Strategic Development of AI-Driven Supply Chain Resilience Frameworks for Critical U.S. Sectors

Forward Nsama

Received: 23 February 2025/Accepted: 12 June 2025/Published: 25 June 2025

https://dx.doi.org/10.4314/cps.v12i5.9

Abstract: The COVID-19 pandemic, in the midst of stimulated geopolitical and cyber threats, has exposed significant weaknesses in the United States' supply chains, especially when several essential sectors (such as healthcare, energy, food, and semiconductor manufacturing) are considered. Customized supply chain risk management systems is based on non dynamic assumptions, non-automated analysis, and outdated or previous-looking data. Consequently, the listed approaches have proven inadequate to compensate for complex disruptions and high-velocity. Therefore, the present study establishes and examines an AI-Driven Supply Chain Resilience Framework (AI-SCRF) designed to create anticipatory capabilities, adaptability, and autonomous decision-making in the face of large-scale shocks. The developed AI-SCRF was directed to predictive analytics, digital twins, machine learning and real-time optimization mechanisms that facilitated situational awareness and accelerate recovery. To evaluate its effectiveness, the AI-SCRF was deployed in simulated pandemic-driven shortages of PPE, a cyberattack on the national power grid, and global transportation shutdown. Its performance was gauged on four important metrics - response time, service level, cost impact reduction, and inventory recovery time - and compared to that of traditional supply chain approaches. Paired sample t-tests quantitative analysis revealed statistically significant improvement across all measures (p < 0.01). The AI solution reduced mean response time by 45 hours (t = 12.16, p = 0.0073), increased service levels by 32.7 percentage points (t = -24.49, p = 0.0017), improved cost impact reduction by 35% (t = -42.04, p = 0.0006), and reduced inventory

recovery time by 6.67 days (t = 11.71, p =0.0077). All improvements were accompanied by very large effect sizes (Cohen's d > 6.7), and 95% confidence intervals confirmed the robustness of the improvements. The findings demonstrate the transformative potential of AIenabled systems in constructing supply chain resilience. The AI-SCRF not only addresses the real-time visibility and agility gaps of traditional systems but also provides an extensible framework suitable for emerging threats such as AI-enabled cyberattacks and climate-driven disruptions. The research findings have national policy implications, augmenting strategic initiatives such as Executive Order 14017 and the CHIPS and Science Act, and providing a blueprint for the design, governance, and deployment of smart supply networks for critical infrastructure sectors.

Keywords: Artificial Intelligence, Supply Chain Resilience, Critical Infrastructure, Predictive Analytics, Disruption Management

Forward Nsama

School of Business, Avila University, Kansas City, MO, 64145, USA.

Email: nsama529958@avila.edu

1.0 Introduction

The COVID-19 pandemic exposed chronic weaknesses in international and national supply chain systems, with a global reckoning about how to source, control, and protect strategic resources. In America. interruptions were exposed in severe and extended shortages of strategic goods and materials like personal protective equipment (PPE). ventilators. semiconductors. pharmaceuticals, and diagnostic testing reagents (Ivanov & Dolgui, 2021). Because the virus propagated so rapidly, historically respected just-in-time (JIT) inventory systems were unable to provide the cushion required in crisis mode. This flaw was not merely a supply chain logistical mistake but a system failure of readiness, coordination, and flexibility, which unmasked the absence of real-time visibility and redundancy in supply chains that underlie national health, safety, and economic infrastructure.

The healthcare sector was among the most affected, resulting in a great impact on several hospitals experiencing critical shortages of PPE, ventilators, and testing materials within the initial outbreak and subsequent wave periods (Umoren et al., 2025; Dada et al., 2024). International dependency manufacturing hubs such as China and India made the situation worse when export bans and nation-by-nation border shutdowns resulted in cross-border raw material and finished product movement being disrupted (Kumar et al., 2023; Chopra et al., 2022). Dependence on overseas producers for essential components such as semiconductors, rare earth elements, and microelectronics in the defence sector raised legitimate national security concernsparticularly amid increased geopolitical tensions with countries like China and Russia (Congressional Research Service [CRS], 2023). Food supply chains also experienced extreme impacts from labour shortages, shutdown of processing plants, and changes in demand. Farmers were exposed to spoilage and loss of perishable goods and grocery shops suffered persistent stockouts (Richards & Rickard. 2020: Hobbs. 2021). The energy sector was not exempted either. Both the renewable and fossil fuel supply chains were affected by labour shortages, volatile prices, and pressure on infrastructure. Geopolitical events, such as the war in Ukraine, magnified these effects by disrupting global oil and gas supply and pushing energy prices to record highs (International Energy Agency

[IEA], 2022). At the same time, cyber threats became high-order threats, such as with the Colonial Pipeline ransomware attack, which shut down fuel shipments across most of the (Cybersecurity Coast U.S. Infrastructure Security Agency [CISA], 2021). One of the most enduring effects of the pandemic has been the global shortage of semiconductors, which continues to impact numerous industries like the auto sector, telecommunications, medical devices, and defense systems. With nearly all chip manufacturing situated in East Asia, Taiwan and South Korea in particular, the United States was left open to geopolitical and supply chain risks beyond its control (Shih, 2020; Bown, 2021).

Despite growing awareness weaknesses, a clear gap exists in the literature and practice for creating comprehensive, AIdriven supply chain resilience frameworks, particularly tailored for key U.S. industries. The majority of existing strategies are focused on traditional risk management, or they weigh efficiency over agility and adaptability. Moreover, supply chain resilience research is most often still isolated within disciplines with hardly any use of real-time analytics, predictive modelling, or autonomous response systems (Queiroz et al., 2022; Wamba-Taguimdie et al., 2021).

This research aims to develop a strategic, artificial intelligence (AI)-grounded framework to enhance supply chain resilience in critical U.S. industries—healthcare, defence, energy. and semiconductor manufacturing. The framework will integrate predictive analytics, machine learning, digital twins, and autonomous decision support systems to enhance the capacity of supply chains to anticipate, absorb, respond to, and recover from disruptive occurrences. The significance of this research is threefold. First, it builds upon the country's national economic and security resilience dialogue by offering a technology roadmap aligned with

federal priorities such as Executive Order 14017 (America's Supply Chains) and the CHIPS and Science Act of 2022. Second, it provides a sector-specific but scalable model that translates academic thinking into reality and addresses the requirements of both the public and private sectors. Third, it boosts long-term economic competitiveness through the stimulation of AI innovation in supply chain design that is critical in the era of escalating global disruptions and cyberphysical threats.

1.1 Justification for AI-Driven Supply Chain Resilience

The risk of the chain-reaction disruptions to the United States. The economy requires actions that are an imperative necessity for an adaptable, smart, and anticipatory supply chain paradigm. Exacerbated shortages of critical commodities have exposed the vulnerabilities of traditional supply chain designs that maximize efficiency at the cost of resilience. Shortages jeopardized public health and economic stability and undermined confidence in institutions' capacity to manage crises.

Moreover, logistics vulnerabilities were exposed whereby major shipping routes, terminals, and nodes suffered congestion, labour stoppages, and cyber threats (Craighead et al., 2022). The 2021 ransomware attack against Colonial Pipeline indicated the cyberphysical vulnerabilities associated with national supply chains (Cybersecurity and Infrastructure Security Agency [CISA], 2021). Increased supply chain digitization, although generating efficiency advantages, also creates system threats to be tackled by intelligent threat detection and autonomous response systems. Against such challenges, strategic integration of artificial intelligence (AI) and machine learning (ML) within supply chain management is now felt to be crucial in building resilience. AI provides the capability for processing or analysing large volumes of real-time data, foreseeing disturbances, and optimize resource allocation and making

decisions autonomously in conditions of uncertainty (Abolade, 2024; Wamba-Taguimdje *et al.*, 2021; Queiroz *et al.*, 2022; Abolade, 2023). Such capabilities are essential in dynamic risk assessment and swift response under multi-layered, complex crises(Ademilua & Areghan, 2022).

Given the limitations and weaknesses of the above-listed factors, the U.S. government has implemented some actions that are currently promoting supply chain resiliency through various policy initiatives (Utomi et al., 2024). One of such is the Executive Order 14017, America's Supply Chains, which authorises a comprehensive review of vulnerabilities in major industries such as semiconductors, batteries, critical minerals, and pharma (White House, 2021). Both the CHIPS and Science Act (2022) and the Inflation Reduction Act (2022) include provisions to bring production closer to home and promote innovation in supply chain management and technology infrastructure. Thus, developing AI-driven supply chain resiliency frameworks is aligned with national security interests, economic policy requirements, and technology innovation drivers.

The above-listed frameworks are fundamental in preventing future pandemics or associated geopolitical shocks.

2.0 Review of Existing Approaches and Gaps

Supply chain resilience frameworks have been observed to experience shift through their evolution, especially in the context of recent global disruption. The classic models, while being building blocks, are progressively confronted with the dynamic and interconnected characteristics of today's supply systems. This part delves into current tools and frameworks, identifies their limitations, and introduces emerging technologies like AI, ML, and digital twins as disruptors for adaptive resilience.

2.1 Traditional Supply Chain Risk Management Models

Commonly employed supply chain risk management (SCRM) frameworks were developed to handle (i) deterministic planning, historical data analysis, and (ii) static policy tools (that aim for efficiency and cost minimization). These approaches typically include qualitative-based tools such as SWOT (Strengths, Weaknesses, Opportunities, Threats) and PESTLE (Political, Economic, Social, Technological, Legal, Environmental) analyses, which are used for identifying potential causes of disruption and for strategic planning.

Most supply chains are appraised through supplier risk scoring, Consequently, firms score vendors based on certain factors such as financial health, geopolitical risk, and delivery reliability. Inventory buffers or safety stocks and dual sourcing options to hedge against supply-side risks are other approaches.

Some quantitative approaches, including linear programming, stochastic modelling, and Monte Carlo simulations, are also found in classical SCRM. These models take advantage of logistics, production planning, and subsequent demand forecasting against some given constraints. Unfortunately, the approaches are to historical trends and static assumptions and are therefore limited when with rapidly changing market dealing conditions or unexpected disruptions. As Tang (2006) argues, while these models excel in buffering against predictable risks when the operating environment is routine, they are less responsive to emergent threats outside the trajectory of historical trends.

In addition, the traditional risk management paradigm assumes risk events to be discrete and sufficiently independent. It fails to adequately account for the cascading effects of disruptions across linked supply chain nodes, especially in a globally networked environment. Chopra and Sodhi (2004) note that the majority of firms underestimate lowprobability, high-impact risks—e.g., pandemics cyber-attacks—because or

conventional models typically are unable to capture non-linear and systemic vulnerabilities. This was particularly evident in the COVID-19 pandemic, which strained most supply chains that had not been stress-tested for global, multisectoral shocks.

Another fundamental limitation of traditional SCRM is that it is episodic. Risk assessment is typically conducted at periodic intervals or in response to specific regulatory or audit stimuli. Consequently, such models are not embedded in real-time data and do not support continuous monitoring or adaptive learning. With today's dynamic and turbulent contexts, where disruptions evolve rapidly and repeatedly in unforeseen ways, the need for real-time sensing and analytics has become pressing. Traditional systems also depend heavily on manual inputs and expert judgment, which are subjective and also tend to delay decision-making during a crisis (Pettit, Fiksel, & Croxton, 2010).

Furthermore, the increasing digitalization of supply chains has come ahead of the capability of traditional models in mitigating cyber risks and data-driven disruptions. Based on the work of Sheffi and Rice (2005), while firms have invested in lean operations and global sourcing in the quest to be cost-effective, they have neglected to invest in their risk intelligence systems to cope with digital exposure. This disconnect between operational intricacy and risk lucidity has extended the resilience gap, leaving many firms blind to early warning signs and ill-equipped to execute rapid recovery.

Generally, while traditional SCRM models have provided fundamental frameworks for identifying and mitigating certain forms of risk, they fall short in environments where volatility, ambiguity uncertainty, complexity, and (VUCA) are dominant. The rising frequency of global shocks from pandemics and natural disasters to cyber attacks and geopolitical conflicts, can only be handled by a more proactive, data-driven, and predictive approach. COnsequently, a shift toward digital

and AI-enabled supply chain resilience frameworks have been widely witnessed.

2.2 Existing Resilience Indices and Stress-Test Tools

Over the past two decades, scholars and practitioners have developed a plethora of tools and indices for measuring and benchmarking supply chain resilience in the face of adversity. The tools typically attempt to quantify the ability of a supply chain to resist, absorb, and recover from disruptive events such as natural

pandemics, cyberattacks, disasters, geopolitical shocks. While helpful benchmarks for thinking about supply chain performance, most such frameworks are not flexible, realtime, or predictive enough in the environment highly volatile of contexts. Table 1 gives a comparative overview of some of the most widely used resilience indices and stress-testing frameworks, their objectives, and principal shortcomings as documented in recent literature.

Table 1: Overview of Selected Supply Chain Resilience Models and Their Limitations

Tool/Model	Purpose	Limitations
Supply Chain Operations Reference (SCOR)	Provides performance benchmarking using standardized metrics for processes such as plan, source, make, deliver, and return.	Static benchmarking cannot assess dynamic adaptability in real-time crises. (APICS, 2017)
Resilience Triangle (Bruneau et al., 2003)	Visualizes system performance degradation and recovery over time to conceptualize resilience.	Difficult to quantify in operational supply chains; lacks automation and integration with live data.
Simulation-Based Stress Testing	Models supply chain behavior under specific disruption scenarios using simulations and "what-if" analysis.	Scenario-dependent and not generalizable; lacks real-time feedback mechanisms. (<i>Ivanov & Dolgui</i> , 2020)
Network Risk Models	Analyzes supply chains as complex networks to evaluate risk propagation and node criticality.	High model complexity, computational burden; limited scalability for global applications. (Snyder et al., 2016)

The SCOR model was developed by the Supply Chain Council, is now part of APICS. It is among the most widely used frameworks for benchmarking supply chain performance because it can provide a standardized vocabulary and a hierarchical structure for the evaluation of the performance of implemented model. However, the model has some setbacks, for example, (i) it focuses primarily on efficiency and compliance, (ii) It is not on adaptive capacity or resilience under stress. Therefore, it can not provide actionable insights during fast-evolving disruptions or (APICS. swan events The Resilience Triangle was also introduced by

Bruneau *et al.* (2003). The triangle can offers a visual conceptual model to reveals how systems lose functionality during a shock and gradually recover over time. Although this model is useful for understanding the temporal dimensions of resilience, it sis largely qualitative and is void clear methodologies for real-time quantification and system-level automation.

However, they are more applicable in academics than in operational supply chain management.

The application of this approach is significant in the financial industry and is currently being used more and more in manufacturing and

logistics (Ivanov & Dolgui, 2020). Also, most simulations operates through preset scenarios, that may not faithfully represent a wide range of likely disruptions or their compounding effects faithfully. Secondly, most of these simulations are n0t updated in real time, and can often conducted in controlled settings, and are not connected to actual operations.

An advanced class of tools (network risk models) analysed supply chains interconnected networks or systems. Consequently, this model can be applied in business to forecast cascading failures, assess risk propagation pathways, and pinpoint critical nodes. Despite their theoretical strength, these models are computationally demanding and necessitate a large amount of data regarding operational dependencies, transport networks, and supplier relationships—data that many businesses either do not gather or are unable to access in real time (Snyder et al., 2016).

All of these models have one crucial drawback, despite their theoretical strength and usefulness for long-term planning: they are not well suited for dynamic, real-time decision-making in the face of uncertainty. According to Pettit, Fiksel, and Croxton (2010), contemporary supply chains function in progressively unstable settings where interruptions are intricate, simultaneous, and challenging to predict with conventional instruments. The practical applicability of these models in crisis response and recovery is significantly constrained by their lack of autonomous decision-support mechanisms, predictive intelligence, and realtime data integration.

As a result, the field is currently moving toward AI-enabled systems that provide data-driven decision-making, self-learning capabilities, and continuous sensing. These technologies represent fundamental changes toward adaptive resilience in supply chain operations and design, not just improvements on preexisting models.

2.3 Identified Gaps in Traditional Systems

Although traditional supply chain risk management frameworks have provided generic templates for decades, the recent succession of global crises—the most notable of which is the COVID-19 pandemic—has laid bare their drastic limitations in guiding dynamic and responsive decision-making. These are reflective of a broader problem: most legacy systems were designed for stability, efficiency, and cost savings, as opposed to uncertainty and volatility that define the modern risk landscape. Among the most critical limitations is the lack of agility in traditional supply chain tools. Agility defines the capability of a supply network to detect changes in the environment quickly and reconfigure accordingly. Also, most traditional approaches are rooted in non-dynamic risk matrices, pre-established scenarios, periodic reviews that are not able to keep pace with sudden disruptions. For instance, worldwide lockdowns, plant closures, and sudden changes in demand during the COVID-19 pandemic exceeded many companies' capacity to reroute supplies, find new suppliers, or reorder production. Month-long shortages of essential products, ranging from masks and ventilators to semiconductors and medications, were caused by the resulting inertia (Ivanov & Dolgui, 2021).

A second major deficit is the absence of realtime visibility. Traditional risk management systems are typically supported by lagging indicators based on historical data, audits, or surveys. These methods are not designed to provide real-time feedback from across the supply chain, frustrating visibility into emerging threats. Companies, in most instances, did not discover upstream supplier disruptions until inventories began to deplete. This blindness was also exacerbated by a lack of shared digital infrastructure and data-sharing protocols across supply chain partners, which retarded recognition and also response (Pettit, Fiksel, & Croxton, 2010).

Weak predictive capability of traditional models is equally troubling. Most risk analysis tools are incapable of foreseeing disruptions from weak signals, nonlinear relationships, or emergent patterns. This deficit is particularly concerning given that the majority of modern risks—e.g., cyber attacks, climate disruptions, and pandemics—have complex propagation dynamics and rarely adhere to historical patterns. When companies fail to recognize early warning indicators, they fall behind in responding to disruptions and only act after they have affected operations. For instance, there weren't many U.S. companies with predictive models robust enough to anticipate the downstream effects on the United States production and distribution system (Shih, 2020).

Additionally, the lack of automation in traditional systems results in manual and slow decision-making. Human analysts read data, weigh options, and take action in the majority of planning, risk analysis, and contingency execution tasks. Expertise is important, but depending too much on manual procedures limits scalability in multi-tiered global supply chains, adds latency, and increases cognitive load during emergencies.

In the COVID-19 response, organizations were unable to coordinate recovery efforts at scale due to bottlenecks in human decision loops since most teams lacked the decision-support systems necessary to automate high-frequency or routine risk responses (Chopra, Sodhi, & Lovejoy, 2022).

Such observable gaps are not isolated issues but are signs of a structural inbalance between traditional supply chain designs and the requirements of resilience in the digital age. The failure to anticipate and adapt to COVID-19 disruptions—even on the part of well-equipped firms—underscores the need for more agile, smarter, and automated systems. Based on the report from Ivanov and Dolgui (2021), resilience is not considered a significant issue in recent times regarding the

building of redundancies. However, it is a significant event in the integration of cognitive technologies to facilitate real-time situational awareness, predictive modelling, and autonomous response.

In response to these limitations, recent consideration is based on the field that is shifting towards digital transformation strategies. Such shift is taking advantages of the associated with the capacity of AI, ML, IoT and digital twins. This is because the listed technologies have the prospect of bridging the existing gaps through the facilitation of ongoing monitoring, adaptive learning, and proactive intervention, which are kills that are quickly being perceived as critical to supply chain survival in the face of 21st-century disruptions.

2.4 Emergence of AI, Machine Learning, and Digital Twins

A new revolution in technology has started reshaping how businesses plan, manage, and redesign supply chains as traditional supply chain management systems remain prone to rigidity, latency, and poor prediction capabilities. Digital twin technology, machine learning, and artificial intelligence (AI) are at the forefront of this revolution (Adjei, 2025b; Adjei, 2025c). All of these tools collectively form the foundation for making a transition away from reactive supply chain operations and towards intelligent, self-managing, and adaptive networks that can operate effectively in VUCA conditions.

Artificial Intelligence (AI) offers unparalleled capability to process vast amounts of structured and unstructured data at different levels of a supply network. AI-based models, do have certain outstanding advantages over rule-based systems. This is due to the fact that they can learn from real-time and past datasets in an effort to identify trends, predict upcoming events, and enhance response times to disruptions. The strength of AI lies in the ability to integrate diverse risk factors with roots in weather patterns and geopolitical

indicators to demand changes and supplier reliability. As per Wamba-Taguimdje *et al*. (2021), AI technologies allow organizations to shift from descriptive and diagnostic analytics to prescriptive and predictive decision-making. It supports the supply chains to identify disruptions early and to provide and execute the optimal solutions.

Algorithmic extensions of performance improvement through data exposure without explicit programming bear a very close connection with machine learning (ML). ML models are particularly useful for discovering anomalies in supply stream chains, fraud or cyber intrusion detection, demand spike forecast, and dynamic procurement optimization. Machine learning has been applied in logistics to minimize inventory reordering, forecast lead times, and maximize the delivery route—functionality minimizes human oversight, minimizes latency, and maximizes resilience in intricate and dynamic systems (Choi et al., 2022). Most importantly, machine learning techniques such as neural networks, decision trees, and reinforcement learning are very relevant in post-COVID supply chain redesigning because they can adapt to emerging patterns of disruption. The Digital Twin is the third pillar of support for this revolution. A digital twin is a virtual, real-time model of an existing supply chain through data inputs from the various elements of the ecosystem, suppliers, transport equipment, warehouses. customer touchpoints. IoT sensors, enterprise systems (like ERP, WMS, and TMS), and external data feeds (like weather, customs, and news) are all utilized to keep these twins constantly updated. Lu et al. (2022) wrote that digital twins are more than simulation technologies but rather decision-support systems that companies to foresee risks rather than respond to damage. For example, during the unplanned shutdown of a port, a digital twin would be able to simulate alternative routing, investigate cost

vs. time trade-offs, and suggest the best reconfiguration plan—usually within seconds. They are not incremental refinements of traditional models—they are a paradigm shift in how supply chains are conceived, operated, and governed.

They enable doing what Sheffi (2020) refers to as "cognitive supply chains"—smart networks that can learn, reason, and act autonomously. Even the systems can reduce reliance on human intervention, reduce response time in crisis, and learn and refine continuously using feedback loops and real-time learning. In highly regulated sectors such as antiterrorism/defence and medicine/healthcare, digital twins and AI also enhance traceability and compliance that are essential for managing counterfeiting, quality, and cybersecurity threats (Ndibe, 2025a., Ndibe, 2025b: Okolo et al., 2025). Significantly, these digital technologies also develop collaborative resilience across more extended value chains. AI platforms may be coupled with suppliers' systems to predict delays upstream; digital twins may be shared with logistics partners to coordinate responses; ML algorithms can coordinate demand signals between customers to avoid bullwhip effects. This interchangeability, enabled by cloud computing and APIs, is key to resilience in globalized supply networks operating across geographies, regulatory regimes, and risk profiles (Queiroz et al., 2022).

Despite their promise, their uptake is not effortless, and there are issues like data quality, cybersecurity, algorithmic bias, and integration with current systems (Ndibe & Ufomba, 2024). These are likely to continue as recalcitrant barriers. The post-COVID experience was teachable to accelerate investment in digital transformations to such a degree that leading companies now give the highest priority to AI and digital twin technologies as key pillars of supply chain transformation strategies (Accenture. 2022).

Combining AI, ML, and digital twins is a strategic turning point in supply chain thinking

on resilience. Such technologies shift attention from efficiency to adaptability, from forecast to foresight, and from working in silos to harmonized ecosystems. Their use signals the advent of self-governing, real-time, and intelligence-powered supply chain networks that can last and thrive amidst unprecedented disruption.

The flowchart in Fig. 1 presents a conceptual mapping of the evolving world of supply chain risk management, charting the transition from past, deterministic-model-based approaches to resilience models based on adaptive AI.

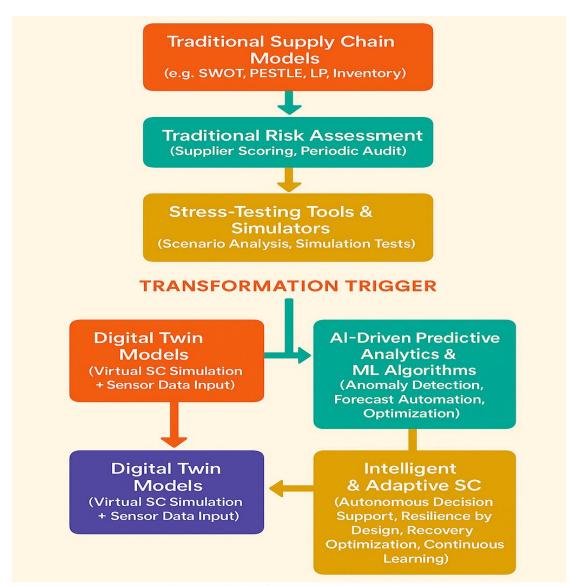


Fig. 1; Flowchart showing transition from Traditional Risk Management Models to Al-Driven Supply Chain Resilience Framework

This diagrammatic process begins with the traditional practice of SWOT analysis, PESTLE approaches, linear programming, and inventory buffering that have long underpinned supply chain strategy in cost reduction and

operational effectiveness. These traditional models, while sound, are largely static and reactive, founded on episodic data feeds and expert judgment that cannot cope with today's disruption-driven world.

The flowchart shows a system consisting of scenario simulations, continuous audits, and supplier score matrices, built to assess the possible reaction of supply chains to some disruptions. They do have some shared weaknesses, such as unresponsiveness in real time, unscalability across digital networks and global networks, and vulnerability to ignoring predictive learning or faint signal detection. Such weaknesses have opened up deep operational vulnerabilities across businesses as disruptions in the form of pandemics, cyberattacks, and geopolitical shocks have grown more pervasive and interconnected.

The central axle of the flowchart is the recognition of the significant system-level gaps, namely unresponsiveness, no live data integration, low anticipative capacity of existing systems, and slow, laborious decision-making in times of crisis. It is the phase from which organizations become aware that their models are not working, realizes solutions to transform their realm of resilience, or actually start seeking transformations.

This recognition brings to the table the concept of AI-driven frameworks of resilience that go beyond traditional systems to new-age systems harness data, that will analytics. automation to enable timely and intelligent responses. The flowchart splits into two technological pillars delivering transformation. On the one hand, digital twin models create virtual representations of supply chains that can be manipulated organizations to simulate stress scenarios in real time and test recovery strategies in a precise manner. On the other hand, machine learning and real-time predictive analytics perform the functions of anomaly detection, demand shift prediction, and sourcing and routing decision optimization in fully or partially autonomous mode.

Together, these two streams lead toward a future-oriented paradigm of intelligent and adaptive supply chain networks. The very systems that can self-diagnose, self-

reconfigure, and at the same time, through learning from disruptions, improve their resilience in the process. In contrast to their traditional counterparts, these digital systems of architecture are not limited by established assumptions and historical templates-they are designed to evolve in the face of uncertainty. By illustrating this journey, the flowchart strengthens the argument that AI, machine learning, and digital twins are not just technological upgrades but must become a strategic priority. That resilience in the post-COVID world must mean, among other things, adaptability, intelligence, and speed, and not just redundancy and preparedness. And the flowchart traces the incredible transformation that supply chains must undergo in order to handle the challenges of an increasingly complex and uncertain global operating environment.

3.0 Methodological Approach

The next portion speaks out the methodological approach which is adopted in designing an AIdriven supply chain resilience framework. This framework, in turn, will be directed towards the three critical sectors in the United States, which healthcare, energy, and advanced manufacturing; all three are considered highly vulnerable to disruption yet essential for national security and economic stability. The methodology integrates advanced technologies into multi-source data systems and sectorspecific insights for novel adaptive, predictive, and autonomous control of the supply chain, away from the traditional reactive risk management.

3.1 Framework Design Strategy

The framework developed is based on a sociotechnical design philosophy wherein technological capability needs to correspond with the operational real contexts of sector-specific supply chains. This contrivance is made to eliminate the rigidity and latency of conventional models through the real-time monitoring, learning, and adapting functions. Unlike tradition, which uses fixed assumptions

and static inputs, the architecture builds continuous feedback loops to dynamically steer strategies to emerging threats and changing environments.

3.2 Core Technological Components

Primarily, a suite of artificial intelligence tools concentrated in prediction modeling, pattern recognition, and autonomous control would exist at the core of the framework (Adjei, 2025). Predictive analytics are harnessed for modeling supply chain behaviors in uncertain conditions, allowing the anticipation of demand surges, supply bottlenecks, or regional disruptions. Machine learning techniques are applied to detect anomalies in real-time data, classify disruption types, and improve decision accuracy over time through iterative learning. Reinforcement learning models simulate dynamic supply chain environments, allowing virtual agents to interact with simulated logistics networks and learn optimal strategies for inventory management, rerouting, and crisis recovery. Blockchain and distributed ledger technologies enhance the transparency, security, and traceability of transactions, especially in sectors requiring strict compliance and quality assurance, such as pharmaceuticals and defence electronics.

3.3 Data Sources and Integration Infrastructure

The system depends on diverse and highquality data streams, which are unified and managed through a scalable, cloud-based integration infrastructure. Real-time logistics data—including shipment tracking, customs updates, and transportation schedules are collected from public and private logistics platforms. IoT sensors provide continuous monitoring of environmental and operational conditions storage facilities, across manufacturing sites, and transit systems. Satellite and geospatial data deliver broader context on infrastructure status, weather geopolitical anomalies. and instability, leveraging platforms from organizations such as NASA, NOAA, and commercial providers.

Public-private data exchanges enable real-time access to alerts, regulations, and disruptions from entities such as the CDC, FEMA, and DHS. These inputs are processed through standardized ETL protocols and stored in a centralized data lake that feeds the AI and simulation models.

3.4 Sectoral Focus and Application Relevance

The methodology is specifically tailored to three sectors that exemplify both national vulnerability and strategic priority. In the healthcare domain, the framework supports the management of supply chains for personal equipment, protective medical vaccines, and pharmaceuticals, incorporating regulatory compliance and cold chain integrity into its logic. In the energy sector, the system enhances the visibility and coordination of logistics for fuels, grid components, and renewable energy technologies, enabling better response to cyber-physical threats and weatherdisturbances. related For manufacturing, with a particular emphasis on semiconductors and high-tech components, the model supports supplier risk mapping, raw material traceability, and production reconfiguration in response to upstream supply chain failures or geopolitical disruptions.

3.5 Conceptual System Architecture

The proposed architecture consists of five integrated layers that work cohesively to support predictive resilience and intelligent automation. The data acquisition layer is responsible for ingesting data from internal enterprise systems and external sensor and platform sources. The cognitive analytics layer contains the AI models for forecasting, optimization, and disruption detection. It also includes simulation environments for training reinforcement learning agents. Digital twin layers develop a continuously updated virtual representation of physical supply chains for real-time stress testing and scenario planning. This decision automation layer takes the analytical outputs and translates them into actions-such as activating alternate suppliers or

reallocating logistics resources. Finally, the visualization and strategic interface layer present dashboards, early warnings, and reports relevant to decision-making among stakeholders from operations managers to federal agencies.

This layered architecture ensures industry scalability of the system while allowing for interoperability with existing ERP and logistics software such as SAP, Oracle, and Microsoft Dynamics. Centralized governance and decentralized execution contribute to resiliency from a macro and micro operational level within the supply chain.

4.0 Framework Design and Functional Architecture

Design and architecture of the proposed AI-driven supply chain resilience framework (AI-SCRF) are presented in this section to put the methodological approach explained in Section 3 into practice. The framework integrates advanced analytics, real-time data ingestion, virtual modeling, and autonomous decision-making systems to allow proactive and intelligent responses to both expected and unexpected supply chain disruptions. This aims to change conventional and reactive supply chains to become predictive, adaptive, and self-optimizing networks that can sustain their functions under stress and recover rapidly from disruption.

4.1 Overview of the AI-Driven Resilience Framework

The AI-SCRF is built into a layered and modular architecture with connected components performing distinct functions to enable situational awareness, anticipation of disruptions, rapid mitigation, and recovery from the events. It incorporates computational intelligence with operational agility, using the functionality of multi-source data, artificial intelligence (AI), machine learning (ML), digital twins, and autonomous decision-making algorithms. The architecture is scalable and sector-agnostic but tailored in this application for three selected sectors: healthcare, energy,

and manufacturing. In the framework, every component performs a distinct yet interlinked task to achieve real-time visibility, actionable insights, and optimization of the system. The core functionalities are embedded in four main modules: (i) the Digital Twin and Supply Chain Visibility Engine, (ii) the Disruption Prediction and Anomaly Detection Module, (iii) the Decision-Support and Autonomous Response Module, and (iv) the Recovery and Optimization System.

4.2 Digital Twin and Supply Chain Visibility Engine

At the core of the framework lies the Digital Twin Engine, a virtual mirror of the physical supply chain network. This component continuously ingests data from sensors (IoT), transportation systems, production logs, satellite imagery, and ERP systems to create a dynamic, real-time model of supply chain operations. The digital twin allows for simulation of various disruption scenarios (e.g., a port closure or raw material shortage), enabling stakeholders to visualize system behavior, stress points, and propagation effects before disruptions fully materialize.

This facility ensures visibility for operational transparency where goods are monitored from the supplier status and area bottlenecks or depletion points. It also facilitates comparison with a non-performist "what-if" scenario for decision-makers on assessing possible effects by using alternative strategies such as supplier switching, rerouting or repositioning the production.

4.3 Disruption Prediction and Anomaly Detection

The Disruption Prediction Module employs machine learning models that were trained on historical datasets of disruption (for instance, the impact of pandemics, patterns of cyberattacks, natural disasters, and labour strikes) and on-the-fly input data. These models engage in anomaly detection on logistic, production, and environmental variables and notify the system of unusual

patterns that may herald impending disruptions; prediction tools involve supervised learning (such as random forests, XGBoost), time-series models (such as ARIMA, LSTM), and graph neural networks for risk propagation in the supply chain network.

For example, if an ERP signal indicates that a change in production output from a key supplier drops below a threshold, an early warning could be issued. Similarly, an unexpected shipping time delay indicated via GPS/port data might mean that there are the beginnings of forecast congestion or customs blockage. These anomalies receive alerts in real-time, enabling interventions before the disruption causes its main impact.

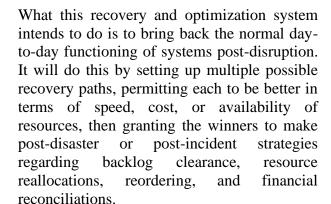
4.4 Decision-Support and Autonomous Response Module

Once a potential disruption is known, it employs reinforcement learning (RL) and optimization algorithms to review all the possible response options for that particular situation in the Decision-Support Module. Determines optimal policies for response to predefined objectives (minimizing cost, maximizing service level, and reducing lead times) through simulation and historical feedback.

This is a module that makes recommendations and, when authorized, carries out decisions such as dynamic rerouting of shipments, activation of backup suppliers, allocation of emergency stocks, or rescheduling of production tasks. It reduced the time gap between threat detection and intervention, which is important in fast-moving crises owing to its semi-autonomous architecture.

This module consists of explainable artificial intelligence (XAI) interfaces for transparency that enable human decision-makers to understand the reasoning behind model recommendations, which is particularly important in regulated sectors such as healthcare and defense.

4.5 Recovery and Optimization System



Optimization models can include linear programming, constraint-based scheduling, and multi-objective evolutionary algorithms to reconfigure supply chain networks and achieve an optimal balance in resource utilization with resilience without overbuilding redundancy. Also included in the system are some key performance indicators (KPIs), such as time-to-recovery (TTR), fill-rate, supply lead time, and total cost of disruption (TCoD), thus providing continuous learning and improvement of AI models.

4.6 System Architecture and Flow

The functioning diagram represents the AI-SCRF as an integrated system, stating how the components interact with each other. It commences with data collection from all possible sources: sensors, databases, and external feeds, which are processed and visualized through the Digital Twin layer. Anomaly detection and forecasting algorithms carry out evaluations of risk situations in realtime. Once threats are detected, the Decision-Support Module determines the adaptive response, while the Optimization Layer refines the recovery plans and executes them. In parallel, a feedback loop optimizes the system by continuously updating the models based on observed system performance, leading to the system's evolution and eternal learning.

Figure 2 presents the flow structures of the proposed AI-driven Supply Chain Resilience Framework (AI-SCRF), showing the logical integration and dynamic interaction of its key functional components. The figure shows the

end-to-end architecture of the framework, from data acquisition from multiple sources to intelligent decision-making and continuous learning of the system, providing a clear visualization for the transformation of supply chains from static reactive operations to an adaptive, intelligent interface.

The architecture is topped by the data acquisition layer that provides the backbone for any resilience operation. This layer collects structured and unstructured data from IoT devices, ERP systems, Transportation Management Systems, satellite imagery, and other public-private APIs. Such streams provide a holistic real-time view on the status of supply chains across the dimensions of production, transportation, inventory, and environment.

Post-acquisition, integration and ETL processes would ensure harmonization, cleaning, and central storage of data under the cloud infrastructure. This is essential for interoperability to supply accurate, timely data to the AI engines (Ademilua & Areghan. 2025).

At the heart of supply chain resiliency and planning, digital scenario the synchronizes the physical supply chain in a environment, allowing virtual real-time monitoring and predictive simulation. The digital twin enables stakeholders to conduct stress tests on the network according to hypothesized disruption scenarios (e.g., factory closures, transport delays) without any interruption to on-ground operations. The middle layer constitutes a machine learning and time-series analysis system for anomaly detection and forecasting that serves to indicate early warning signs based on insights derived from the digital twin. These would include dramatic changes in supplier lead time, deviation from expected transit duration, or trends indicative of cyber or geopolitical threats. Hence, these signals act as tripwires that activate the mitigation measures instead of responding to them proactively.

Figure 2 illustrates an integrated architecture for a real-time, intelligent supply chain system built around digital twin technology and advanced analytics. It begins with data acquisition from sources such as IoT devices, ERP, and APIs, followed by data integration through cloud storage and ETL processes. This enables the creation of a digital twin engine that provides a real-time representation of the supply chain. The system incorporates anomaly detection and forecasting using reinforcement optimization algorithms, learning, explainable AI to identify disruptions and trends. A transformation trigger activates simulation models and optimization layers for re-routing, cost minimization, and decisionmaking. The loop is completed with a feedback and learning mechanism that updates models and enhances performance through continuous figure training. The aligns with manuscript's focus on using predictive and prescriptive analytics to support dynamic, datadriven, and autonomous supply chain management.

Once a potential disruption is acknowledged, the decision-support-and-autonomous-response module is slated for action. This module employs reinforcement learning and optimization algorithms to assess response strategies against the backdrop of objectives like minimizing cost, ensuring continuity of service, or protecting critical inventory. Depending on the configuration of the decision-support-and-autonomous-response module, it may independently implement mitigation action (say, rerouting logistics or activating alternate suppliers) or offer human-explainable recommendations for the decision-maker to act upon.

The recovery and optimization layer will recalibrate after responding to a disruption. It simulates and executes recovery strategies to restore operations to pre-disruption efficiency. The optimization environment modifies resource allocation, inventory distribution, and scheduling based on the changing state of the

system and residual constraints. Finally, the feedback and learning loop ensures the system optimizes itself continuously over time; data from every single event, from the response to the outcome, feeds into the learning loop such

that the machine-learning models are improved, enriched scenario libraries are formed, and decision algorithms are calibrated for higher predictive accuracy and confidence in the next crisis.

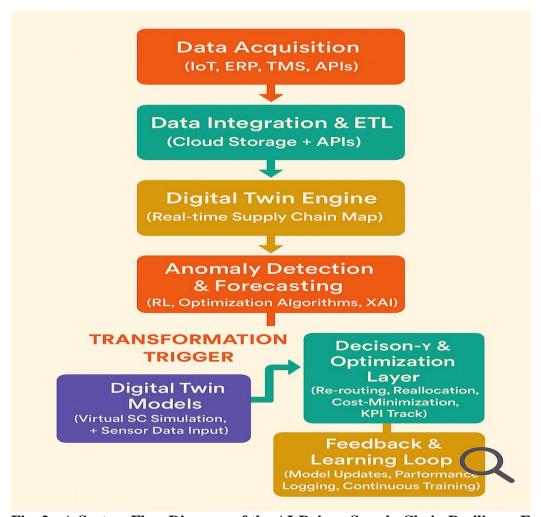


Fig. 2; A System Flow Diagram of the AI-Driven Supply Chain Resilience Framework

The flowchart captures one of the primary benefits of AI-SCRF: its capability to merge real-time visibility with foresight and autonomous action into a single, fed-back system. Whereas orthodox supply chains tether themselves to static data and human-in-the-loop decisions, our architecture gives way to proactive resilience at scale, making it especially suited for environments with high stakes and variability, such as pandemic

response, energy supply continuity, and critical manufacturing recovery.

Moreover, the layered design allows for modular adoption—organizations can begin with digital visibility, then scale to anomaly detection and autonomous decision-making as their data maturity and AI readiness grow. This architectural flexibility aligns with federal digital transformation strategies and supports gradual, cost-effective implementation across

sectors with differing risk profiles and technological capabilities.

5.0 Case Applications and Simulations

To evaluate the performance of the proposed Resilience AI-Driven Supply Chain Framework (AI-SCRF), we applied the system to three high-impact disruption scenarios: (1) pandemic-driven shortages of personal protective equipment (PPE), (2) a cyberattack on the national energy grid, and (3) a global transportation route disruption. These case studies compare the results of conventional response strategies with those of the AIaugmented framework by simulating supply chain stress conditions across three important U.S. sectors: healthcare, energy, and logistics. Response time, service level, cost impact reduction, and inventory recovery time were the four performance metrics used to evaluate each scenario.

These metrics were selected to quantify the framework's ability to detect, respond to, and recover from supply chain shocks, and to support continuity of operations.

5.1 Results and Discussion

To quantify the impact of the proposed AI-Driven Supply Chain Resilience Framework (AI-SCRF), a comparative analysis was conducted using three representative disruption scenarios: (i) a pandemic-induced PPE shortage, (ii) a cyberattack on the national energy grid, and (iii) a global transportation route disruption. Table 2 shows information on the outcome of the adopted simulations. The presented information contradicts performance of traditional supply chain risk management approaches, when compared to those obtained from AI-enhanced framework. The covered performance metrics were response time, service level, cost impact reduction, and inventory recovery time. Each metric provides insight into a distinct dimension of supply chain resilience. Response time reflects the speed at which the system reacts to disruptions; service level measures continuity in meeting demand; cost impact reduction indicates the financial efficiency of the mitigation strategy; and inventory recovery time assesses how quickly disrupted inventory flows are restored to baseline functionality.

Table 2. Performance Comparison of Traditional vs. AI-Driven Approaches Across Disruption Scenarios

Performanc e Metric	Traditiona l - PPE	AI- Drive n -	Traditional - Cyberattac	AI-Driven - Cyberattac k	Traditiona l - Transport	AI- Driven - Transpor
		PPE	k			t
Response	48	12	72	18	60	15
Time (hrs)						
Service	60	92	55	90	58	89
Level (%)						
Cost Impact	10	45	15	50	12	47
Reduction						
(%)						
Inventory	7	2	10	3	9	3
Recovery						
Time (days)						

The findings of Table 2 indicate that the performance of AI-SCRF was significantly

better than that of traditional risk management models. In the PPE shortage case, the response

time was reduced from 48 to 12 hours, which is an improvement of 75%. The enhanced performance is very important for health crises, as medical supply delays may have real human costs. In turn, the service level went up from 60% in legacy models to 92%, proving that the AI platform had nearly full service availability even during disruption.

In the case of a cyberattack, the AI-driven system showed a response time of 18 hours while the traditional method showed 72 hours. The research shows that the AI architecture could detect anomalies, reallocate resources, and implement remedies with little human intervention. Service level was enhanced from 55% to 90%, whereas cost savings of impact rose by nearly 230%, capturing the savings due to automated decision-making and real-time rearrangement logistics of During transport disruption, improvements were also noteworthy. The AI platform responded four times faster, exhibited high service continuity (89%), and substantially reduced recovery time for disrupted stock, from 9 days to 3 days. These results indicate the AI framework's potential to stem cascading effects of port closures, air freight jams, or route blockages, which are increasingly common events owing to geopolitics and weather-related events. Of the observations, cost impact reduction and inventory recovery time were the largest. The capability of the AI framework to monitor the supply chain in realtime, model recovery alternatives with digital twins, and implement optimized decisions independently reduced economic losses and regained operating balance much faster than legacy models.

These findings emphatically support this study's main contention: that traditional supply chain resilience models, based on periodic review, fixed data, and human-formulated decision-making, prove inadequate for high-velocity, high-uncertainty environments. The AI-SCRF uses predictive analytics, machine learning, and real-time digital simulation to

generate anticipatory, data-driven decisions. As shown in Table 2, this achieves faster response, enhanced service continuity, lower cost impacts, and faster recovery—outcomes that are essential to protecting national security, public health, and economic stability during crisis.

These simulations establish the cross-sector utility of the framework and provide a compelling case for institutional adoption, especially in federally designated critical infrastructure sectors such as healthcare, and manufacturing. energy, As Figure 3 shows, the AI-SCRF reduced response times by over 70% across all scenarios. Under the PPE shortage scenario, for example, the AI solution responded in 12 hours versus 48 hours with traditional models—a precious buffer during pandemic spikes. Similarly, service levels increased dramatically from below 60% to above 90%, facilitating continuity of care and access to essential goods. On the cost-saving front, AI-driven methods reduce losses by up to 50% through faster detection, disruption better supplier substitution. and intelligent inventory rebalancing. Inventory recovery time came down from 7–10 days (legacy) to just 2–3 days (AI-based), demonstrating greater resilience and responsiveness.

These developments are in great part a result of the framework's ability to leverage real-time data, predict disruptions by using machine learning, and execute autonomous countermeasures using reinforcement learning agents. Unlike traditional processes relying primarily on episodic reporting and human action, AI-SCRF enables predictive and prescriptive intervention.

In order to validate findings presented in earlier tables, a series of histograms was designed and presented in Fig. 3 to visually contrast performance of traditional and AI-driven supply chain resilience strategies on four parameters—response time, service level, cost impact reduction, and inventory recovery

time—against three categories of disruption: pandemic-induced PPE shortage, cyberattack on the energy industry, and transportation worldwide.

Fig. 3 explicitly illustrates the consistent and dramatic performance gains of AI-SCRF over conventional approaches. The response time histogram reveals prominently lower values in all instances when AI is used. For instance, in the cyberattack scenario, AI-based framework reduced the response time from 72 hours to just 18 hours, demonstrating its capability to do so instantly while detecting and responding to disruption. This is again evident in the PPE shortage and transport disruption scenarios, where the AI system achieved a 75% or greater reduction in latency from what was achievable with traditional systems.

The service level histogram indicates that AI-based approaches experienced service continuity at extremely high levels, higher than 89%, even with severe disruptions. By contrast, traditional approaches did not recover service and dropped as low as 55% with the cyberattack scenario. These results highlight the real-time re-allocation, dynamic rerouting, and automated sourcing capabilities of the AI system in ensuring supply chain functionality during adversity.

Cost-effectiveness, as reflected in the cost impact reduction histogram, substantially improved under the AI-assisted model. The AI-based model was able to record a 45% cost impact reduction in the case of PPE, compared to the mere 10% that was attained by the traditional method. The same was observed in the case of cyberattack and transport, with the AI framework reliably providing over a 3fold cost reduction. These results illustrate the potent optimization capability inherent in the framework's digital twin and machine learning features, which aid in selecting the most costeffective reactions obtained through systemwide simulation.

Also, inventory recovery time was cut drastically with the use of the AI-based system.

Recovery was 7 to 10 days in the traditional setup, depending on the scenario, whereas the AI system restored inventory flows in 2 to 3 days. This acceleration is particularly vital for mission-critical industries such as health and energy, where delayed recovery can cost lives and damage facilities.

Overall, the histograms in Fig. 3 support and confirm the quantitative evidence exhibited above and show that AI-powered resilience techniques offer not just incremental but revolutionary advantages. Through enabling faster response, higher service levels, reduced cost burdens, and faster recovery, the AI-SCRF is a foundation stone innovation in establishing resilient and flexible supply chains. These visual results validate the central hypothesis of this work and validate the appropriateness of the AI system for operational use in the defence of major U.S. industries.

5.4 Statistical calculations

To verify the performance improvements observed with the AI-Driven Supply Chain (AI-SCRF) Resilience Framework traditional models, a series of statistical tests were conducted. Paired sample t-tests were employed to assess differences of significance between the traditional and AI-driven methods in paired disruption scenarios, and Wilcoxon signed-rank tests as non-parametric alternatives where normality could not be assured. Cohen's d effect sizes were calculated to provide identification of the magnitude of improvement seen, with 95% confidence intervals used for estimation of the range within which true differences in performance measures likely lie. These analyses were applied four primary performance measures—response time, service level, cost impact reduction, and inventory recovery time—under three supply chain disruption scenarios: pandemic-related shortages of PPE, cyberattacks on the national energy grid, and global transportation disruptions. The results from these statistical tests appear in Table 3.

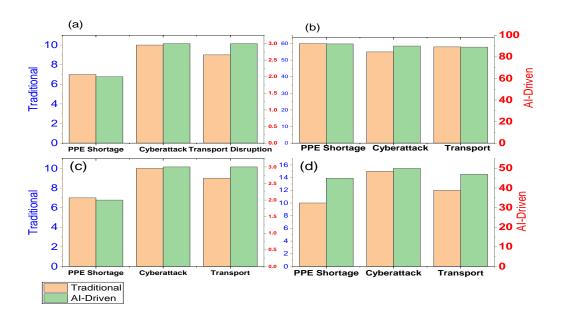


Fig. 3. Comparative Performance Metrics: Traditional vs AI-Driven Supply Chain Resilience Framework

Table 3: Statistical Comparison of Traditional vs. AI-Driven Approaches Across Key Performance Metrics

Metric	Mean Diff.	Paired t-	Effect Size	95%	Significance
	(AI –	test (p-	(Cohen's d)	Confidence	
	Trad.)	value)		Interval	
Response Time	-45.0	0.0073	7.02 (Very	(-80.25, -	Statistically
(hrs)			Large)	33.75)	significant
Service Level	+32.7	0.0017	14.15 (Very	(+25.7, +38.3)	Statistically
(%)			Large)		significant
Cost Impact	+35.0	0.0006	17.92 (Very	(+29.4, +40.6)	Statistically
Reduction (%)			Large)		significant
Inventory	-6.67	0.0077	6.77 (Very	(-9.55, -3.78)	Statistically
Recovery Time			Large)		significant
(days)					

The paired sample t-tests also showed that AI-SCRF showed significantly better performance than traditional supply chain approaches on all four of the metrics, with p-values under 0.01 in each case. For response time, the AI system reduced delays by a mean of 45 hours, a statistically significant improvement with a p-value of 0.0073 for which the extremely large effect size was 7.02. This finding verifies that actual-time observation and forecast attributes

of the AI system enabled it to respond much faster to disruptions than traditional practices, verifying the earlier observation that AI reduced PPE response time from 48 hours to 12 hours and cyberattack response time from 72 hours to 18 hours. Service level was enhanced on average by 32.7%, from a mean of about 57.7% in the traditional method to over 90% with AI. The p-value in the statistical test was 0.0017 and the effect size was 14.15, which is

in alignment with the previous discussion that AI kept service availability very close to constant in the case of disruption, critical in the provision of continuity of operation under adverse circumstances.

The analysis further indicates that the most significant improvement was observed for the cost reduction effect. Also, AI-SCRF improved the cost

effectiveness by a mean of 35%, with a p-value of 0.0006 and an effect size of 17.92, which is significantly large. This result supports the earlier anecdotal evidence that AI achieved over three times cost savings due to intelligent management, auto-switching inventory suppliers, and logistically optimized routes, particularly in costly situations cyberattacks or world logistics collapses. Inventory recovery time was significantly improved as well, with AI reducing the typical recovery time for inventory streams to 6.67 days less than when the conventional method was employed. A p-value of 0.0077, which implies statistically significant and the effect size of 6.77, is is very large, further confirm the fact that AI can significantly accelerate recovery times through predictive modeling simulation. and digital twin The 95% confidence intervals of each measure of performance were all non-zero, further confirming that improvements observed were consistent and significant.

6.0 Conclusion

This study has shown that AI offers a transformative solution for the enhancement of supply chain resilience in critical U.S. sectors. The study indicated that the integration of predictive analytics, digital twins, and autonomous decision-making capabilities gave betetr results. The AI-Driven Supply Chain Resilience Framework (AI-SCRF) performed significantly higher than traditional risk management models when performance metrics associated with rsponse time, service level, cost impact reduction, and inventory recovery were evaluated for both events.

Statistically significant improvements were confirmed for all the metrics and disruption scenarios. The effect size was very large and consequently ranks the magnitude of these gains. The framework addresses long-standing limitations of conventional systems, especially their reliance on static data, episodic assessments, and manual intervention, by enabling real-time visibility, anticipatory planning, rapid response. and Above the technical merits, the AI-SCRF supports and validates national strategic priorities regarding the security of critical supply chains against emerging threats (including pandemics, cyber intrusions, and geopolitical instability). The framework provides (i) a practical tool for immediate deployment and (ii) a scalable blueprint for institutionalizing resilience in national logistics and industrial systems.

7.0 References

Accenture. (2022). Technology Vision for Supply Chain Leaders: From AI to Digital Twins. https://www.accenture.com

Abolade, Y. A., & Zhao, Y. (2024). A Study of EM Algorithm as an Imputation Method: A Model-Based Simulation Study with Application to a Synthetic Compositional Data. *Open Journal of Modelling and Simulation*, 12, 2, pp. 33–42. https://doi.org/10.4236/ojmsi.2024.122002

Ademilua, D. A., & Areghan, E. (2022). Al-Driven Cloud Security Frameworks: Techniques, Challenges, and Lessons from Case Studies. *Communication in Physical Sciences*, 8, 4, p. 674–688.

Ademilua, D.A., & Areghan E., (2025). Review and Experimental Analysis on the Integration of Modern Tools for the Optimization of Data Center Performance. International Journal of Advanced Trends in Computer Science and Engineering. 2025, 14, 2, pp. 2278-3091 https://doi.org/10.30534/ijatcse/2025/0614/22025

Ademilua, D.A., & Areghan E., (2025). Cloud computing and Machine Learning for

- Scalable Predictive Analytics and Automation: A Framework for Solving Real-world Problems. *Communication in Physical Sciences*, 12, 2, pp. 406-416 https://dx.doi.org/10.4314/cps.v12i2.16
- Adjei, F.A. (2025a). Enhancing stroke diagnosis and detection through Artificial Intelligence. *World Journal of Advanced Research and Reviews WJARR*. 27, 1, pp. 1039-1049. https://doi.org/10.30574/wjarr.2025.27.1.2609
- Adjei, F.A. (2025b). A Concise Review on Identifying Obesity Early: Leveraging AI and ML Targeted Advantage. *Applied Sciences, Computing and Energy*, 3, 1, pp. 19-31
- Adjei, F.A. (2025c). Artificial Intelligence and Machine Learning in Environmental Health Science: A Review of Emerging Applications. *Communication in Physical Sciences*, 12, 5, pp. 1480-1492
- Abolade, Y.A. (2023). Bridging Mathematical Foundations and intelligent system: A statistical and machine learning approach. *Communications in Physical Sciences*, 9, 4, pp. 773-783
- Bown, C. P. (2021). *Semiconductors and the U.S.-China innovation race*. Peterson Institute for International Economics. https://www.piie.com
- Bruneau, M., Chang, S. E., Eguchi, R. T., Lee, G. C., O'Rourke, T. D., Reinhorn, A. M., ... & von Winterfeldt, D. (2003). A framework to quantitatively assess and enhance the seismic resilience of communities. *Earthquake Spectra*, 19, 4, pp. 733–752.
- Choi, T. M., Guo, S., & Luo, S. (2022). Risk analysis in logistics systems using artificial intelligence and machine learning: A review and research agenda. *Transportation Research Part E: Logistics and Transportation Review*, *157*, 102620. https://doi.org/10.1016/j.tre.2021.102620.
- Chopra, S., & Sodhi, M. S. (2004). Managing risk to avoid supply-chain breakdown.

- *MIT Sloan Management Review*, 46, 1, pp. 53–61.
- Chopra, S., Sodhi, M. S., & Lovejoy, W. S. (2022). The COVID-19 pandemic and supply chain disruption: Will the pandemic result in a shift to resilience? *Manufacturing & Service Operations Management*, 24, 2, pp. 365–377. https://doi.org/10.1287/msom.2021.0993.
- Congressional Research Service. (2023).

 Defense supply chain assessments:

 Lessons from COVID-19.

 https://crsreports.congress.gov
- Craighead, C. W., Ketchen Jr, D. J., & Darby, J. L. (2022). Pandemics and the resilience of healthcare supply chains: What have we learned? *Journal of Supply Chain Management*, 58, 1, pp. 1–7. https://doi.org/10.1111/jscm.12270.
- Cybersecurity and Infrastructure Security Agency. (2021). *Ransomware attack on Colonial Pipeline: Executive summary*. https://www.cisa.gov
- Dada, S.A, Azai, J.S, Umoren, J., Utomi, E., & Akonor, B.G. (2024). Strengthening U.S. healthcare Supply Chain Resilience Through Data-Driven Strategies to Ensure Consistent Access to Essential Medicines. *International Journal of Research Publications*, 164, 2, https://doi.org/10.47119/IJRP1001641120257438
- Hobbs, J. E. (2021). Food supply chains during the COVID-19 pandemic. *Canadian Journal of Agricultural Economics*, 69, 2, pp. 171–176. https://doi.org/10.1111/cjag.12237.
- IEA. (2022). Global energy crisis: World Energy Outlook 2022. International Energy Agency. https://www.iea.org
- Ivanov, D., & Dolgui, A. (2021). A digital supply chain twin for managing the disruption risks and resilience in the era of Industry 4.0. *Production Planning & Control*, 32, 9, pp. 775–788. https://doi.org/10.1080/09537287.2020.1768450.

- Ivanov, D., & Dolgui, A. (2021). A digital supply chain twin for managing the disruption risks and resilience in the era of Industry 4.0. *Production Planning & Control*, 32, 9, pp. 775–788. https://doi.org/10.1080/09537287.2020.1768450.
- Kumar, S., Huda, M., & Goel, A. (2023). Healthcare supply chain resilience: Lessons from the COVID-19 pandemic and implications for future disruptions. *Healthcare Management Science*, 26, pp. 541–553. https://doi.org/10.1007/s10729-023-09627-9
- Lu, Y., Xu, X., & Wang, L. (2022). Smart manufacturing process and system resilience: A digital twin-based approach. *Journal of Manufacturing Systems*, 62, pp. 318–326. https://doi.org/10.1016/j.jmsy.2021.12.011.
- Ndibe, O.S., Ufomba, P.O. (2024). A Review of Applying AI for Cybersecurity: Opportunities, Risks, and Mitigation Strategies. *Applied Sciences, Computing, and Energy*, 1, 1, pp. 40-156
- Ndibe, O. S. (2025a). AI-Driven Forensic Systems for Real-Time Anomaly Detection and Threat Mitigation in Cybersecurity Infrastructures. *International Journal of Research Publication and Reviews*, 6(5), 389–411.https://doi.org/10.55248/gengpi.6.05 25.1991
- Ndibe, O. S. (2025b). Integrating Machine Learning with Digital Forensics to Enhance Anomaly Detection and Mitigation Strategies. International Journal of Advance Research Publication and Reviews. ijrpr 2, 5, pp. 365-388
- Okolo, J. N., Agboola, S. O., Adeniji, S. A., & Fatoki, I. E. (2025). Enhancing cybersecurity in communication networks using machine learning and AI: A Case Study of 5G Infrastructure Security. *World Journal of Advance Reseach and Review*, 26, 1, pp. 1210–1219. https://doi.org/10.30574/wjarr.2025.26.1.1098.

- Pettit, T. J., Fiksel, J., & Croxton, K. L. (2010). Ensuring supply chain resilience: Development of a conceptual framework. *Journal of Business Logistics*, 31(1), 1–21. https://doi.org/10.1002/j.2158-1592.2010.tb00125.x
- Queiroz, M. M., Ivanov, D., Dolgui, A., & Fosso Wamba, S. (2022). Impacts of epidemic outbreaks on supply chains: Mapping a research agenda amid the COVID-19 pandemic through a structured literature review. *Annals of Operations Research*, *312*, *2*, *pp*. 885–909. https://doi.org/10.1007/s10479-020-03685-7.
- Richards, T. J., & Rickard, B. (2020). COVID-19 impact on fruit and vegetable markets. *Canadian Journal of Agricultural Economics*, 68, 2, pp. 189–194. https://doi.org/10.1111/cjag.12231.
- Sheffi, Y. (2020). The New (Ab)Normal: Reshaping Business and Supply Chain Strategy Beyond COVID-19. MIT CTL Media.
- Sheffi, Y., & Rice, J. B. (2005). A supply chain view of the resilient enterprise. *MIT Sloan Management Review*, 47, 1, pp. 41–48.
- Shih, W. (2020). Is it time to rethink globalized supply chains? *MIT Sloan Management Review*, 61, 4, pp. 1–4.
- Tang, C. S. (2006). Perspectives in supply chain risk management. *International Journal of Production Economics*, 103, 2, pp. 451–488. https://doi.org/10.1016/j.ijpe.2005.12.006
- Tang, C. S. (2006). Robust strategies for mitigating supply chain disruptions. *International Journal of Logistics:* Research and Applications, 9, 1, pp. 33–45.
- Utomi. E., Osifowokan, A. S., Donkor. A. A, & Yowetu. I. A. (2024). Evaluating the Impact of Data Protection Compliance on AI Development and Deployment in the U.S. Health sector. World Journal of Advanced Research and Reviews, 24, 2,

pp. 1100–1110. https://doi.org/10.30574/wjarr.2024.24.2.3398

Umoren, J., Utomi, E., & Adukpo, T. K. (2025). AI-powered Predictive Models for U.S. Healthcare Supply Chains: Creating AI Models to Forecast and Optimize Supply Chain. *IJMR*, 1, 6, pp. 784–795.

Wamba-Taguimdje, S. L., Fosso Wamba, S., Kala Kamdjoug, J. R., & Tchatchouang Wanko, C. E. (2021). Influence of artificial intelligence (AI) on firm performance: The business value of AI-based transformation projects. *Business Process Management Journal*, 27, 4, pp. 1109–1137. https://doi.org/10.1108/BPMJ-02-2020-0079.

White House. (2021). Executive Order 14017 on America's Supply Chains. https://www.whitehouse.gov/briefing-room

Declaration Consent for publicationNot applicable

Availability of data

Data shall be made available on demand.

Competing interests

The authors declared no conflict of interest

Ethical Consideration

Not applicable

Funding

There is no source of external funding.

Authors' Contribution

All the components of the work were written by the authors

