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Abstract: Automated image-based cervical 

cancer detection plays a vital role in 

diagnosing cervical cancer, particularly 

through the use of digital cervical images 

obtained via visual inspection with acetic 

acid (VIA). Many algorithms have been 

developed to classify these images by 

extracting mathematical features. Artificial 

intelligence (AI) has significantly advanced 

healthcare by improving disease detection, 

diagnosis, and prediction of health outcomes. 

While various cervical cancer screening 

methods have evolved, VIA remains one of the 

most feasible options in low-resource 

settings. However, its effectiveness relies 

heavily on the examiner’s experience, which 

can be limited due to a shortage of qualified 

healthcare professionals. This study 

evaluates the performance of AI image 

processing techniques for detecting cervical 

cancer using VIA images. The research 

compares four traditional machine learning 

techniques and six deep learning techniques 

in classifying cervical cancer images, where 

each model was trained on four randomly 

selected batches of images (300, 700, 1000, 

and 1678 images) to assess model 

performance with an increasing number of 

training images. The VGG19 model achieved 

a consistent accuracy of 81% across all 

training sizes. The Vision Transformer (ViT) 

model, on the other hand, showed a 

performance improvement from 57% 

accuracy with 300 images to 77% accuracy 

with 1678 images. The hybrid model, 

combining VGG19 and ViT, demonstrated 

superior performance with an accuracy of 

86.65%, an AUC of 0.85, a sensitivity of 

0.832, and a specificity of 0.8485. This study 

demonstrates that the hybrid model 

outperforms individual models, offering a 

promising solution for cervical cancer 

detection in low-resource environments. 
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1.0 Introduction  
 

Cervical cancer is the fourth most frequent 

malignancy in women globally. The World 

Health Organization (WHO) noted that about 28 

million cancer-triggered mortality would have 

happened by the end of the year 2020. In 

particular, cancers of the breast and lungs are the 

leading cause of mortality amongst cancer 

sufferers globally, followed by cervical cancer 

(Sharma et al, 2023). Existing cervical cancer 

screening programs, such as Pap Smear, have 

limited sensitivity. As a result, many positive 

cases are missed during the screening procedure. 

Also, it is not feasible in low-resource settings 
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because of the financial implications of a 

sophisticated laboratory and medical resources. 

Cervical cancer visual inspection with acetic acid 

(VIA) screening with images of the cervix taken 

during screening and analysed with Computer 

Aided Diagnostic (CAD) systems, has the 

potential to considerably improve screening 

programs, and it can be especially effective in 

resource-poor areas of the world (Song, et al., 

2013).  Approximately 90% of cervical cancer 

deaths occur in underdeveloped nations, owing to 

the high expense of undertaking regular screening 

programs, a lack of resources, and a scarcity of 

experts (Kudva, et al., 2018). Several machine 

learning and deep learning approaches have been 

proposed as a means of mitigating this problem 

(Kudva et al., 2020), but most of them either have 

poor accuracy or are not feasible for 

implementation in low-resource settings. Hence, 

there is a need for more research on artificial 

intelligence-based approaches that can be 

deployed for use in low-resource settings. Also, 

Liang, et al. (2013) highlighted that cervical 

cancer is a danger to all women. This suggests a 

need for models that can be integrated into mobile 

devices (Adamu et al., 2020), and can be used 

globally as a simple and efficient cervical cancer 

screening deployment tool. This paper contributes 

to the literature by providing new information, 

perspective, and evaluation of machine learning 

and deep learning techniques when used to 

classify cervical cancer visual inspection with 

acetic acid images. It also highlights the 

performance when two powerful deep learning 

techniques (VGG19 and Vit) are merged and used 

for cervical cancer image classification. 
 

2.0 Related Works 
 

Cervical cancer constituted 14.8% of more than 

70,327 female cancer-related fatalities in Nigeria 

in 2018, making it the second most prevalent 

malignancy following breast cancer (Aina et al., 

2018). The application of acetic acid to the cervix 

causes the whitening of the epithelium known as 

acetowhitening, which is essential for detecting 

aberrant regions during cervical cancer screening 

(Azene, 2021). Notwithstanding its importance in 

low-resource environments, diagnostic accuracy 

continues to be problematic due to dependence on 

examiner proficiency.  Several models and 

approaches have been proposed to improve 

cervical cancer image classification accuracy 

during CAD screening. 

Azene (2021) and Asiedu et al. (2019) 

concentrated on the preparation of cervigrams and 

the extraction of colour and textural information 

for automated lesion categorization, thereby 

improving the efficacy of visual inspection with 

acetic acid (VIA). Their techniques prioritized 

enhanced diagnostic precision through feature-

based methodologies. Balas (2001) also created a 

multispectral imaging method to measure 

alterations in the light-scattering characteristics of 

the cervix, emphasizing neoplasia caused by 

acetic acid. This method enhanced the 

identification of cervical intraepithelial neoplasia 

(CIN). 

Das et al. (2014) employed image segmentation 

techniques to identify malignant cervical lesions. 

Their research illustrated the promise of effective 

segmentation for early cancer detection. 

Shu (2019) introduced a modified deep 

convolutional neural network (D-CNN) for 

classifying cervical pictures from limited 

datasets, reducing overfitting and showcasing 

deep learning's versatility in resource-constrained 

environments. Kaur et al. (2017) highlighted the 

relevance of colposcopy in cervical cancer 

diagnosis but stressed the need for colposcopy 

expertise. They called for computer-assisted 

diagnostic techniques to improve accuracy and 

dependability. 

Krizhevsky et al. (2012) introduced a 

breakthrough in deep learning by building a CNN 

capable of classifying high-resolution photos 

from ImageNet. Their methods created a 

framework for employing CNNs in medical 

imaging, including cervical cancer screening. 

Kudva et al. (2018) examined mathematical 

feature extraction and classification for 

discriminating between malignant and non-

malignant cervical pictures, paving the road for 

integrating machine learning into early cancer 

detection. Later, Kudva et al. (2020) 

demonstrated that hybrid transfer learning 

employing pre-trained models like VGG-16 

achieved great accuracy (up to 91.46%) in 

cervical cancer detection. 

Liang et al. (2013) suggested an automatic 

method to discover problematic cervical areas 

using colposcopic picture sequences, combining 

segmentation with a support vector machine 

(SVM) classifier for accurate predictions. 

Priya (2014) prioritized precise image 

segmentation to identify cervical cancer lesions, 

boosting biopsy targeting and overall diagnostic 

outcomes. 

RamaPraba and Ranganathan (2012) employed 

statistical characteristics and a Bayes classifier to 

detect lesions in colposcopy pictures. Their 
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preprocessing procedures effectively identified 

AcetoWhite (AW) regions, which are markers of 

aberrant cervical cells. Further, RamaPraba and 

Ranganathan (2013) presented an active contour-

based lesion detection method employing wavelet 

transformations, producing encouraging results in 

automated lesion diagnosis. 

Rouhbakhsh et al. (2012) trained classifiers, 

including KNN and Neuro-Fuzzy networks, to 

detect precancerous lesions using texture and 

colour characteristics, displaying better 

diagnostic accuracy with optimized feature 

selection. 

Simonyan and Zisserman (2014) examined 

convolutional network architectures for action 

recognition in video, revealing ideas that may be 

applied to evaluating cervical image sequences 

dynamically. 

Also, Sukumar and Gnanamurthy (2016) created 

a computer-aided method for cervical cancer 

detection utilizing wavelet transforms and 

random forest classifiers, exceeding conventional 

techniques in classification accuracy. 

Xu et al. (2017) curated an expert-annotated 

cervical illness dataset, employing pyramid 

histogram characteristics such as PLAB, PHOG, 

and PLBP to better picture categorization. 

Xue et al. (2010) focused on detecting mosaic 

vasculature patterns in cervical images, solving 

obstacles including blurry boundaries and small 

artery calibres to aid gynaecologists in identifying 

anomalies. 

Srinivasan (2019) suggested a unified diagnostic 

strategy for CIN, using Gaussian mixture 

modelling (GMM) for segmentation and texture-

based classification, underlining the relevance of 

computational models in enhancing diagnostic 

accuracy. Raifu et al. (2017) studied the 

sensitivity and specificity of VIA and VILI as 

diagnostic approaches, demonstrating the 

potential for computer-assisted diagnostics to 

boost accuracy across varied situations. 
 

3.0   Method 

3.1 Data Collection and Ground Truth  
 

166 cervix images were collected from the 

National Cancer Institute (NCI) cervical cancer 

image database which consisted of 92 VIA-

negative and 74 VIA-positive images. Some data 

augmentation techniques were utilized to increase 

the size of the datasets and to prevent overfitting. 

The augmentation techniques include vertical and 

horizontal flips, random brightness, image 

shifting, random rotation, and image zooming. A 

total number of 1678 images were obtained after 

data augmentation consisting of 938 VIA-

negative and 740 VIA-positive images. Fig. 1 

depicts images of the cervix before pre-

processing. 

 

 

Fig.  1: Cervix image (VIA Negative) & (VIA 

Positive) 
 
 

 3.2 Image pre-processing  
 

To ensure that unnecessary or unwanted features 

such as the image of the speculum do not affect the 

accuracy of the cervical image classification, the 

Region of Interest (RoI) was cropped using a 

minimal bounding box around the cervical area.  

Fig. 2 depicts the cropped images, while Fig. 3 

presents the augmented images after cropping. 

Positive (Malignant)         Negative (Benign) 

 

Fig. 2: Cropped images of the dataset 
 

 

 
Positive (Malignant) 

 
Negative (Benign) 

 
 

Fig.  3: Augmented images of the dataset 
 

The pre-processed images are then converted to 

grayscale images for the extraction of features for 

the machine learning classification. 
 

3.3 Automated Techniques for Cervical Image 

Classification 

The application of acetic acid to the cervix causes 

textured mosaicism and highlights various 

vascular patterns which can be manually 

interpreted for diagnosis (Asiedu et al., 2018), or 

calculated during automated image analysis using 



Communication in Physical Sciences, 2025, 12(2): 175-193 178 
 

 
 

the Haralick textural features (Haralick et al., 

1973). 
 

3.3.1Feature Extraction (Haralicks’ Features) 
 

Haralick's textural features were used in this study 

to determine the Gray-Tone Spatial-Dependence 

Matrix (GSDM) in the grayscale images. The 

GSDM is a statistical method that calculates the 

frequency of occurrence of a pair of pixels with 

specific values and spatial relationships in an 

image. the GSDM was computed for four 

different pixel offsets (1, 5, 10, and 15) in four 

different directions (0, 45, 90, and 135 degrees). 

A total of 954 textural features were calculated 

from these GSDMs: contrast, correlation, 

dissimilarity, energy, and homogeneity (Haralick 

et al., 1973).  

The traditional approaches used in this study seek 

to identify, sort, and separate the characteristics of 

each image class (VIA positive and negative), 

with the predicted procedure in feature 

identification based on margin, texture, and 

whiteness information. Feature extraction is a 

necessary step before employing traditional 

machine learning algorithms. The technique of 

decreasing the amount of picture data by 

extracting required information from the 

segmented image is known as feature extraction. 

It is feasible to differentiate between positive and 

negative cervical VIA using image data-derived 

characteristics. The classification algorithm's 

dependability is determined by the retrieved 

features. The texture features in this study are 

retrieved using GSDM. Energy, correlation, 

dissimilarity, homogeneity, and contrast are 

texture characteristics computed using GSDM, 

the formula and an explanation of how each 

characteristic is used are noted below (Haralick et 

al., 1973): 

i. Energy: It employs the texture that calculates 

ordering in an image, yielding the sum of square 

elements in GDSM. It is not the same as entropy. 

When the image window, which serves as the 

sample region for GDSM tabulations and texture 

calculations is well-organized, the energy value is 

high. As Energy, the square root of the Angular 

Second Moment (ASM) texture character is 

utilized. It has a range of [0 1]. Its value is 1 since 

it is a constant image. The energy equation is as 

presented in equation (1).  

                                             (1) 

ii. Correlation: It applies the computation of a 

pixel's association with its neighbour across the 

entire image, determining the linear dependency 

of grey levels on those of neighbouring pixels. 

The correlation value for a fully positively or 

negatively linked image is 1 and -1. Its value is 

NaN in the case of a constant image. The range is 

[-1,1], and the formula is as depicted in equation 

(2). 

                        (2) 

iii. Dissimilarity: Dissimilarity is a distance 

measure between two objects (pixels) in the 

region of interest. The formula for dissimilarity is 

presented in equation (3). 

                                       (3) 

iv. Homogeneity: It sends the value calculated by 

the tightness of distribution of the GDSM 

elements to the GDSM diagonal. The diagonal 

GDSM has a value of 1 and a range of [0,1]. 

Homogeneity weight values are the inverse of 

contrast weight values, with weight decreasing 

exponentially away from the diagonal. In 

comparison, the weight used is (i-j)2 and 

inhomogeneity, it is 1/1+(i-j)2. The homogeneity 

equation is presented in equation (4). 

                                      (4) 

v. Contrast: Contrast is also known as the Sum of 

Square Variance. It postpones the computation of 

the intensity contrast between a pixel and its 

neighbour throughout the whole image. When the 

image is constant, the contrast value is 0. In 

contrast, when one moves away from the 

diagonal, the weight grows exponentially 

(0,1,4,9). The equation for contrast is seen in 

equation (5). 

Range = [0, size (GDSM,1)-1)2] 

                                      (5) 

A total number of 954 features were extracted 

from the converted grayscale images. Fig. 4 

presents the grayscale images. The machine 

learning models were trained on these GDSM 

features. Fig. 5 is an image of the extracted 

GDSM features. 
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Fig. 4.: Converted cervical cancer grayscale images 

 

3.3.2 Traditional techniques 

3.3.2.1 Random Forest Classifier 
 

Random forests, also known as random decision 

forests, are an ensemble learning method for 

classification and regression that pre-trains a set 

number of trees. Because of its inherent variable 

selection, random forest predictors naturally lead 

to a dissimilarity measure among the features in 

data as part of the algorithm-building process; the 

random forest dissimilarity easily deals with a 

large number of semi-continuous variables. The 

images to be used are fed into the numpy reshape 

function, which transforms them into a specific 

shape and feature. For repeatable results, a total 

of 50 decision trees and a random state of 42 are 

used. We test our model with the test image 

datasets after training it on our training datasets to 

see how well it performs on previously unseen 

image data. The model's accuracy after running 

on the test data is 48.5%. 
 

 

3.3.3.2 Support Vector Classifier (SVC) 
 

The effectiveness of SVC is based on features like 

kernels, kernel parameters, and soft margin. It has 

proven to be fast and effective in a variety of 

tasks. The model's accuracy is 54.3%, which is 

slightly better than the Random Forest Classifier. 
 

3.3.2.3Light Gradient Boosting Machine 

(LightGBM) 
 

LightGBM is associated with many algorithms, 

one of which is XGBoost, which offers features 

like sparse optimization, parallel training, 

multiple loss functions, regularization, bagging, 

and early stopping. The classification accuracy 

obtained from the lightGBM model is 60%. 
 

3.3.2.4Artificial Neural Networks 
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Artificial Neural Networks (ANNs) are networks 

of artificial neurons that are inspired by the 

biological neural networks that make up animal 

brains. An artificial neuron receives the signal, 

processes it, and communicates with other 

neurons. Neurons are usually assigned a weight 

that changes over time as the learner progresses. 

The accuracy of the ANN model was 57.5%. 

Table 1 summarizes the classification 

performance of the traditional machine learning 

techniques compared in this study. 

 

 
Fig. 5: Extracted GDSM features 

 
 

3.3.3 Comparison of the traditional Machine 

Learning (ML) Techniques utilized 
 

 

Table 1: Performance of the ML techniques 

utilized 

 

Model  Accuracy  

Random Forest Classifier (RFC) 48.5% 

Support Vector Machine (SVM) 54.3% 

Light Gradient Boosting 

Machine (LGBM)  

60% 

Artifial Neural Network (ANN) 57.5% 

 

 3.3.4 Deep Learning Technique 
 

Deep learning (also known as deep structured 

learning) is a machine learning method that is 

based on artificial neural networks and 

representation learning. Learning can take place in 

a supervised, semi-supervised, or unsupervised 

environment(Lecun et al., 2015). Deep learning 

also has an advantage over traditional transfer 

learning techniques. Transfer learning is a method 

used when there is insufficient data or 

computational power to predict a pre-trained 

model using a different dataset; the model will be 

fine-tuned to provide the best performance on the 

preferred data. The transfer learning models used 

for this project are VGG16, VGG19, Alexnet, ViT, 

Efficient Net and Resnet. 
 

3.3.4.1 Resnet34 
 

After preparing all of the necessary libraries, the 

model's training ratio is set to 90% and passed into 

the pre-trained model, which is set to true so that 

the layers used in the original deep learning model 

are preserved for optimum performance; 

additionally, the batch size and the number of 

classes are set to 16 and 2, respectively. After 

importing the data loader, we iterate once through 

it, then create a fully connected layer to match our 

data and classes, after which we set the number of 

epochs to 50 and create the trainer and evaluator. 

The fed image data is then fed into the pre-trained 

model, which is then run.  
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Fig. 6: ResNet training and validation accuracy (300 images) 

 
Fig. 7: ResNet training and validation accuracy (700 & 1000 images) 

 
Fig. 8: ResNet training and validation accuracy (1678 images) 

 

After training on our image data, the Resnet34 

model achieves an accuracy of 70% as shown in 

Figs. 6, 7, and 8. 
 

3.3.4.2 Alexnet 
 

AlexNet is the name of a convolutional neural 

network (CNN) architecture developed by Alex 

Krizhevsky in collaboration with Ilya Sutskever 

and Geoffrey Hinton, Krizhevsky's PhD advisor. It 

has five convolutional neural networks and two 

max-pooling layers among its eight layers. The 

training and validation accuracy for this study are 

as shown in Figures 9 and 10. 
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Fig. 9: AlexNet training and validation accuracy (300 & 700 images) 

 
 

Fig. 10: AlexNet training and validation accuracy (1000 & 1678 images) 
 

3.3.4.3 VGG16 
 

Simonyan & Zisserman (2015), of the University 

of Oxford created the Visual Geometry Group 

(VGG-16) convolutional neural network model in 

2014. It improved on ImageNet by adding more 

complex convolutional layers that required more 

computational power to train. ImageNet contains 

more than 1.2 million images for training and  

 

 

 

50,000 images for testing. The model was built on 

an NVIDIA Titan Black GPU and ran for weeks 

before being fully trained. The model's advantages 

include accurate feature identification in data, high 

efficiency and convenience in the method of 

transfer learning, and optimal effectiveness on the 

data being trained with high accuracy. In this 

study, Figures 11  and 12 shows the performance 

of  VGG16 as the data increases.

 
Fig. 11: VGG16 training and validation accuracy (300 & 700 images) 
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Fig. 12: VGG16 training and validation accuracy (1000 & 1678 images) 

 

3.3.4.4 VGG19 
 

VGG-19 is a 19-layer deep convolutional neural 

network.  The network can classify images into 

1000 different object categories, including 

keyboards, mice, pencils, and a variety of animals. 

As a result, the network has learned a variety of 

rich feature representations for a variety of images. 

The network's picture input size is 224 × 224  

 

 

Pixels. option to the Image Data Generator 

constructor, which provides the min and max 

range as a float indicating a percentage for 

determining the amount of brightening. Values 

less than 1.0 darken the image, e.g. [0.5, 1.0], 

whereas values more than 1.0 brighten it, e.g. [1.0, 

1.5], with 1.0 having no impact. Figs. 13 and 14 

present the accuracy curve for VGG19 as the data 

increases in this study.

 
 

Fig. 13: VGG19 training and validation accuracy (300 & 700 images) 

 

 
Fig. 14: VGG19 training and validation accuracy (1000 & 1678 images) 
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3.3.4.5 Vision Transformer (ViT) 

 

The Vision Transformer (Han et al., 2020), is a 

type of deep neural network that is primarily based 

on the self-attention mechanism and was first used 

in the field of natural language processing. It has 

been used in computer vision tasks because of its 

strong representation capabilities. Other types of 

networks, such as convolutional and recurrent 

networks, performed similarly to or better than it. 

Dosovitskiy et al. (2020) demonstrated that a pure 

transformer applied directly to image patch 

sequences can perform very well on image 

classification tasks. When compared to state-of-

the-art convolutional networks, Vision 

Transfomer (ViT) achieves excellent results while 

requiring significantly fewer computational 

resources to train. Figures 15 and 16 presents the 

results for ViT in this study as the data increases.

 
Fig. 15: ViT training and validation accuracy (300 & 700 images) 

 
Fig. 16: ViT training and validation accuracy (1000 & 1678 images) 

 

3.3.4.6 EfficientNet  
 

EfficientNet (Tan & Le., 2019), is a convolutional 

neural network architecture and scaling method 

that uses a compound coefficient to scale all 

depth/width/resolution dimensions uniformly. 

The EfficientNet scaling method uniformly scales 

network width, depth, and resolution with a set of 

fixed scaling coefficients, unlike conventional 

practice, which scales these factors arbitrary (Tan 

& Le, 2019). Figures 17 and 18 shows the 

accuracy and validation plot for EfficienNet being 

implemented on 4 varying batch sizes of data.  

 
Fig. 17: EfficientNet training and validation accuracy (300 & 700 images) 
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Fig. 18: EfficientNet training and validation accuracy (1000 & 1678 images) 

 

3.4  Machine learning and deep learning techniques  

 

The dataset was divided into four groups of 300, 700, 1000, and 1600 images, with each group being 

fed into the Deep Learning models used in this project. Fig. 19 – Fig. 22 shows the model's performance 

as the size of datasets increases. 

 
Fig. 19: performance of models on 300 random datasets 

 
Fig. 20: performance of models on 700 random dataset 
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Fig. 21: performance of models on 1000 random dataset 

 

Fig. 22: performance of models on 1678 random dataset 

 

From Fig. 19 -22, six (6) deep learning models 

were trained on the classification of cervical 

cancer images. Each of the models were trained 

on 4 random batches of images (300, 700, 1000, 

and 1678 images) to observe the model’s 

performance with increase in number of training 

data. From the result, there is a significant gap 

between the ML techniques and the DL 

techniques as expected. As expected, this shows 

that the DL techniques performs way better than 

traditional ML approaches in image classification 

owing to the depth of their network. It can also be 

seen that VGG19 shows consistently good 

performance (81% accuracy) and Vision 

Transformer (ViT) on the other hand shows 

improving performance (57% to 77% accuracy) 

as the number of images increases. 

As a result of this, a hybrid model is proposed to 

benefit from the strength of both models. 
  

3.5 Proposed Hybrid Machine Learning Model 
 

A hybridization of the CNN network VGG-19 

and the transformer network was proposed. The 

proposed hybrid model aims to improve the 

accuracy and efficiency on the predictive analysis 

of the cervical images.   
 

3.5.1 The VGG19 Model 
 

The VGG-19 model, developed by Simonyan and 

Zisserman (2014), of the University of Oxford, is 

a 19-layer (16 conv., 3 fully-connected) CNN that 

strictly uses 3x3 filters with stride and pad of 1, 
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as well as 2x2 max-pooling layers with stride 2. 

The VGG-19 is a deeper CNN with more layers 

than AlexNet. It uses small 3x3 filters in all 

convolutional layers to reduce the number of 

parameters in such deep networks (Zheng et al., 

2018). The VGG-19 has been trained on over a 

million images and can classify them into 1000 

different object categories, including keyboards, 

mice, pencils, and a variety of animals. As a 

result, the model has learned a variety of rich 

feature representations for a variety of images. 

Other deep learning techniques, such as AlexNet, 

VGG16, ResNet, and EfficientNet, have been 

proposed to expedite the process and improve 

accuracy. VGG19, on the other hand, has 

consistently good performance on the data as the 

size of dataset increases. Fig. 23 shows the 

VGG19 model architecture. 

 

 
Fig. 23: VGG19 Model Architecture (Zheng et al., 2018). 

 

 

3.5.2 The Vision Transformer Model 
 

A Vision transformer is a deep learning technique 

that uses the attention mechanism to weight the 

significance of each element of the input data 

differently. Its primary applications are in natural 

language processing (NLP) and computer vision 

(CV) (Vaswani et al., 2017). Transformers, like 

recurrent neural networks (RNNs), are built to 

handle sequential input data like natural language 

for tasks like translation and text summarization. 

Transformers, unlike RNNs, do not always  

 

process data in the same order. The attention 

mechanism, on the other hand, provides context 

for any point in the input sequence.  

If the input data is a natural language sentence, for 

example, the transformer does not need to process 

the first part of the sentence before the last. Rather, 

it detects the context that gives each word in the 

phrase its meaning. Because this feature enables 

for higher parallelization than RNNs, training 

times are reduced. Fig. 24 depicts the ViT model 

architecture. (Vaswani et al., 2017) . 

 

 
 

Fig. 24: Vision Transformer Model Architecture 
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3.5.3 Proposed Hybridized Deep Learning 

Network 
 

The hybridized network integrates the VGG19 

architecture and the Vision Transformer (ViT) 

model to leverage their complementary strengths 

in image feature extraction and contextual 

understanding, as shown in Fig. 25. VGG19 was 

selected for its consistent high performance 

across varying dataset sizes, due to its well-

established convolutional feature extraction 

capabilities. Conversely, ViT demonstrates a 

unique advantage as dataset sizes grow, 

achieving superior global feature embedding 

through self-attention mechanisms. This synergy 

allows the hybrid model to deliver improved 

classification performance and computational 

efficiency (Simonyan and Zisserman, 2014). 
 

3.5.4 Architecture and Design 
 

The hybrid model architecture comprises two 

primary components: 
 

3.5.4.1 VGG19 as a Feature Extractor 
 

1. The VGG19 model processes 224 x 224 x 3 

input images to extract feature maps. Using 

convolutional layers with 3 x 3 kernels and 

stride of 1, spatial features are preserved while 

non-linearities introduced by ReLU, enhance 

model robustness against vanishing gradients. 

Max pooling with 2 x 2 windows down-

samples the image, reducing dimensions while 

retaining critical features.  
 

2. The output of VGG19's final max-pooling 

layer is a tensor of size 7 x 7 x 512. Fully 

connected layers are omitted to reduce 

computational overhead and ensure 

compatibility with ViT.  
 

3.5.4.2 Vision Transformer for Global Context 
 

1. The downsampled feature map from VGG19 is 

flattened into a sequence of 7 x 7 = 49 tokens, 

each with 512 dimensions. To align with ViT’s 

input requirements, a linear projection as seen 

in equation 1, maps these tokens into a 768-

dimensional space. 

where W= assigned weight, x=input feature map, 

and b=bias.  

2. Positional embeddings are added to the token 

sequence to encode spatial relationships, 

ensuring that global attention mechanisms 

within ViT can utilize spatial context for 

classification. 

3. ViT processes the token sequence through 

multiple transformer layers, using self-

attention to capture inter-token relationships 

and embedding global information effectively. 
 

3.5.4.3 Theory and Assumptions 
 

The VGG19 model is computationally intensive 

due to its deep convolutional architecture, which 

requires significant processing power for 

training, especially at the fully connected layers. 

Drawing on research by Karen & Andrew (2015), 

the hybrid model eliminates these layers and 

integrates ViT as a lightweight alternative for 

classification. ViT’s design inherently benefits 

from parallelism and efficient attention 

mechanisms, addressing the computational 

bottleneck of fully connected layers. 

1. The heavy computational workload of 

VGG19’s fully connected layers is avoided, as 

their role is replaced by ViT's transformer 

encoder. 

2. Spatial and feature-rich outputs from VGG19 

are efficiently processed by ViT, leveraging its 

ability to handle large datasets and embed 

global context. 
 

3.5.4.4 Optimizations and Training Efficiency 
 

A series of operations were performed to further 

enhance computational efficiency and accelerate 

training. The operations performed are listed as 

follows: 
 

1. Parallelization 

Data parallelism was introduced by processing 

training batches on multiple GPUs, dividing 

gradients synchronously across devices, 

consistent with methodologies described by 

Simonyan & Zisserman (2014). 

This approach reduced training time significantly 

without compromising accuracy. 
 

2. Layer Freezing and Fine-Tuning 
 

Earlier layers of VGG19 were frozen during 

initial training to retain pre-trained weights, 

focusing computational resources on training the 

projection layer and ViT’s attention layers. 
 

3. Reduction of Training Complexity 
 

By removing fully connected layers from VGG19 

and feeding its pooling layer output directly into 

ViT, computational cost was lowered 

(1) 
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substantially. Techniques such as global average 

pooling (GAP) and sparse attention mechanisms 

within ViT further minimized complexity. 

 

4. Positional Encoding 

To mitigate the potential loss of spatial 

information when flattening VGG19 outputs, 

positional embeddings were incorporated. Using 

Fourier features as presented in equation 2. 

 

            (2)
3.5.5 Advantages of the Hybrid Approach 
 

This hybridized system offers significant 

performance improvements: 

 

1. Enhanced Accuracy: The hybrid model 

achieved an 86.5% classification accuracy, 

outperforming standalone VGG19 and ViT 

implementations. 

2. Efficient Training: Training time was reduced 

through parallelization and layer-freezing 

strategies. 

3. Robustness Across Datasets: While VGG19 

excels on smaller datasets, ViT's self-attention 

mechanisms enhance performance on larger 

datasets, resulting in a balanced, scalable 

model. 

  
 

 
  VGG19 Model                           Vision Transformer Model 

Fig. 25: Proposed Hybrid Model Network Architecture 

 

4.0  Results and Discussion 
 

The proposed hybrid model was implemented 

using the Kaggle notebook environment, 

leveraging 16 GB of CPU and GPU resources 

along with over 50 GB of storage capacity. 

Testing and experimentation were conducted 

on Google Research AI notebook (Google 

Colab), ensuring seamless execution of the 

model. A total of 1678 images were generated 

using data augmentation techniques to 

enhance the diversity and representativeness 

of the training data. The implementation 

utilized both the VGG19 and Vision 

Transformer (ViT) models, with a focus on  

 

their performance characteristics as the dataset 

size increased. Table 2 presents the 

performance metrics of the hybrid model on 

four batches of randomly selected training 

images: 300, 700, 1000, and 1678. Initially, 

with 300 images, the model showed relatively 

low performance, achieving an accuracy of 

56.2%, sensitivity of 0.557, specificity of 

0.552, and an AUC of 0.512. These metrics 

highlight the challenges of training models on 

limited data, including inadequate feature 

representation and an increased likelihood of 

overfitting. 
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As the training set increased to 700 images, 

the model exhibited substantial improvement. 

Accuracy rose to 75.4%, with sensitivity and 

specificity reaching 0.733 and 0.712, 

respectively. The AUC also increased to 

0.714, indicating better classification 

performance. Further improvements were 

observed with 1000 images, where the model 

achieved an accuracy of 85.4%, sensitivity of 

0.8375, specificity of 0.821, and an AUC of 

0.8412. These results demonstrate the hybrid 

model's ability to learn complex patterns and 

achieve greater generalization as more 

training data is provided. At 1678 images, the 

hybrid model achieved its highest 

performance metrics, with an accuracy of 

86.5%, sensitivity of 0.8475, specificity of 

0.832, and an AUC of 0.85. Notably, this 

represents a 6% improvement in accuracy 

over the VGG19 model, illustrating the hybrid 

model's superior performance. Additionally, 

the ViT model exhibited increasing 

performance with larger datasets, and it is 

anticipated to surpass the VGG19 model when 

trained on a significantly larger number of 

images. 

 

 

Table 2: Performance of the Proposed Hybrid Model 

 
Number of Images Accuracy (%) Sensitivity Specificity AUC 

300 56.2 0.557 0.552 0.512 

700 75.4 0.733 0.712 0.714 

1000 85.4 0.8375 0.821 0.8412 

1678 86.5 0.8475 0.832 0.85 

 

  
Fig. 26:  Performance characterisation of hybrid model 

 

The performance improvements are 

graphically illustrated in Figure 26, which 

depicts the accuracy, sensitivity, specificity, 

and AUC across different training image sizes. 

The consistent upward trend highlights the 

critical role of data augmentation and 

increased dataset size in optimizing the 

model's predictive power. When compared to 

previous studies, such as the work by Asiedu 

et al. (2018), which reported an accuracy of 

80% and specificity of 81.3% under low-

computational power constraints, the 

proposed hybrid model demonstrates a 

significant 8% improvement in accuracy and 

better overall specificity. This indicates the 

potential of the hybrid model for point-of-care 

applications and scenarios requiring low 

computational resources. 
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The hybrid model’s implementation on 

computationally limited environments such as 

Kaggle and Colab further reinforces its 

practical applicability. By achieving high 

accuracy with relatively low computational 

power, the model demonstrates its utility for 

deployment in resource-constrained settings, 

such as developing regions or field-based 

applications. 

Finally hybrid model successfully achieves 

robust performance through effective data 

augmentation and the complementary 

strengths of VGG19 and ViT models. Its 

adaptability to varying dataset sizes and 

resource environments makes it a promising 

solution for scalable, high-performance image 

classification tasks. 
 

5.0  Conclusiom  
 

This study explored the application of both 

traditional machine learning techniques and 

deep learning models for the classification of 

cervical images as VIA-positive or VIA-

negative. By leveraging data augmentation 

and pre-processing techniques, the dataset size 

was significantly increased, enhancing model 

robustness and reducing overfitting risks. The 

feature extraction process, based on Haralick's 

textural features, provided a solid foundation 

for traditional machine learning models like 

Random Forest, SVC, and LightGBM, 

achieving classification accuracies of 48.5%, 

54.3%, and 60%, respectively. Among these, 

LightGBM demonstrated the highest 

performance, indicating its suitability for such 

tasks. 

Deep learning approaches, including transfer 

learning models such as ResNet34, AlexNet, 

VGG16, and VGG19, were also implemented, 

achieving higher accuracies compared to 

traditional methods. ResNet34, for example, 

achieved an accuracy of 70%, demonstrating 

the potential of pre-trained models in cervical 

image classification when combined with 

sufficient training data. The results underscore 

the critical importance of effective pre-

processing, feature extraction, and advanced 

machine learning methodologies in medical 

imaging applications. While deep learning 

models outperformed traditional methods, 

further improvements in accuracy could be 

achieved by combining models, exploring 

additional feature engineering strategies, or 

utilizing larger and more diverse datasets. 

These findings provide valuable insights into 

leveraging machine learning for enhancing 

cervical cancer screening, offering a 

foundation for future studies aimed at 

improving diagnostic accuracy and 

accessibility. 

To further improve the outcomes of such 

studies, it is recommended that future research 

focus on the integration of ensemble learning 

methods to combine the strengths of different 

models for improved classification 

performance. The development of custom 

deep learning architectures tailored 

specifically for medical image analysis should 

also be explored. Additionally, expanding the 

dataset with more diverse and annotated 

images can improve model generalization 

across varied populations. Collaboration with 

medical experts is critical to ensuring that the 

models are clinically relevant and 

interpretable. Finally, the deployment of these 

models in real-world scenarios, such as point-

of-care devices, should be prioritized to assess 

their practical impact and usability in cervical 

cancer screening programs. 
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