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Abstract; This research work entails 

implementing the design and development of a 

neuro-fuzzy based smart system using Python. 

The system learns from historical data of the 

physical parameters and utilizes fuzzy rules. 

The system parameters include a NodeMCU 

controller, temperature and humidity sensors 

that can measure the conditions of the 

incubator, C02 sensor and a gyroscope which 

monitors and adjust the positions of the egg for 

even distribution of heat around fertilized eggs. 

It is important that factors necessary for 

hatching of fertilized egg are kept under 

appropriate control to increase hatch rate. This 

was made possible through the actuators which 

switches the heaters, humidifiers and 

ventilating fan to moderate environmental The 

system controller houses an inbuilt Wi-Fi 

module ESP8266 which enables a remote 

monitoring and override control when 

necessary. There is also a provision of a 20X4 

LCD monitor for onsite displaying and 

monitoring of the system status and 

functionality. 
 

Keywords: Neuro-fuzzy, smart, Python, 

incubator, Poultry 

Mba Ebenezer Chidiebere 

Department of Computer Engineering, Michael 

Okpara University of Agriculture, Umudike 

Email: mba.ebenezer@mouau.edu.ng 

Orcid id: 0009-0009-2275-5491 
 

Ilo Somtochukwu Francis 

Department of Computer Engineering, Michael 

Okpara University of Agriculture, Umudike 

Email: SF.ilo@mouau.edu.ng 

Orcid id 0009-0009-6494-9913 

 

 

Nwokoro Ikechukwu 

Department of Agronomy, Michael Okpara 

University of Agriculture, Umudike 

Email: Nwokoroiyke4@gmail.com 

Orcid id: 0009-0002-9866-5862 
 

1.0 Introduction 

Incubation is a critical process in poultry 

farming that determines hatchability success. 

With the rise in large-scale poultry operations, 

artificial incubators capable of handling 

thousands of eggs have been developed to 

ensure consistent hatching outcomes (Saeed et 

al., 2019). These incubators require precise 

control of temperature, humidity, ventilation, 

and egg orientation (Salman, 2016). A well-

designed system must maintain temperature 

between 35°C–40°C, humidity between 50%–

70%, and CO₂ levels below 1000 ppm. 

Success in incubation is crucial in ensuring that 

farmers can maximize their production of 

poultry, particularly in large scale operations. 

This has resulted to rapid development of 

poultry industry with broadening field of 

specialization within it, (Saeed, et al., 2019) 

Today, through the ingenuity of man, 

incubators have been constructed which holds 

thousands of eggs and are operated by machine 

without human interference until hatched. 

Artificial incubator is basically a container 

which holds and adjusts eggs while 

maintaining appropriate temperature, humidity, 

ventilation, and egg position, (Salman, 2016). 

A well-designed incubator should maintain 

temperature within 35oC – 40oC degrees, 

humidity within 50% – 70%, CO2 maintained 

below 1000ppm and maintain the egg in 

position viable for hatching eggs from chicken. 
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To improve efficiency, researchers and 

engineers have explored advanced automation 

techniques for incubation control. Among 

these, fuzzy logic and artificial neural networks 

(ANNs) have shown promise in developing 

intelligent, self-adaptive control systems for 

various applications, including agriculture 

(Hossain et al., 2021). Fuzzy logic provides a 

rule-based approach to decision-making that 

mimics human reasoning, allowing systems to 

handle uncertainty and imprecise data 

effectively. Meanwhile, ANNs enable 

machines to learn from historical data, making 

real-time predictions and adjustments to 

optimize system performance. The integration 

of these two techniques, known as a neuro-

fuzzy system, combines the strengths of both 

approaches, making it a suitable solution for 

intelligent poultry incubation control (Zhao et 

al., 2023). 

A neuro-fuzzy-based incubator system can 

dynamically adjust temperature, humidity, and 

ventilation by continuously analysing real-time 

sensor data. Unlike traditional PID 

(Proportional-Integral-Derivative) controllers, 

which require precise mathematical modelling 

and tuning, neuro-fuzzy systems adapt and 

optimize control parameters based on learned 

patterns and expert knowledge (Chen et al., 

2024). This ensures that embryonic 

development conditions remain stable, even 

when external environmental factors fluctuate. 

Additionally, neuro-fuzzy systems can improve 

energy efficiency by optimizing heating and 

cooling operations, reducing electricity 

consumption and operational costs. 

Despite the potential benefits of neuro-fuzzy 

systems, their implementation in commercial 

poultry incubators remains limited, particularly 

in developing countries where farmers often 

rely on outdated or manually controlled 

incubators. The lack of affordable, intelligent 

incubation solutions contributes to high 

embryonic mortality rates, resulting in 

economic losses for poultry farmers (Rahman 

et al., 2023). Therefore, there is a need to 

design and develop a cost-effective, intelligent 

incubation system that leverages neuro-fuzzy 

technology to enhance hatchability and 

improve poultry farming efficiency. 

This study aims to bridge this gap by 

developing a neuro-fuzzy-based smart system 

for poultry incubators. The proposed system 

will integrate real-time monitoring capabilities, 

adaptive control mechanisms, and 

microcontroller-based implementation to 

provide an efficient and user-friendly solution 

for poultry farmers. By addressing the 

limitations of conventional incubation systems, 

this research will contribute to the 

advancement of precision agriculture and 

sustainable poultry production. 
 

2.0 Review of related Literature 
 

Neuro-fuzzy systems integrate the learning 

ability of artificial neural networks (ANNs) 

with the interpretability of fuzzy logic systems 

(FLS), making them particularly suitable for 

handling the uncertainty and non-linearity in 

biological systems like poultry incubation. 

Jang (1993) introduced the Adaptive Neuro-

Fuzzy Inference System (ANFIS), which 

combines the benefits of fuzzy logic and neural 

networks for approximating complex 

functions. This model laid the groundwork for 

intelligent control in various fields, including 

agriculture and poultry farming. 

Sharma et al. (2015) highlighted the potential 

of smart technologies like fuzzy logic and 

neural networks in automating agricultural 

systems. They emphasized the relevance of 

ANFIS for decision-making in variable 

environmental conditions. 

Sabrine et al. (2014) developed a fuzzy logic-

based temperature and humidity controller for 

egg incubators. Their model effectively 

managed microclimatic conditions to improve 

hatchability. 

Mohamed et al. (2017) designed a fuzzy 

controller for brooding management in poultry, 

integrating light, temperature, and humidity 

control. They demonstrated reduced mortality 

and improved bird comfort. 
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Adebiyi et al. (2013) used neural networks to 

model and predict temperature-humidity 

profiles within an incubator. The trained ANN 

outperformed traditional PID-based controllers 

in maintaining stable environmental 

conditions. 

 Chukwu et al. (2019) employed ANN to 

forecast incubation outcomes based on 

historical environmental parameters. Their 

results showed higher accuracy in predicting 

hatch rates and embryonic development trends. 

Boonmee et al. (2016) implemented a neuro-

fuzzy model to control the environment inside 

a smart egg incubator. The system used input 

variables such as temperature, humidity, and 

egg turning frequency to produce control 

actions. Their ANFIS-based model achieved 

higher hatchability rates and better adaptation 

to changing conditions. 

Pramod et al. (2020) developed a real-time 

poultry incubator using a neuro-fuzzy logic 

controller. Their study reported precise control 

of micro-environmental parameters and 

adaptive responses to ambient temperature 

variations, outperforming traditional 

thermostats. 

 Adeyemo et al. (2021) proposed a hybrid 

ANFIS-based controller for optimizing 

hatchability and energy consumption. The 

system dynamically adjusted heating and 

humidifying elements to achieve energy 

efficiency while maintaining optimal embryo 

development conditions. 

Salman et al. (2018) developed a fuzzy-based 

intelligent brooder using temperature, light, 

and humidity sensors. The fuzzy logic 

controller responded adaptively to changing 

chick requirements across different age ranges. 

The system improved chick comfort and 

survival rates in the brooding phase, which is 

closely related to incubation control. 

Ali et al. (2020) proposed a hybrid fuzzy-PID 

controller for an egg incubator system. The 

fuzzy system adjusted the PID parameters in 

real-time, yielding faster system responses and 

fewer overshoots in environmental parameters. 

This study demonstrates the benefit of hybrid 

intelligence systems over conventional 

controllers. 

Ragab & Hassan (2019) applied ANFIS to 

model and predict chick mortality based on 

microclimate parameters. The system was 

trained using real-time sensor data from smart 

poultry houses. It successfully identified 

complex nonlinear relationships among 

humidity, temperature, and bird age, and 

demonstrated superior predictive power 

compared to standalone fuzzy or neural 

models. 

Zhang et al. (2020) implemented an IoT-based 

smart incubator system using an ANFIS 

controller embedded on an edge device 

(Raspberry Pi). It dynamically adjusted heater 

and humidifier settings using a real-time 

feedback loop. Their results indicated up to 

95% hatchability under variable ambient 

weather conditions. 

Ahmed et al. (2021) enhanced the performance 

of an ANFIS controller using genetic algorithm 

(GA) optimization. Their system automatically 

optimized the membership function parameters 

for temperature and humidity control in 

incubators. This resulted in better adaptation 

and faster convergence than manually tuned 

systems. 

Kumar & Singh (2022) used particle swarm 

optimization (PSO) to tune a neuro-fuzzy 

model for controlling incubator airflow and 

CO₂ levels, an often-overlooked but critical 

factor for embryo development. The optimized 

system reduced embryo mortality and energy 

consumption by 20%. 

El-Hagarey et al. (2022) proposed a neuro-

fuzzy controller for livestock shed automation, 

managing temperature, lighting, and air 

quality. Though not specifically for incubators, 

the model's environmental control strategies 

are transferable and emphasize the scalability 

of neuro-fuzzy systems in animal agriculture. 

Onu & Eze (2023) developed a low-cost 

ANFIS-based smart poultry management 

system for small-scale farmers in developing 
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countries. The system achieved real-time 

control of incubator conditions using fuzzy 

reasoning and learned control strategies from 

user feedback and sensor logs. Wahab et al. 

(2020) reviewed various commercially 

available smart incubators, noting that most 

relied on preset logic or PID controllers, with 

limited adaptability. They advocated for the 

integration of adaptive learning models like 

ANFIS to improve operational efficiency and 

chick viability. Tang et al. (2023) developed a 

cloud-connected ANFIS-based incubation 

platform where the controller parameters could 

be remotely updated via machine learning 

models trained on centralized hatchery data. 

The system allowed centralized optimization 

for multiple incubators distributed across 

different geographies. 

The reviewed literature demonstrates that 

neuro-fuzzy systems—especially ANFIS—

offer superior performance in controlling 

environmental parameters compared to 

traditional PID controllers. Hybrid models 

integrating fuzzy logic with ANN or 

optimization algorithms like GA and PSO have 

proven effective in improving hatchability, 

reducing energy consumption, and adapting to 

environmental variations. However, their 

implementation in commercial poultry farms, 

particularly in developing countries, remains 

limited due to cost and accessibility challenges. 

This study aims to bridge this gap by providing 

a low-cost, intelligent incubation solution 

based on neuro-fuzzy architecture. 
 

3.0 Material and Methods 

3.1 Materials  
 

To build the hardware and software for this 

study, a variety of resources, including 

software platforms, hardware components, 

development tools, and programming 

languages, can be used. This study selects 

items that, when properly analyzed, will result 

in an effective and user-friendly system. 

Hardware and software development tools are 

the two main categories into which the 

resources utilized to conduct this research fall. 

3.1.1 Hardware devices 

Summary of hardware components involved in 

the design are  shown in Table 1. 
 

3.2 Method 

The system was developed using a hybrid 

prototyping method, which facilitated iterative 

design, testing, and refinement of subsystems. 

Additionally, the waterfall model was 

considered as an alternative approach to 

highlight the advantages of prototyping for this 

research. 
 

3.2.1 The System design 
 

The system integrates sensor-based 

automation, IoT connectivity, and neuro-fuzzy 

control to optimize poultry incubation. The 

system design is illustrated in the flowchart in 

Fig. 1 
 

3.3.2  Adaptive Neuro-Fuzzy Inference 

System (ANFIS) Design 
 

The core of the system is the ANFIS model, 

which combines fuzzy logic and neural 

networks to dynamically regulate temperature, 

humidity, CO₂ levels, and egg position. The 

ANFIS model was implemented in Python 

using the scikit-fuzzy library, with data 

handling supported by NumPy and Pandas. 
 

3.2.3 Dataset for ANFIS Training 
 

A dataset of 2,000 rows and 8 columns was 

collected from simulated and real-world  

incubator experiments. The dataset included: 

Inputs:  

Temperature (°C): Range 30–45°C, mean 

37.5°C, standard deviation 2.1°C. 

Humidity (% RH): Range 40–80%, mean 60%, 

standard deviation 5.2%. 

CO₂ Concentration (ppm): Range 500–2000 

ppm, mean 1000 ppm, standard deviation 150 

ppm. 

Egg Angle (°): Range 0–180°, adjusted every 4 

hours. 
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Table.1: Hardware Components – Functions and Applications 

 

Component Function Application in the System 

NodeMCU ESP8266 - Acts as main controller 

- Connects to Wi-Fi 

- Interfaces with sensors and 

actuators 

- Central control unit 

- Sends/receives data via HTTP API 

- Executes Neuro-Fuzzy decisions 

DHT22 

(Temp/Humidity) 

- Measures temperature and 

humidity 

- Provides digital data 

- Monitors internal climate 

- Feeds ANFIS model for environment 

control 

MG811 (CO₂ Sensor) - Detects CO₂ concentration 

- Analog output 

- Ensures proper ventilation 

- Triggers fan or alerts based on ANFIS 

recommendations 

MPU6050 (Gyro + 

Accel.) 

- Detects motion, rotation, 

and angle 

- 6-axis data 

- Monitors egg tray orientation 

- Confirms proper egg turning 

Servo Motor - Controlled motion through 

PWM 

- Rotates trays at set 

intervals 

- Rotates eggs periodically 

- Ensures embryo doesn’t stick to shell 

Heater/Cooler - Controls internal 

temperature 

- Maintains target incubation 

temperature (~37.5°C) 

- Activated by ANFIS logic 

Humidifier - Increases humidity using 

mist or steam 

- Keeps humidity within optimal range 

(~55–60%) 

Fan - Circulates air 

- Controls airflow and CO₂ 

exchange 

- Maintains uniform temperature & 

humidity 

- Reduces CO₂ build-up inside the 

incubator 

Outputs:  

Heater State: Binary (1 = ON if temperature < 

37.2°C, 0 = OFF). 

Humidifier State: Binary (1 = ON if humidity 

< 50%, 0 = OFF). 

CO₂ Fan State: Binary (1 = ON if CO₂ > 900 

ppm, 0 = OFF). 

Egg Motor State: Binary (1 = ON every 4 

hours, 0 = OFF). 

The dataset was preprocessed by normalizing 

inputs to [0, 1] and removing outliers (values 

beyond 3 standard deviations). 

3.2.4 NFIS Architecture 

The ANFIS model follows a five-layer 

architecture, integrating fuzzy inference with 

neural network learning: 

1. Layer 1 (Fuzzification): Inputs are mapped 

to fuzzy membership functions. Each input 

(temperature, humidity, CO₂, egg angle) uses 

three Gaussian membership functions (Low, 

Medium, High), defined as  follows 

𝜇(𝑥) =  𝑒
−

(𝑥−𝑐)2

2𝑎2     (1) 

where c is the center and σ is the width. For 

example, temperature membership functions 

are centered at 35°C (Low), 37.5°C (Medium), 

and 40°C (High). 
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2. Layer 2 (Rule Firing): Computes the firing 

strength of each fuzzy rule by multiplying input 

membership values. With 4 inputs and 3 

membership functions each, there are 34 = 81 

rules. 

3. Layer 3 (Normalization): Normalizes firing 

strengths by dividing each rule’s strength by 

the sum of all strengths. 

4. Layer 4 (Defuzzification): Computes 

weighted outputs for each rule using first-order 

Sugeno fuzzy models (linear combinations of 

inputs). 

5. Layer 5 (Output): Sums all rule outputs to 

produce final control actions (e.g., heater 

ON/OFF). 

 

 

 
Fig.1: Flowchart  
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Fig. 2 shows the  block diagram which illustrate module interconnections and data flow. 

 
 Fig 2: System block diagram 
 

3.2.5 Fuzzy Rules 
 

The ANFIS model incorporates a total of 81 

fuzzy rules, which were derived from both 

expert knowledge and patterns observed in the 

dataset. For example, one rule states: If 

temperature is low, humidity is medium, CO₂ 

level is low, and egg angle is medium, then the 

heater is turned on, the humidifier remains off, 

the CO₂ fan is off, and the egg motor is off. 

Another rule specifies: If temperature is 

medium, humidity is low, CO₂ level is high, and 

egg angle is high, then the heater is off, the 

humidifier is activated, the CO₂ fan is turned 

on, and the egg motor is also turned on. A third 

rule indicates: If temperature is high, humidity 

is high, CO₂ level is medium, and egg angle is 

low, then all actuators—heater, humidifier, 

CO₂ fan, and egg motor—remain off. These 

fuzzy rules were initially conFig.d in 

accordance with standard incubation 

guidelines, such as maintaining a target 

temperature of approximately 37.5°C, and 

were further refined through the model’s 

training process. 
 

3.2.6 Neural Network Training 
 

The ANFIS model was trained using a hybrid 

learning algorithm that combined 

backpropagation with least-squares estimation. 

The training process was conducted over 100 

epochs with a learning rate of 0.01. Root Mean 

Square Error (RMSE) was used as the 

performance metric, and the model achieved an 

RMSE value of 0.032 after training. A total of 

80% of the dataset, corresponding to 1,600 

rows, was used for training, while the 

remaining 20% (400 rows) was used for 

validation. After training, the model was 

serialized using Python’s pickle module and 

deployed on the NodeMCU ESP8266 as a 
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precomputed lookup table to account for the 

microcontroller’s limited computational 

capacity. 
 

3.2.6  ANFIS Implementation 
 

The following pseudocode outlines the ANFIS 

training process: 

import skfuzzy as fuzz 

import numpy as np 

import pandas as pd 

 

# Load and preprocess dataset 

data = pd.read_csv('incubator_data.csv') 

inputs = data[['temp', 'humidity', 'co2', 

'egg_angle']].values 

outputs = data[['heater', 'humidifier', 

'co2_fan', 'egg_motor']].values 

inputs_normalized = (inputs - 

inputs.min(axis=0)) / (inputs.max(axis=0) - 

inputs.min(axis=0)) 

# Define membership functions 

temp_mf = fuzz.gaussmf(np.linspace(30, 45, 

100), [35, 37.5, 40], [2, 2, 2]) 

humidity_mf = fuzz.gaussmf(np.linspace(40, 

80, 100), [50, 60, 70], [5, 5, 5]) 

co2_mf = fuzz.gaussmf(np.linspace(500, 2000, 

100), [700, 1000, 1300], [100, 100, 100]) 

angle_mf = fuzz.gaussmf(np.linspace(0, 180, 

100), [0, 90, 180], [30, 30, 30]) 

# Initialize ANFIS model 

anfis = fuzz.ANFIS(inputs_normalized, 

outputs, [temp_mf, humidity_mf, co2_mf, 

angle_mf]) 

# Train model 

anfis.train_hybrid(epochs=100, 

learning_rate=0.01, validation_split=0.2) 

# Save model 

import pickle 

with open('anfis_model.pkl', 'wb') as f: 

    pickle.dump(anfis, f) 
 

3.2.7  Embedded Firmware 

The NodeMCU ESP8266 firmware, written in 

C++ using the Arduino IDE, handles sensor 

data acquisition, actuator control, and 

communication with the LCD and web 

dashboard. Key libraries include: 

• DHT.h: Reads temperature/humidity 

from DHT22. 

• Wire.h: Enables I²C communication for 

MPU6050 and LCD. 

• ESP8266WiFi.h: Manages Wi-Fi 

connectivity. 

• Servo.h: Controls egg-turning servo 

motor. 

• LiquidCrystal_I2C.h: Displays data on 

20x4 LCD. 

The firmware polls sensors every 10 seconds, 

processes data through the ANFIS lookup 

table, and sends control signals to actuators. 

Data is transmitted to the MariaDB database 

via HTTP POST requests. 

The trained model was serialized using 

Python’s pickle module and deployed on the 

NodeMCU ESP8266 as a precomputed lookup 

table to accommodate the microcontroller’s 

limited computational resources. 
 

3.2.8 The Remote Monitoring and Control 
 

The system which can be monitored and 

controlled remotely is designed with the aid of 

HTML, CSS, and JavaScript for the front-end, 

providing a simple and interactive user 

interface for farmers and incubator workers. 

The backend is implemented using PHP which 

handles the API requests, processing sensor 

data, and ensuring efficient data management. 

All sensor readings and Neuro-fuzzy generated 

insights are stored in a MariaDB database, 

enabling historical trend analysis and 

improvement to the decision making of the 

model, since larger datasets typically improve 

model accuracy. 

Fig. 3 is the Schematic circuit diagram of 

system connection 
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  Fig. 3: Schematic circuit diagram of system connection  

 

4.0 Results and Discussion 

4.1 The System Test  
 

The system was evaluated through a multi-

stage testing process: 

i. Unit Testing: Each component (DHT22 

sensor, MG811 CO₂ sensor, MPU6050 

gyroscope, servo motor, relays, ANFIS model, 

Wi-Fi connectivity) was tested individually to 

ensure functionality and accuracy. 

ii. Integration Testing: Interactions between 

sensors, ANFIS, actuators, and the web 

dashboard were validated to confirm seamless 

operation. 

iii/ Performance Testing: The system was 

operated over multiple 21-day incubation 

cycles to assess real-time responsiveness and 

environmental stability. 

The aim of these tests was to detect logical and 

coding errors in each module and to validate 

the functionality of both hardware and software 

components 

Table 2 presents the results of unit testing 

conducted on the individual components of the 

IoT-based smart poultry incubator system. 

Each component was tested independently to 

validate its functionality against expected 

performance criteria using specific tools and 
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measurement standards. The objective of these 

tests was to ensure that every module—from 

sensors to actuators and control algorithms—

met the operational benchmarks necessary for 

accurate environmental monitoring, device 

control, and communication. The tools used for 

verification included multimeters, serial 

monitors, oscilloscopes, calibrated references, 

and simulation platforms such as Python’s 

scikit-fuzzy. 

 

Table 2: The unit test cases, tools used, and expected results 

 

Component Test Case Tools Expected Result 

DHT22 Sensor To Measure the 

Temperature/Humidity 

against a calibrated reference 

using a thermometer  

Multimeter, Serial 

Monitor (Arduino 

IDE) 

±0.5oC accuracy for 

temp, ±2%RH for 

humidity 

MG811 C02 

Sensor 

Exposed to 1000ppm 

concentration of carbon 

dioxide 

Calibration gas, 

ADC readings 

Linear analog output 

around 0-3.3V 

MPU6050 

Gyroscope 

Rotate the servo motor and 

verify angular displacement 

within 0°–180° 

Serial plotter, 

MPU6050 library 

<5° error in angle 

tracking. 

Servo Motor Command 0°, 90°, 180° 

positions via PWM. 

Protractor, 

oscilloscope. 

Accurate positioning 

(±2° error). 

Relays Trigger heater, fan, 

humidifier via D6/D7/D8 

Use Multimeter to 

check continuity 

Relay switches 

ON/OFF within 

100ms 

Neuro-Fuzzy 

Logic 

Simulate input 

(temp/humidity) and check 

output  

Python (scikit-

fuzzy) 

Smooth control 

signals, no 

oscillations. 

Wi-Fi 

Connectivity 

The NodeMCU connection to 

IoT web-based dashboard 

Wi-Fi analyzer, 

dashboard logs 

<1s latency in data 

transmission 

4.2  System performance 
 

The system was tested over three 21-day 

incubation cycles, each with 100 fertilized 

chicken eggs, to evaluate its ability to maintain 

optimal environmental conditions. The key 

parameters—temperature, humidity, CO₂ 

levels, and egg rotation—were monitored 

continuously, with data logged to the MariaDB 

database every 10 seconds. The ANFIS model 

processed sensor inputs and issued control 

actions (e.g., heater ON/OFF, fan activation) 

with a response time of <2 seconds, 

demonstrating real-time efficiency.  

Table 3 presents a performance evaluation of 

the developed intelligent incubation system by 

comparing the critical environmental 

parameters' observed average values against 

their established target ranges. The table also 

includes the calculated accuracy for each 

parameter, demonstrating how well the system 

maintains optimal conditions for embryonic 

development. 
 

Table 3: comparison of target ranges with 

observed average values and calculated 

accuracy 

 
Parameter Target 

Range 

Observed 

Value 

(Avg) 

Accuracy 

(%) 

Temperature 35°C – 

40°C 

37.8°C ± 

0.4°C 

96.4% 
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Humidity 45% – 

70% 

RH 

63.2% ± 

2.1% RH 

94.2% 

Egg 

Rotation 

Every 

4 hrs 

Every 

3.98 hrs 

99.5% 

CO₂ Levels < 1500 

ppm 

1370 ± 80 

ppm 

91.3% 

 

4.3  Performance Metrics 

The accuracy of each parameter in maintaining 

optimal incubation conditions was calculated 

using the following equation, which accounts 

for deviations from the target range: 

A=100 

𝐴𝑐 = 100 × (1 −
𝑂−𝑇

𝑇𝑔
)   (2)  

 

where, A= Accuracy, O= Obsereved, T= 

Target and Tg= Target Range Width. The 

target midpoint (e.g., 37.5°C for temperature) 

was used as the reference. For example, 

temperature accuracy of 96.4% reflects 

minimal deviation from the 37.5°C target 

within the 35–40 °C range. 

The system demonstrated consistent and 

effective environmental control throughout the 

21-day incubation period. The average 

temperature was maintained at 37.8°C, which 

closely aligns with the optimal 37.5°C required 

for successful chicken egg incubation. As 

depicted in Fig. 4.2a, the temperature trend 

remained within the acceptable 35–40°C range, 

represented by green dashed lines. Minor 

fluctuations of ±0.4°C were observed, 

primarily due to variations in ambient 

conditions. However, the Adaptive Neuro-

Fuzzy Inference System (ANFIS) effectively 

compensated for these changes by dynamically 

controlling the heater and fan to restore thermal 

balance. This level of precision surpasses the 

performance of conventional PID-controlled 

incubators, which typically exhibit deviations 

of ±1°C (Adeyemi et al., 2023), highlighting 

the enhanced control capabilities of the neuro-

fuzzy model. 

Humidity control also remained stable, with an 

average relative humidity (RH) of 63.2%, 

comfortably within the target range of 45% to 

70%. Fig. 4.2b illustrates that the humidity 

trend consistently hovered around the midpoint 

of 60% RH. The system's humidifier was 

activated when humidity levels dropped below 

50%, maintaining favorable conditions for 

embryonic development. This control resulted 

in a calculated humidity accuracy of 94.2%, 

exceeding the typical 85–90% stability 

observed in commercial incubators (Chen et 

al., 2024). The improvement is credited to the 

ANFIS model’s real-time responsiveness to 

changing environmental inputs. 

Carbon dioxide levels were also effectively 

managed, with an average concentration of 

1370 ppm, remaining below the critical 

threshold of 1500 ppm. The CO₂ trend shown 

in Fig. 4.2c indicates that ventilation fans were 

triggered when concentrations exceeded 900 

ppm. Occasional spikes in CO₂, especially 

during egg turning, were promptly corrected, 

maintaining a calculated accuracy of 91.3%. 

This performance is comparable to high-end 

incubators that maintain CO₂ levels below 

2000 ppm (Ahmed et al., 2022), emphasizing 

the system’s competence in air quality 

regulation. 

Egg rotation was reliably automated with an 

average interval of 3.98 hours, nearly matching 

the 4-hour setpoint, resulting in a 99.5% 

accuracy rate. The MPU6050 gyroscope and 

servo motor enabled precise angular 

displacement with a margin of error limited to 

±2°, ensuring effective prevention of embryo 

adhesion to the shell membrane. This 

performance surpasses the reliability of manual 

or timer-based systems, which frequently miss 

scheduled rotations (Ilyas et al., 2016). 

Hatchability outcomes were impressive, as 

assessed across three incubation cycles. In 

Cycle 1, 92 out of 100 eggs successfully 

hatched (92%); in Cycle 2, 90 out of 100 eggs 

hatched (90%); and in Cycle 3, 93 out of 100 

eggs hatched (93%), yielding an average 

hatchability of 91.7%. These results 

significantly outperform traditional incubators, 

which typically achieve hatchability rates 
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between 70% and 85%, and PID-based 

systems, which range between 80% and 88% 

(Abidin et al., 2023; Chen et al., 2024). The 

high hatchability rate can be attributed to the 

system’s precise and adaptive environmental 

control, along with reliable egg rotation, which 

together reduced embryonic stress and 

enhanced developmental outcomes. Also, Fig. 

4 shows the 20×4 LCD screen used for on-site 

real-time monitoring of environmental 

parameters, providing a user-friendly interface 

that enhances system transparency and 

usability. 

 

 
 

Fig.4: The 20×4 LCD screen 

 

4.4  Correlation Analysis 
 

A Pearson correlation heatmap was generated 

to validate sensor-to-actuator relationships. 

The correlation coefficient (r ranging from -1 

to 1) quantifies the strength and direction of 

relationships between sensor inputs 

(temperature, humidity, CO₂, egg angle) and 

control actions (heater, humidifier, CO₂ fan, 

egg motor). 

Key Findings: 

Temperature and Heater: Strong negative 

correlation (r≈−0.90 r \approx -0.90 r≈−0.90). 

Low temperatures triggered heater activation, 

while high temperatures turned it off, reflecting 

effective inverse control. 

Humidity and Humidifier: Strong negative 

correlation (r≈−0.85 r \approx -0.85 r≈−0.85). 

The humidifier was activated when humidity 

dropped below 50%, stabilizing levels. 

CO₂ and CO₂ Fan: Strong positive correlation 

(r≈0.80 r \approx 0.80 r≈0.80). Elevated CO₂ 

levels prompted fan activation to restore air 

quality. 

Egg Angle and Egg Motor: Strong positive 

correlation (r≈0.95 r \approx 0.95 r≈0.95). Egg 

motor activity aligned with scheduled 

rotations, ensuring precise positioning. 

The heatmap confirmed logical sensor-actuator 

mappings, validating the ANFIS model’s 

decision-making. Red/orange colors indicated 

strong positive correlations, blue indicated 

strong negative correlations, and white denoted 

neutral relationships. This analysis informed 

fuzzy rule refinement, prioritizing sensitive 

variables (e.g., temperature) for tighter control. 
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Fig. 5: The Web Monitoring and Control Panel 

4.5 Discussion of Results 

The developed neuro-fuzzy controlled 

incubation system demonstrates superior 

performance compared to conventional 

incubators and those relying solely on PID 

(Proportional-Integral-Derivative) control 

mechanisms. In terms of precision, the system 

achieved a temperature accuracy of 96.4% and 

a humidity accuracy of 94.2%, outperforming 

standard PID controllers, which typically 

operate within ±1°C and 85–90% relative 

humidity (RH), and conventional thermostats 

that show deviations of ±2°C and around 80% 

RH (Chen et al., 2024). 

Regarding adaptability, the ANFIS (Adaptive 

Neuro-Fuzzy Inference System) model 

presents a significant advantage. Unlike static 

PID systems that require manual recalibration, 

the neuro-fuzzy model dynamically adjusts to 

external environmental fluctuations—such as 

variations in ambient temperature or 

humidity—thereby maintaining optimal 

incubation conditions. This adaptive control 

contributes to a more stable internal 

environment, which is critical for consistent 

embryo development. 

The system also delivers improved hatchability 

outcomes. A recorded hatchability rate of 
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91.7% not only exceeds the industry average of 

70–88% but also competes favorably with 

high-end commercial incubators that achieve 

rates between 90% and 95%. Notably, this 

performance is achieved using cost-effective 

hardware, including the NodeMCU ESP8266 

microcontroller, making the system both 

accessible and scalable (Ahmed et al., 2021). 

In terms of energy efficiency, the neuro-fuzzy 

logic significantly optimizes the operation of 

the heater, fan, and humidifier. Unlike 

traditional incubators that often run 

continuously and inefficiently, the proposed 

system activates components only when 

necessary based on real-time sensor inputs. 

This intelligent switching reduces energy 

consumption without compromising 

incubation quality, as supported by previous 

studies on energy optimization in embedded 

control systems (Hossain et al., 2020). 
 

4.6  Visualizations 
 

Fig. 6 shows Temperature, Humidity, and C02 

Sample index trend.From Figure 6, the 

temperature trend indicates that the average 

recorded values consistently hover around the 

optimal incubation temperature of 37.5°C, 

which is visually marked by the green dashed 

line representing the ideal range. The humidity 

trend displays noticeable fluctuations but 

remains largely centered around 60%, staying 

within the acceptable relative humidity range 

of 45% to 70%. Additionally, the CO₂ 

concentration trend shows that the levels 

mostly stay below the critical threshold of 1000 

ppm, suggesting safe conditions for embryo 

development throughout the incubation cycle. 

 

 
Fig. 6: Temperature, Humidity, and C02 Sample index trend 

 

Fig. 7 presents the correlation heatmap, which 

offers a visual depiction of the Pearson 

correlation coefficients among various sensor 

inputs and their corresponding control actions 

within the system. The heatmap uses a color-

coded scheme—red to represent strong positive 

correlations, blue for negative correlations, and 

white for neutral relationships. This 

visualization confirms logical dependencies 

between sensor readings and control outputs, 

providing insight into the effectiveness of the 

implemented neuro-fuzzy control logic and 

serving as a valuable tool for refining the rule 

base and optimizing system performance. 
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 Fig.7: Heatmap: Correlation Between Sensor Inputs and Control Actions 

The heat helps in model validation to confirms 

that the sensor-to-actuator mappings are 

consistent and logical. It ensures system 

feedback and behaviour to indicate the 

responsiveness of each control action based on 

sensor feedback. 

The heatmap also, helps in Fuzzy rule and 

Neural Network refinement by fine-tuning the 

fuzzy logic rules and updated the dataset used 

in training the network model and shows which 

variables are more sensitive to change. 
 

5.0  Conclusion 
 

The findings of this study demonstrate the 

effectiveness of the developed ANFIS-based 

smart incubator system in maintaining optimal 

incubation conditions for chicken eggs. The 

system successfully regulated temperature, 

humidity, CO₂ levels, and egg rotation with 

high accuracy, achieving 96.4% precision in 

temperature control, 94.2% in humidity 

regulation, 91.3% in CO₂ level management, 

and 99.5% in egg rotation timing. These results 

surpass the performance of conventional PID-

controlled systems and traditional incubators. 

The average hatchability rate of 91.7%, 

recorded across three incubation cycles, aligns 

with or exceeds the benchmarks set by high-

end commercial incubators, highlighting the 

system’s capability in enhancing embryo 

development and hatch success. 

In conclusion, the integration of neuro-fuzzy 

logic into incubation systems offers a 

significant improvement in environmental 

control, adaptability, and energy efficiency. 

The ability of the ANFIS model to respond 

dynamically to real-time environmental inputs 

contributes to improved incubation outcomes, 

reduced operational costs, and greater 

reliability. 

It is recommended that future studies explore 

scalability for larger incubator systems and 

investigate long-term performance across 

different poultry species. Additionally, the 

integration of IoT features for remote 

monitoring and data logging could further 

enhance system usability, particularly in rural 

and small-scale poultry farming applications. 

The application of this intelligent control 

system provides a viable, low-cost solution for 

improving hatchery efficiency in both 

commercial and subsistence farming 

environments. 
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