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Abstract :The sheer proliferation of Internet of 

Things (IoT) devices across consumer, 

industrial, and critical infrastructure 

categories has brought with it a level of access 

and automation that has never been seen 

before. This increase, however, has brought 

about an even greater attack surface, with 

major security holes given the resource 

limitations, diversity, and non-standardization 

that come with an IoT environment. This paper 

examines the diverse security concerns raised 

by IoT networks such as threats to networks 

intrusion, network-level attacks as well as 

threats to IoT devices and some of the new 

forms of attacks that have evolved to attack 

smart devices. It rates the traditional and IoT-

dedicated intrusion detection methods, 

lightweight encryption methods, and the place 

of AI and machine learning in detecting 

threats. Future-based initiatives like 

blockchain-based authentication, zero-trust 

architecture, and edge/fog computing to 

provide real-time defense are also discussed in 

the paper. Lastly, it identifies the significance 

of developing regulatory frameworks and 

offers practical suggestions to stakeholders as 

a way of ensuring the successful protection of 

IoT ecosystems. The study will serve to enhance 

the growth of innovative, flexible, and scalable 

security measures in the changing IoT 

environment. 
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1.0 Introduction  
 

The concept of Internet of Things (IoT) can be 

described as an interconnection of physical 

objects such as consumer appliances to 

industrial-grade sensors and actuators that 

sense, transmit, and respond to data without 

explicit human control (Gurunath et al., 2018; 

Flauzac et al., 2015). The gadgets use the 

benefits of diverse communication 

technologies such as Wi‑Fi, Bluetooth, Zigbee, 

Z-Wave, LoRaWAN, and cellular IoT 

protocols. With time, the number of active IoT 

devices increased accordingly as tens of 

billions saw active IoT devices in the early 

2020s and upward of 75 billion are expected by 

the year 2025 as the global spread of IoT 

devices sees explosive growth (Chaabouni et 

al., 2019). IoT ecosystem extends to consumer 

smart homes and the global market of wearable 

health-trackers, smart city infrastructure 

(traffic lights, environment sensors, 

surveillance, etc.), industrial Internet of Things 

(IIoT) solutions in manufacturing, power grids, 

and logistical systems. This heterogeneity has 

changed the digital space, creating new epochs 

of endpoint categories, creating massive 

distributions of sensor data, and pushing the 

data creation and data barter towards 

distributed environments. 

IoT proliferation has changed the nature of 

network architecture: there may be highly 

resource-constrained (low CPU, minimal RAM 

and energy) nodes (endpoints) which are 

connected through special protocols and 

communicate with the edge gateway and with 
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the cloud. This redesigns the topology and 

dimension of present-day networks. In the 

sphere of utilities, IoT devices are already 

integrated into sectors with high reliability and 

latency requirements, e.g., medical monitoring, 

industrial control, mathematical and statistics 

in machine learning and intelligent traffic 

control, where reliable, real-time, and security 

are vital (Hamza et al., 2020; Hassan, 2019: 

Abolade 2023). 

Smart home technologies such as thermostats, 

lighting controls, security cameras, and smart 

speakers as well as health wearables are finding 

their way more and more into daily life, a trend 

that started in the consumer sector and 

continues to intensify. One area that has 

developed rapidly is with sensors helping to do 

predictive maintenance and optimize the 

supplychain and make operations resilient 

called Industrial IoT (IIoT), and this has 

increased in areas like manufacturing, 

automation, the energy distribution sector, 

transport, farming, and agriculture (Alotaibi, 

2023; Awotunde et al., 2023). IIoT models give 

way to intertwining legacy ICS/SCADA 

infrastructure and state-of-the-art edge 

computing devices to form hybrids that destroy 

the familiar security demarcations. 

Such mass adoption has greatly increased the 

attack surface in the world. As an example in 

the healthcare sector, studies show that more 

than half of connected healthcare devices have 

critical risks and support by vendors in 

correcting them is not available in many cases 

(Alotaibi, 2023). Similarly, thousands of 

sensors and actuators can be involved in 

proposed smart manufacturers or logistics 

systems; these systems present the possibility 

of lateral intrusions, the compromising of 

supplychain, or exfiltration of data. The 

growing popularity of IoT also increases the 

desire to attack IoT devices over a specific 

target outlet of a medical or home system, 

ransomware microbotnet DDoS, and 

nationstate reconnaissance. 

The old-fashioned enterprise networks are all 

based on well-provisioned endpoints, which 

might include desktops, servers, laptops and 

might be linked with centralized routers, 

firewalls which therefore might be configured 

as highly restricted security structures. These 

networks have expanded to be more of a 

complex ecosystem with resource-constrained 

devices, the middle nodes or gateways, such as 

the mesh network and cloud-connected 

platforms, which are the result of the Internet 

of Things (IoT) (Kim et al., 2023; Nguyen et 

al., 2021). Access to information is via 

lightweight protocols, typified by MQTT, 

Constrained Application Protocol (CoAP over 

DTLS), Zigbee and Z-Wave that have 

associated constraints and threat models. The 

diverse nature of protocols complicates the 

process of making common policy security 

with devices joining and leaving networks 

dynamically as in mobile or ad‑hoc networks. 

The homogeneous networks that make up an 

industrial environment are worse: sensors 

streaming information to the edge ML 

platforms, actuators connected to the legacy 

ICS bus, and human interface devices working 

on the Wi-Fi or wired LAN, are all 

interconnected, which are neither isolated nor 

have coordinated policies (Awotunde et al., 

2023). The division between convenient 

technology (OT) and other IT systems 

networks is becoming more permeable, which 

opens the opportunity of cross-space 

intrusions, unconspicuous attacks, and 

continuous threats without the upholding of 

security posture at all levels being consistently 

met. 

The research aims and objectives are to 

examine in detail the security issues brought by 

IoT devices and their networks, specifically, 

the network intrusion methods and 

vulnerabilities endangering smart devices. 

Besides this, the study will seek to understand 

the flaws in the current security systems such 

as light traffic encryption, authentication, and 

intrusion detection systems with the view of 
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establishing areas where they have failed in 

defending the IoT networks. Moreover, the 

study will offer practical solutions to the 

stakeholders which can be other device 

manufactures, network operators, and 

policymakers so that they can take efforts in 

addressing the security risks and eventually 

facilitate the establishment of resilient 

networks of IoT. With these purposes, the 

research will be able to contribute to the 

development of safe IoT implementation that 

will be able to competently address the 

increasing need of interconnected smart 

devices. 
 

2.0 Security Challenges in IoT Networks 
 

Internet of Things (IoT) has redefined the 

current technology so that an interconnected 

device can collect, share, and process 

information without any human intervention. 

The uses of IoT are growing by leaps and 

bounds, including smart homes and industrial 

automation. Yet, this development has come 

with serious security threats, especially about 

network intrusion and cyber threat.  

Securities in the fields of the IoT networks are 

associated with the features of connected 

devices, as they have limited computing 

resources, non-homogeneous architecture, and 

are widely used in critical infrastructure 

environments. Unlike the typical IT systems 

and devices, several IoT devices lack an 

element of security control, and they are highly 

subjected to being manipulated. The issue of 

IoT security non-standardization is one of the 

most significant ones. Designers focus more on 

cost and functionality and less on security 

where there exists weak default settings, 

unencrypted traffic as well as inadequate 

authentication measures. More than that, the 

total number of IoT devices (which already 

exceeds 30 billion and is expected to reach to 

75 by 2025) represents an exploitable playing 

field to cybercriminals (Sagduyu, 2019). The 

next significant issue is the impossibility of 

employing the same security measures in IoT 

settings as in the past. Intrusion detection 

systems (IDS), firewalls and antivirus, which 

are common in the enterprise network are not 

effective to use with IoT as they limit 

resources. Majority of IoT devices are 

frequently powered by lightweight operating 

systems having little processing power, making 

it impossible to implement complicated 

encryption algorithms or threat detection in 

real-time. In addition, these IoT networks 

mostly involve using wireless communication 

protocols like Zigbee, Bluetooth Low Energy 

(BLE) and Wi-Fi, and are prone to 

eavesdropping, signal jamming or man-in-the-

middle (MitM) attacks (Issa et al., 2023). 

In contrast to conventional computing systems, 

the IoT devices tend to feature a vulnerable 

security system, and thus, they can make 

excellent targets of attackers. The dynamic 

nature of IoT ecosystems is in contrast to 

scenarios in which IT networks are static and 

only require maintenance of their existing 

constituents (Alam et al., 2021). It is hard to 

ensure that security policies remain stable, so 

there are loopholes that the attackers can take 

advantage of. Furthermore, a large number of 

IoT devices are unsupervised because they are 

in an industrial sensor or the smart city 

infrastructure, where it becomes a serious 

threat to physically tamper with them. If the 

device is not physically secured, attackers may 

extract cryptographic keys, change firmware or 

add malicious parts of hardware (Pilati et al., 

2023). 

In achieving this, researchers and industry 

players ought to come up with customized 

security solutions to IoT networks. Lightweight 

encryption technology, blockchain-based 

authentication, and artificial intelligence-based 

identification of anomalies are prospective 

solutions. However, mass adoption will 

demand the cooperation of the manufacturing 

industry, policymakers, and security 

professionals to implement definite security 

standards. 
 

2.1 Inherent Vulnerabilities of IoT Devices  
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There is a long list of intrinsic weaknesses that 

characterize IoT devices based on design 

vulnerabilities at the hardware and software 

level. 

 Restricted computing capabilities: Most IoT 

gadgets, including sensors and wearables, also 

use microcontrollers that have low computing 

power. It reduces their options to use robust 

encryption standards such as AES-256 or RSA, 

which exposes transmitting data to interception 

(Kolias et al., 2017). As an illustration, 

researchers were able to show that insecure 

encryption can be used by attackers to hijack 

unencrypted voice commands or by imposing 

data that is not supported by the sensor (Zhang 

et al., 2020). 

Weaknesses of firmware and poor update 

processes: Most of the IoT gadgets are 

deployed with outdated or firmware that is 

poorly hardened. The updating channel is often 

not secure, or firmware cryptographic signing 

lacks as a result of which the device is 

vulnerable to malicious injections of firmware 

or permanent compromise (Rajgure, 2023). 

Unless regularly patched, known issues are 

always subject to exploit (As n-day mining 

study by Cui and Pantoga note, mobile 

embedded devices in the industrial sector tend 

to be unpatched en masse) (Meneghello et al., 

2019). 

Weak authentication: Usually devises come 

either with non-existent authentication or poor 

authentication (e.g. the default choice of 

password on the device is either passwords 

(e.g. “admin”, “1234”) or does not require any 

authentication). In most cases, end-users never 

change such credentials, and the authentication 

can be broken by either brute-force or 

automated tools. The primary focus of the mass 

compromise attacks is still on the advance 

payments on the IoT devices, such as the botnet 

attacks with Mirai (Neshenko et al., 2019). It 

also explores the issue with a poor 

authorization control (Meneghello et al., 2019). 

Exposure, vulnerabilities to cloning of devices: 

Most of the IoT devices are publically installed 

or left exposed, in unsecured, remote areas, 

exposed to potential physical tampering, 

opening, reverse engineering, or hardware 

hacks. This may allow them to implement 

malicious firmware or steal stored credentials 

or duplicate identifiers of devices (Kolias et al., 

2017). 

In combination, all these weaknesses make the 

IoT endpoints extremely vulnerable to 

infections, manipulation, and exploitation and 

introduce a significantly increased risk profile 

to the connected networks. 

Table 1 provides a structured overview of the 

major categories of inherent vulnerabilities 

commonly found in IoT devices. These include 

limitations such as restricted processing power 

that prevent the implementation of strong 

encryption protocols, the use of outdated or 

poorly maintained firmware, insecure or absent 

update mechanisms, and the persistence of 

hardcoded or default credentials. In addition, 

the table highlights physical security risks—

particularly in public or semi-public 

deployments—as well as the use of insecure 

communication protocols that transmit data 

without encryption. Weak authentication 

schemes and poor interoperability practices 

further compound the risk, especially when 

devices integrate with unvetted third-party 

services. Each entry in the table presents a 

specific vulnerability, a concise description, 

and a real-world example to illustrate how that 

vulnerability manifests in practice. This 

summary underscores the systemic nature of 

IoT security challenges and the need for 

comprehensive mitigation strategies at both the 

device and network levels. 
 

2.2 Types of Network Attacks in IoT 

Environments  
 

Various network-based attacks against IoT 

networks have a wide range of vulnerabilities 

and, therefore, are based on protocol-, 

infrastructure-, or device-level weaknesses. 

Spoofing Attacks 

Spoofing is a way of impersonating a trusted 

device through IP address falsification, MAC 
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addresses, or protocol identifiers. Examples of 

it are the IP spoofing, ARP spoofing (ARP 

poisoning), and DNS spoofing. These attacks 

favor higher level threats such as session 

hijacking, man in the middle (MITM) or 

eavesdropping (Van Der Merwe et al., 2018; Li 

et al., 2018). ARP spoofing can be used to 

capture or modify the information moving 

along networks locally, whereas DNS spoofing 

refers to redirecting routes towards malicious 

resources (Van Der Merwe et al., 2018). 

Table 1 present different cartegories of thet 

systematically describes common security 

weaknesses found in Internet of Things (IoT) 

devices. It provides specific examples for each 

vulnerability, ranging from limited processing 

power and outdated firmware to insecure 

communication protocols and insufficient 

physical security, illustrating how these design 

flaws contribute to the overall insecurity of IoT 

ecosystems.

 

Table 1: Inherent Vulnerabilities of IoT Devices 
 

Vulnerability Description Example 

Limited 

Processing 

Power 

Most IoT devices rely on low-power 

microcontrollers, making it difficult to 

implement strong encryption or advanced 

security protocols. 

Smart thermostats or light 

bulbs that lack onboard 

encryption capabilities. 

Outdated or 

Weak 

Firmware 

Devices are often released with insecure or 

outdated firmware, and many lack ongoing 

update support. 

IoT routers that continue to 

operate with known 

vulnerabilities due to the 

absence of patches. 

Lack of Secure 

Update 

Mechanisms 

Many devices do not support encrypted or 

authenticated firmware updates, leaving 

them vulnerable to malicious code 

injection. 

Surveillance cameras that 

require manual updates 

through USB without 

verification processes. 

Default or 

Hardcoded 

Credentials 

Devices are frequently shipped with easily 

guessable factory-set usernames and 

passwords, which users often fail to 

change. 

IP cameras accessible through 

unchanged default login 

credentials (e.g., “admin”, 

“1234”). 

Insufficient 

Physical 

Security 

IoT devices installed in public or unsecured 

locations can be physically tampered with, 

cloned, or reverse-engineered. 

Smart vending machines or 

kiosks with exposed ports 

vulnerable to hardware 

manipulation. 

Insecure 

Communication 

Protocols 

Many devices use unencrypted or outdated 

communication protocols, allowing 

attackers to intercept data. 

Wearable health devices 

transmitting plaintext data 

over unsecured Wi-Fi 

networks. 

Weak 

Authentication 

Mechanisms 

Some devices lack strong authentication 

methods, such as two-factor authentication 

or access control policies. 

Home automation systems 

relying solely on simple 

passwords for access. 

Interoperability 

Vulnerabilities 

Poorly validated integration with third-

party platforms can introduce 

vulnerabilities across connected systems. 

A smart speaker linking to 

multiple unverified IoT 

applications with inadequate 

permission control. 

(Source:  Kolias et al., 2017; Meneghello et al., 2019; Zhang et al., 2020) 
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 Man in the Middle Attacks (MITM) and 

Man on the Side Attacks 

During a MITM attack an attacker secretly 

disarms and modifies a communication process 

between IoT devices or between an IoT device 

and its gateway. IPs are forced to traversing 

through the node of an attacker (e.g. via ARP 

poisoning), where it is possible to tamper with 

the data, steal credentials, or inject the expected 

command (Conti et al., 2016). Likewise, with a 

manontheside attack, the attacker may enter a 

message (e.g. a malware or spoofed response) 

more quickly than the response of the 

legitimate server and hence attack code can be 

entered without need to pretend to be either 

endpoint (Bhushan et al. 2017). These two 

mostly go unnoticed in protocols that do not 

have encryption or appropriate mutual 

authentication. 

Denial of Service (DoS) and Distributed 

DenialofService (DDoS) Attacks 

Denial of service attacks are designed to affect 

the availability of devices, through resource 

consumption (denial of network bandwidth, 

memory, or CPU resource). DDoS targets flood 

their targets through botnets that consist of the 

hacked IoT devices (Mirai variants), to make 

their services unavailable (Dong et al, 2019). 

There exist some innovative types, such as 

energy-focused DDoS (EDDoS) that drains 

battery-driven devices by repeatedly waking at 

the devices or overloading (Shah et al. 2022). 

There are also some slowlorislike attacks (e.g. 

partially sent HTTP request) at application 

layer (Osanaiye et al, 2016). 

Side-Channel Attacks 

The reason is that these attacks take advantage 

of indirect information leaks (in terms of power 

consumption, timing, electromagnetic 

emissions or acoustic signals). By way of 

example, dissimilarity can be inferred during 

the cryptographic keys by scrutinizing power 

consumption or timing nature on limited 

devices. The sensor-heavy or even embedded 

devices can be especially susceptible to 

differential power analysis (DPA) or 

cachetiming attacks in IoT (Sikder et al., 2021). 

 Other types of Network Attacks 

Other vectors of attack are replay attacks, in 

which messages already captured previously as 

valid are sent on again, in order to impersonate 

commands or authentication (Dong et al, 

2019); routing attacks which interfere with 

forwarding or identification in order to steer 

traffic away or to isolate nodes; they include 

sinkhole, wormhole or Sybil attacks (Flauzac et 

al., 2015). Most of the intrusions are preceded 

by reconnaissance methods such as traffic 

sniffing, masquerade (masquerading as legit 

nodes), and portscanning (Osanaiye et al, 

2016). 

Fig. 1,  represents a conceptual diagram 

illustrating five distinct categories of 

cyberattacks that commonly target Internet of 

Things networks. Each attack type is 

represented by a unique icon within a circular 

emblem, clearly identifying threats such as 

Spoofing Attacks, Man-in-the-Middle Attacks, 

DDoS Attacks, and two instances of Side-

Channel Attacks.  

 

2.3 Attack Vectors Specific to Smart Devices 
 

Specific attack vectors are present in devices 

used on a smart basis, including cameras, 

thermostats, baby monitors, or medical sensors, 

as they may be designed and deployed in 

different ways. 

Camera and Visual Feed: A prominent one is 

the breach in OvertheAir SDKs of smart 

cameras and baby monitors with exposures of 

a live video and audio stream to remote 

unauthorized access through predictable 

unique identifiers and the lack of encryption 

encapsulating millions of devices (Osanaiye et 

al, 2016). The SDKs of many manufacturers 

are proprietary and do not include a strong 

cryptographic security, which renders hijack 

attacks to be practical until hardware/firmware 

updates are installed. 
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RJ45 and USB Charging (Juice Jacking): 

Insecure places of public charging may allow a 

malware infection or theft of data. USB juicing 

and USB attacks (juicejacking, BadUSB, 

Trustjacking) use the data stream during 

charging, which results in either credential 

theft of remote code execution (Chaabouni et 

al., 2019). 

Sensorbased Attacks: Smart gadgets have a  

variety of sensors: Accelerometers, 

gyroscopes, microphones, ambient sensors, 

each one of which can be abused. Through 

these sensors, attackers can see the keystroke, 

presence or environmental context through 

sidechannel extraction. Such side channels can 

be used by sensortargeting malware to monitor 

user activity or dump confidential information 

(Sikder et al., 2021). 

 

 
Fig 1: Different types of network attacks 

 

Firmware Supplychain and Cloning 

Attacks: The devices tend to be provided by 

OEMs with little publicity. Attackers may load 

malicious firmware in production, in the 

supplychain, cloning of hardware. The absence 

of signed firmware update procedures means 

that an attacker is able to replicate the identity 

of devices or use persistent, undetected 

compromise (Osanaiye et al, 2016). 

Operational Technology (OT) / Medical 

Device Vectors: Some medical IoT devices 

(insulin pumps, connected defibrillators, 

bedside monitors) are often used in safety-

critical environments where the equipment 

contains obsolete firmware, low authentication 

and poor patching because regulations lag. 

Examples like the MedJack campaign has 

shown that attackers can use medical devices to 

have insider lateral movement within hospital 

networks (Zhang et al., 2020). Moreover, the 

devices implanted in the industrial control 

system, or in smartcity control, can be located 

in pivot points of wide reconnaissance and 

network traversal. 
 

3.0 Intrusion Detection and Prevention 

Mechanisms in IoT 

3.1 Traditional vs. IoT-Specific Intrusion 

Detection Systems (IDS) 
 

Well-known network-centric IDS that use 

signature-based detection includes Snort or 

Bro/Zeek, which relies on a fit between the 

observed traffic pattern and known bad 

behavior. Such systems work well against 

identified threats but perform poorly against 
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unknown threats, also known as zeroday 

attacks, and also need regular signature updates 

(Heidari et al., 2023; Elrawy et al., 2018). 

Conventional IDS systems are customarily 

used on centrally located servers or network 

bottleneck locations where the computing 

resources like CPU and memory are sufficient 

and these solutions will not fit in the limited 

resource allocation of IoT devices. Instead, 

IoT-specific IDS are meant to be utilized in an 

extremely challenging environment, and 

frequently the detection task may be shared 

across device, edge/fog, and cloud layers 

(Spadaccino & Cuomo, 2020; Heidari et al., 

2023). IoTspecific systems tend to incorporate 

the hybrid aspects of detection that would 

incorporate signaturebased detection models 

(when dealing with known threats) as well as 

anomalybased one (detecting deviations in 

expected behavior) (Elrawy et al., 2018). These 

could be done, for example, with the H2ID 

model that applies lightweight local detection 

to devices associated with heavier, cloud-based 

analytics (Heidari et al., 2023). A second one is 

ROSEBOX, a lightweight IDS that uses the 

efficient feature selection and model pruning, 

designed to work in resource-constrained IIoT 

(Spadaccino & Cuomo, 2020). These 

architectures can maximize both detection 

accuracy and real-time succeeding; 

acknowledge the limitations of a device. 

Table 2, provides a comparative overview of 

key features distinguishing conventional 

Intrusion Detection Systems from those 

specifically designed for IoT environments. It 

highlights differences in target environment, 

detection approach, resource requirements, 

deployment location, update mechanisms, 

traffic characteristics, security models, 

machine learning integration, scalability, 

flexibility, and provides examples for each type 

of IDS. 

3.2 Lightweight Security Mechanisms for 

Resource-Constrained Devices 

Restricted IoT-based sensors, wearables and 

smart devices, which are resource-oriented, 

need to have lightweight security mechanisms 

that address vulnerabilities without affecting 

battery life and performance. The benefits of 

lightweight encryption protocols, like AES-

CCM, ChaCha, or SPECK include the 

possibility of preserving secure communication 

with limited computational cost and offering 

this opportunity to devices whose capabilities 

of computation are limited (Diro & 

Chilamkurti, 2018). Such authentication 

systems, such as elliptic curve cryptography 

(ECC) provide great security using smaller 

keys as compared to the traditional RSA 

protocols, hence conserving energy and time 

used. Secure boot places limits on what code is 

loaded on the device by requiring that only 

trusted code be run, such as by malicious code 

execution, whereas integrity checks such as 

hash-based verification will detect that 

untrusted code has changed the firmware (Diro 

et al., 2020). Nevertheless, these mechanisms 

are not without their problems, since 

cryptographic functions can be high battery 

consumers and manufacturers are usually lax 

on patch management, making fixes available 

to known attacks. IoT intrusion prevention 

systems (IPS) accomplish intrusion prevention 

by rule-based filtration of traffic that may have 

been identified as suspicious, although they 

suffer the drawback of being unable to signify 

suspicious objects until an update has delivered 

in real-time and require the compatibility of 

numerous possible protocols (Khan et al., 

2020). Sharing security devices via security 

models include increasing detection abilities by 

sharing intelligence about threats on a network 

between security devices but issues of 

oversaturation of the limited network or 

introducing new vulnerabilities can be serious 

concerns when designing these security 

models. As an example, lighter intrusion 

detection frameworks, like those using a bloom 

filter, consume less memory and still achieve 

the same accuracy of the heavier frameworks, 

although they need to be optimized so that they 
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perform and do not move closer to 

impracticality (Sicari et al., 2015). 
 

 

3.3 Role of Machine Learning, AI, and 

Anomaly Detection in Securing IoT 
 

Artificial intelligence (AI) and machine 

learning (ML) play a crucial role in improving 

the IoT security by providing real-time 

changing threat detection and response.  

 

Table 2: Traditional vs. IoT‑Specific Intrusion Detection Systems (IDS) 

 

Feature Traditional IDS IoT-Specific IDS 

Target Environment General-purpose computing 

environments (e.g., enterprise 

networks, servers) 

Resource-constrained IoT 

environments (e.g., sensors, 

embedded devices) 

Detection Approach Primarily signature-based and 

rule-based 

More focus on anomaly-

based, behavior-based, or 

lightweight hybrid detection 

Resource Requirements High processing power, 

memory, and bandwidth 

Optimized for low power, 

limited memory, and minimal 

computational capacity 

Deployment Location Centralized (e.g., on a server 

or network gateway) 

Distributed or edge-based 

(e.g., on gateway nodes or 

edge devices) 

Update and Maintenance Frequent updates with 

centralized management 

Often lacks update 

mechanisms; may require 

OTA (over-the-air) 

lightweight updates 

Traffic Characteristics Handles diverse traffic 

volumes and formats 

Needs to process constrained 

protocols (e.g., MQTT, CoAP, 

Zigbee) 

Security Model Built around secure OS, 

patching, and strong 

authentication 

Must deal with insecure 

firmware, default credentials, 

and low-level protocols 

Machine Learning 

Integration 

Advanced integration with 

machine learning and 

analytics platforms 

Limited ML capability, but 

growing use of lightweight 

models and edge AI 

Scalability and Flexibility Easier to scale and 

reconfigure in high-end 

systems 

Must accommodate highly 

heterogeneous and 

dynamically scaling 

environments 

Examples Snort, Suricata, OSSEC SVELTE, RIDES, and 

lightweight edge-based 

anomaly detection systems 

Feature Traditional IDS IoT-Specific IDS 

(Source : Spadaccino & Cuomo, 2020; Heidari et al., 2023) 

 

Machine Learning, like decision trees, support 

vector machine, neural networks, and 

clustering, can be used to analyze the network 

traffic with the aim of detecting anomalies that 

can be related to attacks such as DDoS, MITM, 

or unauthorized access. Differently positioned 
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with signature-based approaches, ML-based 

anomaly detection can outperform most 

approaches on zero-day attacks by memorizing 

standard behaviors in devices and raising an 

alarm when they are different. As an 

illustration, it is possible to identify traffic as 

either malicious or benign using the supervised 

learning models based on labeled data sets and 

identify the outliers within the dynamic IoT 

environments using unsupervised models, such 

as k-means clustering (Moustafa et al., 2018). 

More complex deep learning models, including 

autoencoders, recurrent neural networks, etc, 

prove to be especially useful in working with 

high-dimensional IoT data, and with detecting 

slight anomalies in real-time. Nonetheless, 

training ML in resource-limited devices is 

difficult as it will require a lot of computations 

and memory. Such approaches as model 

compression, quantization or federated 

learning, where the training is done in the 

network but raw data is not shared among 

devices, reduce these limitations by performing 

the computation on the network. The AI-

powered systems provide predictive security as 

well since they can predict based on the past 

events and trend. As an example, it can apply 

reinforcement learning toward enhancing any 

strategy that involves responding to intrusion, 

including isolating the compromised devices. 

Nevertheless, ML/AI systems remain remedied 

by such issues as the traditionally high false-

positive rates, data privacy, and re-training to 

maintain results in the face of dynamic patterns 

of attacks. Another factor that renders it 

cumbersome to apply ML in IoT ecosystems is 

the adversarial attacks, in which attackers do 

modify ML models by feeding it with 

malicious data (HaddadPajouh et al., 2021). 
 

3.4 Edge/Fog Computing as a Support 

Structure for Real-Time Detection 
 

Edge and fog computing innovate real-time 

intrusion detection systems in IoT networks, 

which overcomes the latency, bandwidth, and 

scalability differences of the cloud systems. 

Edge computing runs the data locally on the 

devices or at local gateways so that severe 

threats such as intrusions, DDoS attacks, or 

abnormal behavior can be detected quickly. As 

an example, edge nodes can play a role in the 

real-time analysis of device traffic by 

lightweight ML models, minimizing latency 

and allowing a quick response, e.g., by 

isolating compromised devices. Fog computing 

goes even further, since it allows rather even 

distribution of computations over intermediate 

nodes, optimizing computer capacity 

utilization and reducing the amount of 

bandwidth used by combining data near the 

source (Mahmoud et al., 2015). This top-down 

model enables the advanced anomaly detection 

(as based on deep learning), carried out at fog 

nodes, and the edge-level, lightweight 

detection. The edge/fog systems also improve 

scalability by spreading the detection 

operations among the network, which is 

required to support the huge connectivity of 

IoT installation. E.g., fog nodes are able to 

organize threat intelligence between the edge 

devices to increase the accuracy of detection 

and response correlation. Nonetheless, such 

architectures come with their drawbacks such 

as resource constraints on edge devices, 

interoperability between different 

heterogeneous devices, and explicit 

communication between edge and fog nodes to 

allow mitigation of the MITM attack. Integrity 

of data in distributed processing is very 

important because broken nodes can feed 

wrong information. The combination of 

edge/fog computing with ML allows the 

improvement of detection efficiency by Kirr, 

but the use of resource limitations necessitates 

the fine-tuned algorithms. An instance of this is 

inferior-acting neural networks or decision 

trees that can be guaranteed at the edge rather 

than complicated models carried out on an 

allotted number of fog nodes, establishing a 

laytered defense mechanism (Zarpelao et al., 

2017). 

• Query successful 
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Fig. 2, titled "shows  a conceptual diagram that 

illustrates the central theme of intrusion 

detection and prevention in Operational 

Technology (OT) environments, represented 

by a central cloud icon. Connected to this 

central theme are four key areas of discussion, 

each depicted in a distinct rectangular box: 

"Traditional vs. IoT-Specific IDS," "Role of 

Machine Learning, AI, and Anomaly 

Detection," "Lightweight Security 

Mechanisms for Resource-Constrained 

Devices," and "Edge/Fog Computing as a 

Support Structure for Real-Time Detection." 

The diagram visually summarizes the main 

topics covered in the manuscript's section on 

intrusion detection and prevention. 

 
Fig 2: Intrusion detection and prevention 

mechanism. 
 

4.0 Proposed Solutions and Future Trends 

4.1 Cryptographic Techniques and Secure 

Communication Protocols for IoT 
 

The lightweight algorithms such as AES-CCM 

and ChaCha ensure secure communications  

between the resource-constrained devices of 

the Internet of Things protocol, by the means of 

leveraging both efficiency and security. 

eavesdropping is end-to-end secured with 

secure protocols such as DTLS to CoAP. ECC 

complicates the key size authentication, 

however, there are still issues regarding the key 

management, and protocol compatibilities. The 

next trends refer to the development of 

quantum-resistant cryptography in order to 

survive the new threats (Sicari et al., 2015). 
 

4.2 Decentralized Identity to validate with 

Blockchain 
 

Blockchain empowers decentralized 

authentication: through distributed ledgers, it is 

now possible to explore device identities based 

on the use of distributed ledgers instead of 

having to resort to spoofing. Secure access 

control is automated by using self-sovereign 

identity (SSI), and smart contracts. Light 

consensus systems, such as Proof-of-Authority, 

are appropriate in IoT but have an impediment 

due to requirements of computational power 

and scalability. The next trends towards energy 

efficiency are lightweight blockchains such as 

IOTA Tangle chain (Mosenia & Jha, 2016; 

HaddadPajouh et al., 2021). 
 

4.3 Zero-Trust Architecture and its 

application to IoT 
 

Zero-trust architecture (ZTA) considers 

nothing to be inherently trusted, it involves 

continuous authentication and permission-sets 

that include the least privileges. Marrying 

micro-segmentation with ECC-based 

authentication, ZTA in IoT attempts to contain 

the spread of attacks. A lack of resources and 

scalability are likely barriers to 

implementation, yet a future application will be 

integrating it with edge computing and using 

policy and AI to ensure compatibility (Sicari et 

al., 2015; Mahmoud et al., 2015: Ademilua & 

Areghan, 2022). 
 

4.4 Emerging Standards and Regulatory 

Frameworks  
 

Improving standards and regulatory systems 

are important to make the practices under IoT 

security standard and to make them compliant 

within different ecosystems. The National 

Institute of Standards and Technology (NIST) 
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offers such documents as NISTIR 8259, 

Foundational Cybersecurity Activities in the 

IoT Device Manufacturers, explaining the best 

practices in designing a secure device, such as 

authentication, encryption, and update 

implementations (NIST, 2020). The NIST SP 

800-183 aims specifically at risk management 

of IoT systems and searches vulnerable areas 

and mitigating measures. In 2020, the ISO/IEC 

27030 standard was published to give a 

framework to the security and privacy of IoT; 

it covers the management of the full lifecycle 

of devices, data protection, and secure 

communication protocols. A reference 

architecture of IoT in the ISO/IEC 30141 

standard contributes to the interoperability and 

the security by design (ISO/IEC, 2018). These 

standards are supposed to deal with such 

obstacles as the poor authentication, the use of 

unsecure communication and software that is 

not updated by requiring the secure 

development methods and periodic auditing. 

Such regulatory mechanisms as the 

Cybersecurity Act and GDPR in the EU have 

an effect by requiring adherence to data 

protection and security requirements and 

therefore result in the IoT deployments in 

consumer and industrial applications.   The 

emergence of cybersecurity labeling schemes, 

as it is the case with the IoT cybersecurity 

labeling program by NIST, is expected to 

notify consumers about the security levels of 

the devices and thus appealing to consumers to 

demand secure IoT products in the market 

(Zarpelao et al., 2017). 

Table 3  presents a comprehensive overview of 

key guidelines and regulations aimed at 

enhancing security in IoT environments. For 

each standard or regulation listed, the table 

provides a concise description, outlines its key 

features, identifies associated challenges, and 

includes a reference to its source. 
 

Table 3: Emerging Standards and Regulatory Frameworks 
 

Standard/Regulation Description Key Features Challenges Reference 

NISTIR 8259 A guideline for 

IoT device 

manufacturers 

to ensure 

secure device 

design and 

deployment. 

- Secure 

development 

practices 

(authentication, 

encryption, 

updates). - Risk 

assessment and 

mitigation 

framework. - 

Device 

lifecycle 

management 

focus. 

- Voluntary 

adoption limits 

enforcement. - 

Costly for low-

cost device 

manufacturers. 

- Limited 

specificity for 

diverse IoT 

ecosystems. 

(National 

Institute of 

Standards and 

Technology, 

2020) 

ISO/IEC 27030 International 

standard for 

IoT security 

and privacy, 

addressing 

risks across 

device and 

network layers. 

- Data 

protection and 

privacy-by-

design 

principles. - 

Risk-based 

security 

management. - 

Applicable to 

- Varying 

global adoption 

due to regional 

differences. - 

Complex 

implementation 

for 

heterogeneous 

devices. - 

(International 

Organization 

for 

Standardization, 

2020) 
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consumer and 

industrial IoT. 

Needs updates 

for evolving 

threats. 

ISO/IEC 30141 Reference 

architecture for 

IoT to enhance 

interoperability 

and security-

by-design. 

- Standardized 

IoT 

architecture 

with security 

principles. - 

Supports 

interoperability 

and scalability. 

- Guidelines for 

secure data and 

device 

management. 

- High costs for 

small-scale 

manufacturers. 

- Alignment 

with diverse 

protocols is 

complex. - 

Limited 

enforcement 

mechanisms. 

(International 

Organization 

for 

Standardization, 

2018) 

EU Cybersecurity 

Act 

EU regulation 

for 

cybersecurity 

certification of 

ICT products, 

including IoT 

devices, to 

enhance 

security and 

trust. 

- Certification 

levels (basic, 

substantial, 

high) for IoT 

devices. - 

Mandates 

security 

compliance. - 

Aligns with 

GDPR for data 

protection. 

- Limited to 

EU, affecting 

global 

applicability. - 

Certification 

costs burden 

small 

manufacturers. 

- Slow 

harmonization 

with non-EU 

standards. 

(European 

Union, 2019) 

GDPR EU regulation 

governing data 

protection and 

privacy, 

impacting IoT 

devices 

handling 

personal data. 

- Mandates 

data 

minimization, 

user consent, 

encryption. - 

Requires 

breach 

notifications 

within 72 

hours. - 

Applies to IoT 

devices like 

wearables. 

- Complex 

compliance for 

resource-

constrained 

devices. - 

Jurisdictional 

conflicts for 

global 

deployments. - 

High penalties 

deter small 

vendors. 

(European 

Union, 2016) 

5.0 Conclusion  
 

The high rate of growth of the Internet of 

Things (IoT) has brought in a revolutionary 

advantage in the industries and everyday life, 

as it can bring about smarter infrastructure, 

instant tracking, and improved automation. 

Nevertheless, the heterogeneous, decentralized 

and resource-poor character of IoT ecosystems 

has also broadened to generate a large and 

multi-dimensional attacker landscape. In this 
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study, the vulnerability associated with IoT 

devices as well as multiplicity and the changing 

types of attacks based on the network, and the 

weakness of traditional security approaches in 

securing the system have been identified. 

Among the important lessons is that smart 

devices are vulnerable to spoofing, denial-of-

service (DoS), and man-in-the-middle (MITM) 

attacks, and the risk of insecure firmware, 

physical tampering, and poorly implemented 

authentication channel unique to such devices. 

New intrusion detection systems (IDS), 

lightweight cryptographic protocols, and 

anomaly detection using AI are promising 

countermeasures, but limited by the 

capabilities of their devices and the complexity 

of implementing AI-based approaches in 

interoperating with the rest of the system. With 

the ever-widening field of the IoT, the security 

of these interconnected systems needs to 

advance to an adaptive, collaboration-driven, 

and resource-efficient strategy that will provide 

real-time protection without the loss of 

performance and scalability. 

Implement Secure-by-Design Principles: 

vendors should implement secure development 

methodology such as secure firmware updates, 

encrypted communications, and removal of 

default passwords. Such standards as NISTIR 

8259 and ISO/IEC 27030 should become 

mandatory and applied throughout the lifecycle 

of devices, including their design. 

Deploy Lightweight Cryptographic and 

Authentication: Depending on encryption 

algorithms like AES-CCM, or ChaCha, and 

authentication using elliptic curve 

cryptography ( ECC ) which provide high 

security even with minimal overhead. 

Implement AI-powered Threat Detection and 

Anomaly Detection: Implement machine 

learning models on behavioral-based threat 

detection that is capable of detection of zero-

day and evolving threats in real-time. 

Use the Blockchain and Decentralized Identity: 

Use blockchain-basedlightweight, and scalable 

device authentication and integrity checks such 

as IOTA. 

Enhance Regulatory Control and Consumer 

Oversight: Regulators and standard agencies 

need to speed up the processes to establish 

security regulation specific to IoT, such as 

certification and labelling of products. 

Additionally Educating users to make 

alterations to default credentials, frequent 

firmware upgrading and an overview of 

fundamental security hygiene. 
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