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Abstract: Symmetric nuclear matter at zero 

temperature were analysed. The equations of state 

(EOS) of symmetric nuclear matter were studied in 

the non-linear Walecka models at different 

parameterizations. At normal nucleon density, 

strong correlations were observed among the 

different parameter sets, however the linear 

Walecka model gives values of nucleon effective 

mass 𝑀0
∗ and nuclear incompressibility (𝛫) at 

variance to the experimental values.The calculated 

values of saturation density ranges from 0.143 fm-

3 to 0.152 fm-3 , nucleon effective mass 0.132 MeV 

to 0.157 MeV, binding energy per nucleon -16.01 

MeV to -16.20 MeV, compression modulus 223.55 

MeV to 271.36 MeV, and fermi-wavelength 1.30 

fm-1 to 1.31 fm-1 for the non- linear Walecka model 

(NLWM). The results of the numerical 

computations were compared with the empirical 

analysis of the giant iso-scalar monopole 

resonance data. These quantities are important for 

understanding the structure of finite nuclei and 

neutron stars. The quantities have substantially 

described equation of state of other dense matter in 

astrophysical contexts. 
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1.0 Introduction  

The non-linear Walecka model (NLWM) is a 

relativistic quantum field theoretical framework 

used for describing nuclear matter properties 

(Bhattacharyya & Ghosh, 2012); (Aper et al., 

2019). At zero temperature, it incorporates 

interactions between nucleons mediated by scalar 

and vector mesons (Chung et al., 2008). The 

lagrangian density for this model includes terms 

for nucleons (protons and neutrons), Scalar mesons 

(𝜎), vector mesons (𝜔), and self-interaction terms 

for the sigma meson field. This is aimed at 

addressing some limitations of the original linear 

Walecka model thereby providing a more accurate 

description of nuclear matter properties at high 

densities. Like the linear model, the equations of 

motion (EoM) for the various fields are derived 

from the Lagrangian density which involves 

contributions from the scalar and vector fields 

(Walecka, 2004); (Oppenheimer, 1939). Also, in 

the mean field approximation, the meson fields are 

replaced by their expectation values which 

provides the equations of state (EoS) for the 

symmetric nuclear matter. The equations of state 

(EOS) relates the energy density, pressure density 

to the baryon density which is crucial for 

understanding the properties of neutron stars and 

heavy-ion collision experiments (Sumiyoshi et al., 

2019; Faise, 2011).This model will help to provide 

saturation properties of nuclear matter such as 

binding energy per nucleon, the nuclear matter 

incompressibity, Symmetry energy and the 

nucleon effective mass (Passamani, 2012).  In an 

earlier attempt to study nuclear matter properties 
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within the framework of quantum hydrodynamics 

(QHDI), Walecka and other co-workers were able 

to describe the saturation and other properties of 

nuclear matter using the well-studied linear - 

model (Patrigani, 2016); (Schmitt, 2010). 

However, the non-linear Walecka model yields 

nuclear incompressibility values (Ko) of around 

550MeV. The value is unacceptably high and again 

the effective nucleon mass M* around 0.54M 

which seems too low (Chung et al., 2008); (Da-

Silva, 2013); (Francesco, 2017), (Gambhir, 1989); 

(Parmer et al., 2023); and (Patrigani, 2016), hence 

the introduction of the non-linear model.  

2.0  The Formalism of the Non-Linear Model 

The non-linear Walecka model is otherwise known 

as the quantum hydrodynamic II (QHD II). It is a 

relativistic quantum field theory just like the linear 

Walecka model used for describing the main 

features of the nucleon-nucleon and nucleon-

meson interactions. This model is characterized by 

the following lagrangian density (Parmer et al., 

2023): 

ℒ
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                                                                         (1)  

where: 

•   is nucleon field. 

•  is the sigma field with mass 𝑚𝜎  

•  ( the omega field), with mass  𝑚𝜔 

• g(𝜎) and g(𝜔) are the respective coupling 

constants for the  nucleon-sigma and  

nucleon-omega interactions. 

• b and c  are coefficients of the non-linear 

sigma meson self-interaction terms. 
 

The scalar self-interaction term is non-linear made 

up of cubic and quartic polynomials defined by the 

potential:  

3 41 1
( ) ( ) ( )

3 4
nU m b g c g   = +                (2) 

Where b and c are dimensionless constants and 

𝑚𝑛 = 939 𝑀𝑒𝑉 thought to be a mass equal to that 

of a neutron. 

The equations of motion of the meson fields are 

obtained using the Euler-Lagrange equation 

(Diener, 2010); Francesco, 2017): 
𝜕ℒ

𝜕𝜙
− 𝜕𝜇 (

𝜕ℒ

𝜕(𝜕𝜇𝜙)
) = 0                   (3) 

Substituting equation (1) into equation (3), the 

meson field equations are obtain as follows: 
𝜕(ℒ𝜎+ℒ𝑖𝑛𝑡−𝑈(𝜎)

𝜕𝜎
=  −𝑚𝜎

2𝜎(𝑥) + 𝑔𝜎(𝜓̅𝜓 −

𝑚𝑛𝑏(𝑔𝜎𝜎(𝑥))
2

− 𝑐((𝑔𝜎𝜎(𝑥))
3
     (4)                                      

So that after imposing mean-field procedures, 

equation (4), turns out to:  

( ) ( ) ( )
2 32
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                      (5) 

Recalling the expression for the computed     , 

in terms of g  which becomes:  

( ) ( )

( )

( )

2 3

2

2

2 0 2

2 F

n

p

m b g C g
g

g p m g
m dp

p m g

 


 





 

 

 

 − − +
  
 = − 
  
 + −
 


     

                                                                         (6) 

The expectation value of the Lagrangian also 

modified as:  
〈ℒ〉
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                                                              (7)         

3.0 Energy density and Pressure for the non- 

linear Walecka model 
 

The energy(ε) and pressure (P) for the expectation 

values are in the rest frame are on the diagonal of 

the matrix form. 

Tμυ =  Tμυ =    (

ε 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P

)                 (8) 

But by definition, the energy-momentum tensor is 

given by (Diener, 2010); Francesco, 2017) as:  

Tμυ = ημυL −
∂L

∂(∂μϕi)
∂vϕi                    (9)                                                                
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Where ϕi represents an arbitrary field example 

ψ, σ, ω − fields etc. with the Lagrangian for 

ψ nucleons in momentum space. 

Tμυ = ημυL −
∂L

∂(∂μψ)
∂vψ               (10)                                                                             

From the energy-momentum tensor, the energy 

and pressure densities are obtained respectively 

by (Parmer, 2019) as: 

ε = −〈ℒ〉 + 〈𝜓̅𝛾0𝑝0𝜓〉                     (11) 

𝑃 = 〈ℒ〉 +
1

3
〈𝜓̅𝛾ἱ𝑝ἱ𝜓〉                  (12) 

Evaluating the above expectation values, we have 

(ψ̅γ0P0ψ) =
2

π2 ∫ ∂P P2 √P2 + (m−𝔤σ〈σ〉)2  

                                                               (13) 

(ψ̅γiPiψ) =
1

𝜋2 ∫ 𝑝2𝑑𝑝
𝑝2

 √P2+(m−𝔤σ〈σ〉)2

𝑝𝐹

0
  (14)                                 

                                        

Substituting equations (7), (13) and (14) into 

equation (11) and (12) respectively, the equations 

of state (EoS) for the non-linear Walecka model 

with the self-interaction term are obtained as (Von-

Maco, 2018):  
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4.0 Numerical results and Discussions 
 

In Fig. (1) we plotted the nuclear matter effective 

mass as a function of the baryon density for all the 

parameter sets. We noticed that the G3, FSUGarnet 

and IOPB-1 parameter set underestimate the EoS 

as shown by the NL3 set. These parameter sets 

showed similar behavior due to the fact that they 

share the same structure of couplings (Table1).The 

baryon effective mass decreases exponentially as 

density increases among the force parameters. This 

is because the solution of the self-consistent 

equation (Mpantis, 2020) will always yield a 

solutions of effective mass (M*) which is a 

decreasing function of the baryon density (Von-

Maco, 2018; Mpantis, 2020). This pattern of 

monotonic decrease arises from the interaction of 

large condensed scalar field (𝑔𝜎𝜎) which is 

attractive and a large repulsive energy per baryon 

component coming from the vector field (𝑔𝜔𝜔 ). 

The readiness for the NL3 set to over-estimate the 

EoS is well observed in the effective mass as a 

function of baryon density curve (Fig.1). This is 

because the effective masses determined the values 

of both the scalar and vector potentials through the 

self-consistent equation for scalar density. The 

plots of the binding energy of nuclear matter as a 

function of baryon density and Fermi-wavelength 

are also displayed in fig.(3).The binding energy per 

nucleon was estimated based on the force 

parameters to be about -16.41MeV at the saturation 

density of approximately 0.14 fm-3 and Fermi-

wavelength (𝐾𝐹 
0 =1.40 fm-1). These results are 

within the range obtained in other literatures 

(Dhiman et al., 2007; Krane, 1988 and Sumiyoshi 

et al., 2019).The above results is an indication that 

nuclear matter is considered as a Fermi degenerate 

gas at super high density (Krane, 1988 and 

Sumiyoshi et al., 2019). Furthermore, it was 

noticed that fig. (3) depicted the softness of the G3 

parameter set and the stiffness of NL3. Thus, the 

NL3 set is not a good tool for nuclear matter studies 

at super high density. It was observed that the 

symmetric nuclear matter is a dilute fermi system 

where the particles (nucleons) are interacting in a 

strongly repulsive potentials at short distances. The 

saturated values of the fermi momentum, density, 

binding energy, nand uclear incompressibility are 

in good agreement with accepted experimental 

values (Antic, 2015; Bhattacharyya & Ghosh, 

2012). Values of the nuclear matter 

incompressibility among the various parameter 

sets are further enhanced and lowered as expected 

based on results obtained by other researchers due 

to the inclusion of non-linear scalar potential to the 

original linear langrangian density. Fig. (4) 

Depicted the binding energy versus baryon density 

for the various force parameters at different nuclear 

asymmetry parameter (𝛼). For symmetric nuclear 

matter, 𝛼=0 (Mpantis, 2020; Parmer et al., 2023). 



Communication in Physical Sciences, 2025, 12(2): 16-223 219 
 

 
 

Here, nucleons are seriously bound at saturation 

point. It was noticed that boundness becomes 

weaker as the degree of asymmetry tends towards 

unity, while the energy per nucleon decreases as 

density increases. There is a substantial transition 

between symmetric nuclear matter (SNM) to pure 

neutron matter (PNM), at this points, the cusps or 

the pockets of the bound states begin to disappear. 

Increasing the asymmetry coefficient, the EoS 

become stiff which might become stiffer in high 

temperature studies. Here, it was noticed that at 

high densities, the system become unbound with 

the condition that E/B> 𝑀. Also at intermediate 

densities the attractive scalar interaction will 

dominate and the system will saturate, the 

relativistic nature of the scalar and vector fields 

that is responsible for this saturation. From the 

observed trends of behavior, these parameter sets 

can be used to explore the mass-radius profile of 

neutron stars with the aid of the well-known 

Tolman-Oppenheimer-Volkoff (TOV) equation 

for simulating the sites of gravitational waves 

strain, neutron star mergers, core-collapse 

supernovas and many more. (Chin, 1974; Dhiman 

et al., 2007; Gil et al., 2023; Ilona, 2007 and 

Oppenheimer, 1939). Thus, the force parameters 

IOPB-1, G3 and FSUGarnet can be used for 

estimating astrophysical properties of objects 

oscillating at supernormal densities (Sumiyoshi et 

al., 2019; Parmer et al., 2023). 

Symmetric nuclear matter observables at zero 

temperature depicting nuclear matter 

incompressibility, nucleon effective mass, binding 

energy, and saturation density for these force 

parameters for the non-linear Walecka model is 

displayed in Table .2. The calculated values of 

saturation density ranges from (0.143-0.152) fm-3 

nucleon effective mass (0.132-0.157) MeV, 

binding energy per nucleon (-16.01 to -16.20) 

MeV, compression modulus (223.55-271.36) 

MeV, and fermi-wavelength (1.30-1.31) fm-1 for 

the non- linear Walecka model (NLWM) in 

Table.2. 

 

 

 
 

F 1: Self-consistent effective masses of nucleon as a function of baryon density for different 

parameter sets at T = 0 in the NLWM  
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Fig. 2: Energy density against baryon density for NLWM at T= 0 for the parameter sets 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Binding energy as a function of baryon density and Fermi-wavelength for the 

differentParameter sets using the NLWM 
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Fig. 4: Binding energy as a function of baryon density for the different parameter sets under 

different asymmetry coefficient at T = 0 in the NLWM 

 

 

 

 

 

 

 

 

 

Fig. 4: Binding energy as a function of baryon density and Fermi-wavelength for the different 

Parameter sets for G3, IOPB-I, FSUGamet and NL3 

Table 1: Parameter sets for the model. Nucleon mass is taken as 939MeV 

 FSUGarnet IOPB-1 G3 NL3 

𝒎𝝈 𝑴⁄  0.529 0.533 0.559 0.541 

𝒎𝝎 𝑴⁄  0.833 0.833 0.833 0.833 

𝒎𝝆 𝑴⁄  0.812 0.812 0.820 0.812 

𝒎𝜹 𝑴⁄  0.000 0.000 1.043 0.000 

𝒈𝝈 𝟒𝝅⁄  0.837 0.827 0.782 0.813 

𝒈𝝎 𝟒𝝅⁄  1.091 1..062 0.923 1.024 

𝒈𝝆 𝟒𝝅⁄  1.105 0.885 0.962 0.712 

𝒌𝟑(𝒇𝒎−𝟏) 1.368 1.496 2.606 1.465 

𝒌𝟒 -1.397 -2.932 1.694 -5.688 

𝝇𝟎 4.410 3.103 1.010 0.000 

𝜼𝟏 0.000 0.000 0.424 0.000 

𝜼𝟐 0.000 0.000 0.114 0.000 

 0,000 0.000 0.645 0.000 

 0.043 0.024 0.038 0.000 
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Table 2: Calculated Nuclear Matter 

Observables for N LWM at zero 

temperature 
 

 FSUGarnet IOPB-1 G3 NL3 

𝝆𝟎(𝒇𝒎−𝟑) 0.152 0.143 0.146 0.147 

𝑴∗ 𝑴⁄  0.132 0.143 0.136 0.157 

𝜺𝟎(𝑴𝒆𝑽) -16.01 -16.09 -16.03 -16.02 

𝒑𝑭
𝟎(𝒇𝒎−𝟏) 1.31 1.33 1.30 1.30 

𝑲∞(𝑴𝒆𝑽) 228.40 223.55 242.95 271.36 

 

5.0  Conclusions\ 
 

The non-linear Walecka model introduces non-

linear self-interaction terms of the sigma meson 

field into the Lagrangian. These self-interactions 

are necessary to reproduce the empirical properties 

of symmetric nuclear matter such as the binding 

energy per nucleon, the compressibility of nuclear 

matter and nucleon effective mass. From our 

results and calculations, we had that at the zero 

temperature limit, the non-linear model greatly 

enhances the compressional modulus to soften the 

EoS due to the inclusion of  

The scalar meson field's cubic and quartic terms to 

the original lagrangian.  On increasing the nuclear 

asymmetry parameter, symmetric nuclear matter 

(system) becomes unbound, EoS become stiffer 

and trends continue until SNM turns to pure 

neutron matter (PNM). The non-linear Walecka 

model (NLWM) significantly softens the nuclear 

matter equation of State (EoS) by reducing the 

incompressibility to an appreciable value at zero 

temperature. These quantities are important for 

understanding the structure of finite nuclei, neutron 

stars and equation of state of other dense matter in 

astrophysical contexts. 
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