms 

HN

HN

S OO

S OO

Br

Br

4,5-Dibromo-N,N'-ditosyl
-o-phenylenediamine

CuCN

DMF

HN

HN

S OO

S OO

CN

CN

H2N

H2N

+ CuCN2

H2N

H2N

CN

CN

+ CuBr2

Br

Br



Communication in Physical Sciences, 2024, 11(4):654-668 657 
 

 

Based on the target reaction shown in Scheme 

1, two different reaction schemes (2A and 2B) 

were proposed as follows:     
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Scheme 2: Proposed reaction mechanisms (A and B) prior to DFT calculations. 

 

2.2. Computational methodology 
 

According to the proposed schemes (2A and 

2B), DDB (i), 4,5-diamino-2-

bromobenzonitrile DBN (iii), the two activated 

complexes (ii & iv) and DPN (v), were 

optimized employing the B3LYP functional 

(Song and Ma, 2010; Siddle et al., 2007; El-

Azhary and Suter, 1996; Salzner, 2010) and 6-

31G(D) basis set (Vijay et al., 2013; Mazzone 

et al., 2016). The optimization and frequency  

 

data of CuCN and CuBr were obtained at 

mPW1PW91/6-31G(D) level after careful 

benchmarking using three different methods, 

namely – mPW1PW91/6-31G(D), 

mPW1PW91/6-31G(D)/GENECP(SDD) and 

mPW1PW91/6-31G(D)/GENECP 

(LANL2DZ) with CuCN as the specimen 

(Figs.  S1 – S3). These Figs., S1, S2 and S3, 

represent the results obtained from using 

mPW1PW91/6-31G(D), mPW1PW91/6-
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31G(D)/GENECP(SDD) and mPW1PW91/6-

31G(D)/GENECP (LANL2DZ) methods, 

respectively. Note that both mPW1PW91/6-

31G(D)/GENECP(SDD) and mPW1PW91/6-

31G(D)/GENECP (LANL2DZ) are mixed 

basis sets methods, where the 6-31G(D) in each 

case describes the properties of C and N atoms, 

and the SDD or LANL2DZ describes the 

properties of Cu atom (Sanusi et al., 2020). 

Calculation and analysis of the frequency of all 

the ground state structures ensured that their 

optimized structures correspond to the energy 

minima on the potential energy surface (PES), 

as evidenced by their zero imaginary frequency 

value (Figs.  S1 – S7). The two activated 

complexes (ii and iv in scheme 3) were 

optimized to transition states (TS) using the TS 

Berny method (Suleimanov and Green, 2015) 

(Figs.  S8 and S9). They are confirmed as true 

TS state structures by the resulting single 

imaginary (negative) frequency obtained from 

the frequency calculations. Intrinsic reaction 

coordinate (IRC) calculations using B3LYP/6-

31G(D) method were performed on each TS to 

verify that the structure of the activated 

complex obtained is related to the reactants and 

products (Maeda et al., 2015). All calculations 

were performed in gas phase on a Gaussian 16 

program suite that run on a peta-scale 

supercomputer (Gaussian 16, Revision C.01, 

2016). 
 

2.3. Determination of kinetic and 

thermodynamic parameters 
 

The studied reaction may be summarized as a 

consecutive reaction with approximately 4 sub-

steps (a - d) and 2 major steps, according to 

Equations 1 and 2: 

 

Note that equations 1 and 2 represent steps 1 

and 2 of the overall reaction, respectively. The 

rate of the reaction may be predicted using the 

activation energy (EA) calculated for the steps 

leading to the formation of AC1 and AC2.  

The EA and the thermodynamic properties of 

the relevant steps were calculated according to 

the following relationships: 

𝐸𝐴 = 𝐸AC − ∑ 𝐸𝑅    (3) 

∆G = ∑ G𝑃 − ∑ G𝑅   (4) 

∆H = ∑ H𝑃 − ∑ H𝑅   (5) 

∆S = ∑ S𝑃 − ∑ S𝑅   (6)  

where 𝐸AC, 𝐸𝑅, G𝑃, G𝑅, H𝑃, H𝑅, S𝑅, S𝑃  are the 

total energy of the activated complexes, total 

energy of the reactants, free energy of the 

products, free energy of the reactants, enthalpy 

of the products, enthalpy of the reactants, 

entropy of the products, and entropy of the 

reactants, respectively. The G for each 

chemical component of the reaction was 

obtained according to Eq. 7: 

G = H − TS    (7)  

where H, T and S are the enthalpy, temperature 

(298.15 K), and entropy, respectively. The 

entropy, like the total energy (E) of the 

molecules, was obtained directly from the 

optimization calculation. The individual 

molecular enthalpy (H) was calculated as a sum 

of the electronic energy (total energy), zero-

point energy and thermal correction to energy 

(Obafemi et al., 2018).  
 

3.0  Results and Discussion 

3.1.  Choice of the theoretical model 
 

Density functional theory (DFT) is well-known 

for its relatively cheaper computational cost 

and higher accuracy than the ab initio HF 

method (Fabiano et al., 2005; Tsai et al., 2005; 

Hutchison et al., 2005). In the same vein, the 

B3LYP amongst the numerous hybrid DFT 

functionals is the most widely used method for 

the prediction of geometrical properties 

(Fabiano et al., 2005; Tsai et al., 2005; 

DDB    +   CuCN AC1 DBN    +   CuBr
a b

DBN    +   CuCN AC2 DPN    +   CuBr
c d

(1)

(2)
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Hutchison et al., 2005). Not only that B3LYP is 

popular, its performance in equilibrium 

geometry predictions when combined with 6-

31G(d) basis set has also been found to very 

nearly reproduce the XRD results of most 

organic compounds (Vijay et al., 2013; 

Mazzone et al., 2016). Based on this 

information, the ground-state molecular 

geometries and vibrational frequencies of the 

reaction components excluding CuCN and 

CuBr, were obtained at B3LYP/6-31G(d) level 

(Becke, 1993; Lee et al., 1988).  

The mPW1PW91 functional adopted as a 

method of benchmarking for the optimization 

and frequency calculations of copper cyanide 

and copper halide is well known for similar 

systems (Golchoubian et al., 2015; Bayse et al., 

2009; Kämpfe et al., 2015; Nitsch et al., 2015). 

The benchmarking was carried out to 

determine the most suitable basis set or 

combination of basis sets that can be used 

alongside the functional (mPW1PW91) for 

accurate prediction of CuCN geometry. The 

lowest total energy (-1733.12 Hartree) for 

CuCN was obtained with mPW1PW91/6-

31g(d), hence, it was adopted as the most 

suitable method (Figs. S1 – S3). The reason for 

this choice was based on the premise that 

molecules would assume a most stable ground 

state structure at which their total energy is 

lowest.  
 

3.2. Proposed reaction mechanisms and 

verification by DFT calculations  
 

The changes in the geometry of the reaction 

components from reactants to products are 

presented in Fig. S10 of the supporting 

document. In the three proposed mechanisms, 

the nucleophilic substitution of Br- by CN- to 

form the activated complexes was assumed to 

proceed by delocalization of the π-electrons in 

position 4 to position 3 in the DDB (see the 

inset on the left in scheme 2A). This gave the 

way for the attack by CuCN to form imino-

copper-cyclohexa-diene carbanion (Schemes 

2A, 2B, and 3). However, in scheme 2A, it was 

assumed that the electron-deficient N of the 

cyano group takes up the Br- at position 4, 

creating a space for the π-electrons to return to 

their original position (see the inset on the right 

in scheme 2A). This rearrangement was 

presumed to lead to the formation of the first 

TS structure (AC1). In AC1, the N-Br bond 

could break to produce the Br- which combined 

with the electron-deficient Cu coming from 

Cu-C=N to produce the DBN and CuBr 

(Scheme 2A). This same cycle of electron 

movement and atomic rearrangement was 

repeated in step 2 of the reaction (iii – v) to 

produce the DPN and CuBr (Scheme 2A). 

However, the TS Berny optimized structures 

did not match the proposed structures for the 

activated complexes AC1 and AC2 in scheme 

2A. This suggests that the structures of AC1 

and AC2 as proposed in scheme 2A are not the 

true structures of the TS.  

For scheme 2B, the free electrons on carbon 3 

(C3) of the cyclohexadiene abstract the copper 

ion from the imine group on carbon 4 (C4), 

leaving the two electrons to resonate within the 

ring. Also at the same position, the Br with its 

two electrons migrated towards the electron-

deficient imine nitrogen to give the first TS 

structure, AC1 (Scheme 2B). The Cu ion leaves 

position 3 as a leaving group with its two 

electrons occupying the position between C3 

and C4. As the Br attached to the imine 

nitrogen leaves as a bromide ion, the resonating 

electrons complete the triple bonds between C 

and N in the -C=N group to make it a nitrile, 

thus, producing the DBN and the first CuBr 

(Scheme 2B). The same cycle is repeated in 

step 2 of the reaction leading to the formation 

of DPN and the second CuBr. This mechanism, 

like the previous one appears incorrect because 

the TS Berny structures obtained also did not 

match the proposed TS structures (AC1 and 

AC2). However, in Scheme 3, the structures of 

AC1 (ii) and AC2 (iv) proposed, were found to 

match the computed TS structures, which were 

formed by ring-closing through the Cu atom 

and the lone-pair electrons on the imine 

nitrogen, to give a triangular moiety (Fig.  4). 
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The intrinsic reaction path and frequency 

calculations confirmed that the TS structures 

obtained are genuine and are related to both the 

reactants and the proposed products. Each of 

the two transition states was confirmed to have 

no more than one imaginary frequency (Figs.  

S8 and S9) (Grambow et al., 2020).     

 

 
Scheme 3: The reaction mechanism that was supported by the DFT calculations. 

 

 
  Fig.  4: Computed (Berny-optimized) first (ii) and second (iv) TS structures. 
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 3.3  Kinetic and thermodynamic 

properties   
 

The kinetic and thermodynamic data are 

presented in Table 1. The reaction has been 

assumed to kinetically proceed in two steps 

(Eqs. 1 and 2). The two reversible rates 

opposing the formation of the activated 

complexes in each of the two steps have been 

deliberately excluded in this investigation for 

simplicity. This is because the consideration of 

the rates was not based on the concentration of 

the reaction components, but on their EA 

obtained from their total electronic energy, as 

proposed in Eq. 3. As shown in Table 1, the 

activation energy of step 2 (Ec) is higher than 

that of step 1 (Ea), therefore, step 2 is the rate-

determining step. 
 

Table 1: Kinetic and thermodynamic data  

 
Kinetic data 

𝐄𝐚 (kJ mol-1) Ec (kJ mol-1) 

189.0 210.6 

Thermodynamic data 

Reaction ∆G𝑟𝑒𝑎𝑐  

(kJ mol-1) 

∆H𝑟𝑒𝑎𝑐  

(kJ mol-1) 

∆S𝑟𝑒𝑎𝑐  

(kJ mol-1 

K-1) 

Step 1 -606.8 -610.7 -0.0132 

Step 2 -600.1 -603.6 -0.0117 

 

The calculated thermodynamic quantities 

(∆G𝑟𝑒𝑎𝑐 and ∆H𝑟𝑒𝑎𝑐) for the two reaction steps 

were used to predict the feasibility of the 

overall reaction. Both the ∆G𝑟𝑒𝑎𝑐 and ∆H𝑟𝑒𝑎𝑐, 

for the two major steps are negative, indicating 

that the reaction steps are spontaneous and 

exothermic, respectively (Table 1). The change 

in entropy (∆S𝑟𝑒𝑎𝑐) for each of the two steps 

showed that the entropy decreased from 

reactants to products, i.e. ∆S𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠 >
 ∆S𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 in each step (Table 1).  

The transition state thermodynamic parameters 

are presented in Table 2. The change in free 

energy of activation (∆G#) were obtained as the 

difference between the free energy of the 

activated complex and the free energy of the 

reactants (Levine, 1979). Similarly, the change 

in enthalpy of activation (∆H#) were obtained 

as the difference between the enthalpy of the 

activated complex and the enthalpy of the 

reactants. Both ∆G# and ∆H# were found to be 

positive as expected. The entropy of activation 

was found to be of the same magnitude and 

negative, for the two reaction steps, confirming 

that the same number of molecules are 

involved in the two steps. The negative sign 

implies that the molecularity is higher at the 

reactant stage compared to when in transition 

state for both reaction steps.      

 

Table 2: Transition-state thermodynamic 

properties 

 
Reaction ∆𝐆# (kJ 

mol-1) 

∆𝐇# (kJ 

mol-1) 

∆𝐒# (kJ 

mol-1 K-

1) 

Step 1 263.5 217.0 -0.156 

Step 2 268.3 221.7 -0.156 

 

4.0  Conclusion 
 

The present study uses DFT calculations for the 

investigation of the formation of 4,5-

diaminophthalonitrile (DPN) from the  reaction 

between 4,5-dibromo-1,2-diaminobenzene 

(DDB) and copper cyanide. The study observed 

that the reaction mechanism involves two 

major steps, each proceeding through activated 

complexes (AC1 and AC2) and was verified to 

follow Scheme 3. Key findings include the 

identification of triangular Cu-C=N transition 

state structures for AC1 and AC2. 

Thermodynamic parameters for both steps 

indicate the reaction is spontaneous and 

exothermic. Kinetic data suggest that the 

second step is rate-determining, with higher 

activation energy compared to the first step. 

However, results from the DFT calculations 

confirmed that Scheme 3 accurately represents 

the mechanism for the formation of DPN from 

DDB and copper cyanide. The identified 

transition state structures (AC1 and AC2) 

featuring Cu-C=N frameworks provide crucial 

insights into the reaction pathway. 
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Thermodynamically, both reaction steps are 

favorable, supported by negative Gibbs free 

energy changes (∆G𝑟𝑒𝑎𝑐) and exothermic 

enthalpy changes of the reactions.  The positive 

values of activation energies (Ea and Ec) and 

enthalpies of activation (∆H#) indicate that 

both steps proceed with an energy barrier, 

consistent with typical chemical reactions. 

Based on the findings, further experimental 

validation of the proposed mechanism and 

thermodynamic parameters is recommended. 

This could include confirming the existence of 

the identified transition states experimentally 

and exploring any potential side reactions or 

intermediate species. Additionally, extending 

the computational study to consider solvent 

effects or alternative reaction conditions may 

provide a more comprehensive understanding 

of the reaction dynamics. Further theoretical 

studies could focus on optimizing reaction 

conditions for enhanced efficiency and yield in 

the synthesis of 4,5-diaminophthalonitrile, 

potentially addressing current synthetic 

limitations discussed in the literature. 
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