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Abstract: A variety of distribution classes have 

emerged by expanding or generalizing well-

known continuous distributions to enhance 

their flexibility and adaptability across various 

fields. One such distribution is the Inverse 

Weibull (IW) distribution, introduced by Keller 

and Kanath in 1982, which has proven effective 

in modelling failure characteristics. Over the 

years, several extensions of the IW distribution 

have been developed, including the Beta 

Inverse Weibull, Kumaraswamy-Inverse 

Weibull, and many others. This paper 

introduces a novel extension called the Type II 

Half-Logistic Inverse Weibull (TIIHLEtIW) 

distribution, derived from the Type II Half-

Logistic Exponentiated-G (TIIHLEt-G) family 

proposed by Bello et al. in 2021. The 

TIIHLEtIW distribution incorporates two 

additional shape parameters, enhancing its 

flexibility. We provide the cumulative 

distribution function (cdf), probability density 

function (pdf), and key statistical properties, 

including moments, moment-generating 

function, reliability function, hazard function, 

and quantile function. Maximum likelihood 

estimation (MLE) is employed for parameter 

estimation, and a simulation study evaluates 

the performance of the MLEs. Finally, the 

applicability and superiority of the TIIHLEtIW 

distribution are demonstrated through a 

comparative study using two real datasets, 

showcasing its improved fit over several 

established distributions. 
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1.0 Introduction 
 

A variety of distribution classes have been 

developed by expanding or generalizing well-

known continuous distributions. These new 

families of continuous distributions enhance 

and extend classic distributions, offering 

increased flexibility for applications across 

various fields. The newly created distributions 

have been extensively researched, 

demonstrating their broad utility and improved 

adaptability. The inverse Weibull (IW) 

distribution is an adaptation of the Weibull 

distribution using transformed variables. Its 

appeal lies in its flexibility and simplicity, 

making it suitable for the modelling of various 

failure characteristics. Introduced by Keller 

and Kanath (1982), the Inverse Weibull 

distribution was initially designed for 
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analyzing the degradation of mechanical 

components in survival and reliability studies.  

In recent years, the Inverse Weibull 

distribution has attracted considerable 

attention, resulting in the creation of numerous 

extensions. These include the Beta Inverse 

Weibull by Khan (2010), the Kumaraswamy-

Inverse Weibull by Shahbaz et al., (2012), the 

Reflected Generalized Beta Inverse Weibull by 

Elbatal et al., (2016), the Topp-Leone Inverse 

Weibull by Abbas et al., (2017), the Marshall-

Olkin Extended Inverse Weibull by 

Pakungwati et al., (2018), the Odd Frechet 

Inverse Weibull by Fayomi (2019), the 

Gamma-Inverse Weibull by Abbas et al., 

(2020), the Extended Inverse Weibull by 

Alkarni et al., (2020), and the modified Burr 

XII Inverse Weibull by Bhatti et al., (2020). 

Bello et al., (2021) proposed a new distribution 

family known as the Type II Half-Logistic 

Exponentiated-G (TIIHLEt-G), which includes 

two additional shape parameters. For any 

arbitrary cumulative distribution function (cdf) 

( ),H x   as a baseline, the TIIHLEt-G family 

with two positive shape parameters l  and a  

has the cumulative distribution function (cdf) 

and probability density function (pdf) given by: 
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The cdf and pdf of the Inverse Weibull distribution are given as 

( ); , , 0, , 0xH x e x
bqq b q b

--= > >           (3) 

( ) 1; , , 0, , 0xh x x e x
bb qq b qb q b

-- - -= > >          (4) 

This paper aims at developing a more flexible 

model by extending the two-parameter Inverse 

Weibull distribution. The new model is named 

the Type II Half-Logistic Inverse Weibull 

(TIIHLEtIW) distribution. We derive the 

TIIHLEtIW distribution from the framework 

proposed by Bello et al., (2021) and present 

several key statistical properties. 

 

2.0 The Type II Half-Logistic 

Exponentiated Inverse Weibull 

(TIIHLEtIW) Distribution 
 

We define a new model called the TIIHLEtIW 

model. A random variable X is said to follow 

the TIIHLEtIW distribution if its cumulative 

distribution function (cdf) is obtained by 

substituting equation (3) into equation (1) as 

follows: 
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and its corresponding pdf is 
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where   is a scale parameter and , ,    are shape parameters. 
 

3.0 Important Representation 
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We have provided a useful representation for 

the pdf and cdf of the TIIHLEtIW distribution. 

This representation utilizes the generalized 

binomial series, which is known for 
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For | | 1z  and   is a positive real non-integer.  

The density function of the TIIHLEtIW 

distribution is then obtained by using the 

binomial theorem (7) to (6). 
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Furthermore, an expansion for the  ( , , , , )
h

F x     is derived, where h is an integer, and the 

binomial expansion is computed once more. 
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Fig. 1: Plots of Pdf and Cdf of TIIHLEtIW distribution for different values of parameters. 

 

4.0 Statistical Properties 

4.1 Probability weighted moments 
 

Probability weighted moments (PWMs) were introduced by Greenwood et al., (1979). They are 

used to derive inverse form estimators for the parameters and quantiles of a distribution. The 

PWMs, denoted by ,r s , can be derived for a random variable X using the following relationships. 

, ( ) ( )( ( ))r s r s

r s E X F X x f x F x dx


−

 = =                    (10) 
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The PWMs of the TIIHLEtIW distribution are developed by substituting equations (8) and 

(9) into equation (10), and replacing h with s in the process. 
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The PWMs of TIIHLEtW can be written as proceed 
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4.2 Moments 
 

Since moments are crucial in any statistical analysis, particularly in practical applications, we 

derive the rth moment for the new distribution. 

'
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By using the important representation of the pdf in equation (8), we have 
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The rth moment for TIIHLEtIW distribution can be written as a proceed 
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The mean and variance of TIIHLEtIW distribution are as follows 
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4.3 Moment-generating function (mgf) 
 

The Moment Generating Function of x is given as: 
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The moment-generating function of TIIHLEtIW distribution is given by 
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4.4 Reliability function 
 

The reliability function represents the probability that a patient will survive beyond a specified 

period. It is defined as follows: 
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4.5 Hazard function 
 

The hazard function represents the probability of an event of interest occurring within a short time 

interval and is defined as follows: 
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4.6 Quantile Function 
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The quantile function is a crucial tool for 

generating random variables from any 

continuous probability distribution, making it 

significant in probability theory. For a given x, 

the quantile function is F(x) = u, where u is 

distributed as U(0,1). The TIIHLEtIW 

distribution can be easily simulated by 

inverting equation (5), resulting in the quantile  

function Q(u), defined as follows: 

1
1

1
( ) log
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u
x Q u

u






−

 
−   = =   − 
 

              (22) 

The first quartile, the median and the third 

quartile of TIIHLEtIW distribution are 

obtained by putting u = 0.25, 0.5 and 0.75, 

respectively in equation (22). 

 

Fig. 2: Plots of reliability and hazard of the TIIHLEtIW distribution for different valves of 

parameters 
 

5.0 Order Statistics 
 

Order statistics are widely used in various 

statistical fields, including reliability and life 

testing. Consider X1, X2,…,Xn as independent 

and identically distributed random variables 

with a continuous distribution function F(x). 

Let X1, X2,…,Xn be n  independently 

distributed and continuous random variables 

from the TIIHLEtIW distribution. Let F{r:n}(x)  

and f{r:n}(x), where r = 1, 2, 3,…, n, denote the 

cdf and pdf of the rth order statistic  X{r:n}, 

respectively. According to David (1970), the 

probability density function of X{r:n} is given 

by: 
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Substituting equation (8) and equation (9) into equation (23), also replacing h with v+r-1 

in equation (9). We have 
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The equation above is called the rth order statistics for the TIIHLEtIW distribution. 

Let r = n, then the probability density function of the maximum order statistics of TIIHLEtW 

distribution is 
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Also, let r = 1, then the probability density function of the minimum order statistics of TIIHLEtW 

distribution is 
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6.0 Parameter Estimation 
 

We examine the maximum likelihood method 

for estimating the unknown parameters of the 

TIIHLEtIW distribution using complete data. 

Maximum likelihood estimates (MLEs) are 

appealing because they can generate 

confidence intervals and provide 

straightforward approximations that perform 

well with finite samples. The approximation 

for MLEs is easy to manage in distribution 

theory, both analytically and numerically. Let 

x1, x2, x3,...,xn be a random sample of size n  

from the TIIHLEtIW distribution. The 

likelihood function based on the observed 

sample for the vector of parameters (λ, α, θ, β)T 

is given by: 
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The MLEs are determined by setting 

( ) ( ) ( )
, ,

L L L  

  

  

  
and 

( )L 






 to zero and 

solving them simultaneously. Since these 

equations cannot be solved analytically, 

numerical methods must be employed. 
 

6.0 Simulation Study 

In this section, a numerical analysis will be 

performed to assess the performance of MLE 

for the TIIHLEtIW distribution. Table 1 

demonstrates that as the sample size increases, 

the values of biases and RMSEs approach zero, 

and the estimates converge to the true values. 

This indicates that the estimates are efficient 

and consistent. 

 

Table 1: MLEs, biases and RMSE for some values of parameters 

 

               (1.5,1.5,3,3)                 (2,0.5,1.5,1.5) 

n Parameters  Estimated  

Values 

Bais RMSE Estimated  

Values 

Bais RMSE 

 

20 
  

  

  

  

1.6002 

1.7487 

3.0310 

3.2805 

0.1002 

0.2487 

0.0310 

0.2805 

0.4997 

0.6059 

0.4781 

0.7360 

2.0160 

0.5089 

1.5017 

1.6413 

0.0160 

0.0089 

0.0017 

0.1413 

0.1818 

0.1188 

0.1504 

0.3692 

 

50 
  

  

  

  

1.5489 

1.6186 

3.0533 

3.1103 

0.0489  

0.1186  

0.0533  

0.1103 

0.2960 

0.3361 

0.3549 

0.4007 

2.0606 

0.5074 

1.5093 

1.5558 

0.0606 

0.0074  

0.0093  

0.0558 

0.1179 

0.0617 

0.0904 

0.2018 

100   

  

  
  

1.5358 

1.5572 

3.0678 

3.0545 

0.0358  

0.0572  

0.0678  

0.0545 

0.2062 

0.2207 

0.2588 

0.2570 

2.0726 

0.5039 

1.5161 

1.5275 

0.0726 

0.0039  

0.0161  

0.0275 

0.0951 

0.0434 

0.0646 

0.1291 

250   

  

  
  

1.5239 

1.5101 

3.0839 

3.0158 

0.0239  

0.0101  

0.0839  

0.0158 

0.1280 

0.1324 

0.1812 

0.1575 

2.0746 

0.5017 

1.5201 

1.5079 

0.0746 

0.0017  

0.0201  

0.0079 

0.0860 

0.0324 

0.0522 

0.0791 

500   

  

  
  

1.5014 

1.5058 

3.0775 

3.0064 

0.0014  

0.0058  

0.0775  

0.0064 

0.0858 

0.0906 

0.1306 

0.1110 

2.0705 

0.5024 

1.5188 

1.5032 

0.0705 

0.0024  

0.0188  

0.0032 

0.0773 

0.0277 

0.0421 

0.0556 
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1000   

  

  

  

1.5020 

1.5109 

3.0501 

3.0044 

0.0020  

0.0109  

0.0501  

0.0044  

0.0677 

0.0712 

0.0885 

0.0753 

2.0672 

0.5012 

1.5164 

1.5022 

0.0672 

0.0012  

0.0164  

0.0022 

0.0736 

0.0256 

0.0368 

0.0377 

 

6.1 Applications to Real Data 
 

We fit the TIIHLEtIW distribution to two real 

datasets and conducted a comparative study 

with several other distributions: the Extended 

Inverse Weibull (TIHLIW) Distribution by 

Alkarni et al., (2020), the Marshall-Olkin 

Extended Inverse Weibull (MOIW) 

Distribution by Pakungwati et al., (2018), the 

Generalized Inverse Weibull (GIW) 

Distribution by De Gusmao et al., (2011), the 

Kumaraswamy–Inverse Weibull (KIW) 

Distribution by Shahbaz et al., (2012), and the 

Inverse Weibull (IW) Distribution by Keller 

and Kanath (1982). This comparison serves to 

demonstrate the performance of the 

TIIHLEtIW distribution. 

 

The TIHLIW distribution developed by Alkarni et al., (2020) has pdf defined as: 
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 The MOIW distribution developed by Pakungwati et al., (2018) has pdf defined as: 
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The GIW distribution proposed by De Gusmao et al., (2011) has pdf given as: 

( 1)( ; , , ) expf x x
x
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 The KIW Distribution proposed by Shahbaz et al., (2012) has pdf given as: 
1

1
( ; , , , ) exp 1 expf x

x x x



  

  
   

−

+

    
= − − −    

    
                                                        (35) 

The IW distribution developed by Keller and Kanath (1982) has pdf defined as: 

( )1( ; , ) expf x x x    − − −= −                (36) 

The two datasets used as illustrations in the application demonstrate the new proposed 

distribution's flexibility, applicability, and superior fit when modelling the datasets empirically 

compared to the above comparator distributions. All calculations are executed using the R 

programming language. 

Data set 1 

The first data set below represents the tensile strength of carbon fibers, as previously utilized by 

Akanji et al., (2023): 

3.7, 3.11, 4.42, 3.28, 3.75, 2.96, 3.39, 3.31, 3.15, 2.81, 1.41, 2.76, 3.19, 1.59, 2.17, 3.51, 

1.84, 1.61, 1.57, 1.89, 2.74, 3.27, 2.41, 3.09, 2.43, 2.53, 2.81, 3.31, 2.35, 2.77, 2.68, 4.91, 1.57, 

2.00, 1.17, 2.17, 0.39, 2.79, 1.08, 2.88, 2.73, 2.87, 3.19, 1.87, 2.95, 2.67, 4.20, 2.85, 2.55, 2.17, 

2.97, 3.68, 0.81, 1.22, 5.08, 1.69, 3.68, 4.70, 2.03, 2.82, 2.50, 1.47, 3.22, 3.15, 2.97, 2.93, 3.33, 
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2.56, 2.59, 2.83, 1.36, 1.84, 5.56, 1.12, 2.48, 1.25, 2.48, 2.03, 1.61, 2.05, 3.60, 3.11, 1.69, 4.90, 

3.39, 3.22, 2.55, 3.56, 2.38, 1.92, 0.98, 1.59, 1.73, 1.71, 1.18, 4.38, 0.85, 1.80, 2.12, 3.65. 

 
Fig. 3: Empirical and theoretical pdfs and cdfs, Q-Q and P-P plots for data set 1 

 

Table 2: MLEs, Log-likelihoods and Goodness of Fits Statistics for the Data Set 1 
 

Distributions         LL AIC 

TIIHLEtIW 3.0022 1.6079 0.8392 1.5099 - 172.9524 

 

353.9048 

TIHLIW 4.2502 4.5785 - 1.1657 -177.6114 361.2228 

KIW 2.1516 6.1424 2.5170 1.0249  -174.8953 

 

357.7906 

GIW 1.3121 1.7737 - 

 

1.9059 

 

-178.4966 362.9932 

MOIW 4.7410 - 0.8693 2.3922 -179.2674 364.5348 

IW 3.0856 1.7737 - - -182.4966 368.9932 

 

The parameters of the new proposed 

distribution and five comparator distributions 

were estimated using maximum likelihood, 

with the results shown in Table 2. Based on the 

AIC goodness-of-fit measure, the new 

proposed distribution achieved the lowest 

value, although the KIW distribution was a 

close second. The superiority of the proposed 

distribution is further supported by empirical 

and theoretical pdfs and cdfs, as well as the Q-

Q and P-P plots visual examination shown in 

Fig. 3. Therefore, the newly proposed 

distribution is considered the most suitable fit 

for the carbon fibers data set among the 

distributions evaluated. 
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Data set 2 

The second data set presented below pertains to civil engineering data involving hailing times, as 

previously studied by Akanji et al., (2023): 

4.79, 4.75, 5.40, 4.70, 6.50, 5.30, 6.00, 5.90, 4.80, 6.70, 6.00, 4.95, 7.90, 5.40, 3.50, 4.54, 6.90, 

5.80, 5.40, 5.70, 8.00, 5.40, 5.60, 7.50, 7.00, 4.60, 3.20, 3.90, 5.90, 3.40, 5.20, 5.90, 4.40, 5.20, 

7.40, 5.70, 6.00, 3.60, 6.20, 5.70, 5.80, 5.90, 6.00, 5.15, 6.00, 4.82, 5.90, 6.00, 7.30, 7.10, 4.73, 

5.90, 3.60, 6.30, 7.00, 5.10, 6.00, 6.60, 4.40, 6.80, 5.60, 5.90, 5.90, 8.60, 6.00, 5.80, 5.40, 6.50, 

4.80, 6.40, 4.15, 4.90, 6.50, 8.20, 7.00, 8.50, 5.90, 4.40, 5.80, 4.30, 5.10, 5.90, 4.70, 3.50, 6.80. 

 
Fig. 4: Empirical and theoretical pdfs and cdfs, Q-Q and P-P plots for data set 2 

 

Table 3: MLEs, Log-likelihoods and Goodness of Fits Statistics for the Data Set 2 
 

Distributions         LL AIC 

TIIHLEtIW 2.0782 6.2267 0.0033 0.3960 -123.8043 255.6085 

TIHLIW 24.7313 12.8858 - 1.3409 -139.265 284.5299 

KIW 11.6924  14.5415 5.1887 1.7337 -134.0294 276.0588 

GIW 3.6026  4.2042  4.4080 -146.009 298.018 

MOIW 2.4732 - 0.2318 3.8414 -151.3612 308.7225  

IW 4.2340 4.4077 - - -146.009 296.018 

 

The parameters of the TIIHLEtIW distribution 

and five comparator distributions were 

estimated using maximum likelihood, as shown 

in Table 3. According to the goodness-of-fit 

measure AIC, the new distribution achieved the 

lowest value, indicating it is the best fit for the 

hailing times data set. The new distribution's 

superiority is further confirmed by the visual 

examination of the empirical and theoretical 

pdfs, cdfs, Q-Q plots, and P-P plots, as depicted 

in Fig. 4. 
 

7.0   Conclusion 
 

The study introduces the Type II Half-Logistic 

Inverse Weibull (TIIHLEtIW) distribution, an 
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extension of the Inverse Weibull (IW) 

distribution that incorporates two additional 

shape parameters to enhance flexibility and 

adaptability in modeling data. This novel 

distribution is derived from the Type II Half-

Logistic Exponentiated-G (TIIHLEt-G) 

family. Key statistical properties of the 

TIIHLEtIW distribution, such as the 

cumulative distribution function (cdf), 

probability density function (pdf), moments, 

moment-generating function, reliability 

function, hazard function, and quantile 

function, are thoroughly discussed. Parameter 

estimation is carried out using maximum 

likelihood estimation (MLE), and a simulation 

study is conducted to assess the performance of 

the MLEs. The practical applicability and 

superiority of the TIIHLEtIW distribution are 

demonstrated through a comparative analysis 

using two real datasets, revealing a better fit 

compared to several established distributions. 
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